Vorlesung: Modeling, Simulation, and Optimization (Modellierung, Simulation und Optimierung)

Vorlesung: Modellierung, Simulation und Optimierung

Nächste Präsenzvorlesungen

Es gibt zwei Zeitslots für Präsenzvorlesungen bzw. Übungen, Montags und Donnerstags von 9h15-10h45 in Raum G02-020. Fettgedruckte Termine finden in Präsenz statt.

  • Donnerstag, 13. April: 0. Organisatorisches
  • Montag, 17. April: 1. Einführung
  • Donnerstag, 20. April: Heimstudium, Digital Twins in Oncology (siehe Material im owncloud Verzeichnis)
  • Montag, 24. April: 1. Einführung Teil 2
  • Donnerstag, 27. April: Heimstudium
  • Montag, 1. Mai: Feiertag
  • Donnerstag, 4. Mai: Übungsblatt 1
  • Montag, 8. Mai: 1. Einführung Teil 3
  • Donnerstag, 11. Mai: Besprechung Video 2. Lineare Optimierung, Übungsblatt 2
  • Montag, 15. Mai: Heimstudium
  • Donnerstag, 18.Mai: Christi Himmelfahrt
  • Montag, 22. Mai: Besprechung Video Teile 1 bis 3 von 3. Nichtlineare Optimierung, Übungsblatt 3
  • Donnerstag, 25. Mai: Heimstudium
  • Montag, 29. Mai: Pfingstmontag
  • Donnerstag, 1. Juni: Besprechung Video Teile 4 bis 5 von 3. Nichtlineare Optimierung
  • Montag, 5. Juni: Heimstudium
  • Donnerstag, 8. Juni: Besprechung Video 4. Simulationsmethoden, Übungsblatt 4
  • Montag, 12. Juni: 5. Einführung Python und CasADi
  • Donnerstag, 15. Juni: 5. Einführung Python und CasADi, Übungsblatt 5
  • Montag, 19. Juni: Rest Übungsblätter 4 und 5
  • Donnerstag, 22. Juni: Besprechung Video Teile 1 und 2 von 6. Optimierung mit Differentialgleichungen
  • Montag, 26. Juni: Besprechung Video Teile 3 und 4 von 6. Optimierung mit Differentialgleichungen
  • Donnerstag, 29. Juni: Besprechung Video 7. Case Studies
  • Montag, 3. Juli: Vorstellung möglicher Case Studies durch Studierende
  • Donnerstag, 6. Juli: Präsentation Case Studies Teil 1 (Beschreibung)
  • Montag, 10. Juli: Präsentation Case Studies Teil 2 (Ergebnisse)
  • Donnerstag, 13. Juli: 8. Lernen von Modellen, Vorbereitung mündlicher Prüfungen
Downloads

Sind auf dieser Passwort-geschützten Seite zu finden.

Allgemeines

Die Vorlesung Modellierung, Simulation und Optimierung (LSF) wird im SS 2023 für Bachelor- und Masterstudierende an der Otto-von-Guericke Universität Magdeburg gelesen. Inhaltlich geht es um die Modellierung von Optimierungsfragestellungen vor allem bei gewöhnlichen Differentialgleichungen mit Anwendungen aus den Ingenieurwissenschaften. Die Vorlesung ersetzt die Vorlesung Modellierung 2 aus dem Mathematikingenieur Studiengang.

Sprache

Vorlesungsinhalte und Übungsblätter werden auf deutsch und englisch zur Verfügung gestellt. Welche Sprache für die Präsenzveranstaltungen gewählt wird, wird gemeinsam in der ersten Vorlesungsstunde entschieden.

Zielgruppen

Diese Vorlesung addressiert drei Studiengänge und hat modulare und skalierbare Vorlesungs- und Übungsinhalte:

Studiengang Präsenz Selbststudium Credits
I Mathematikingenieur (Bachelor) 4SWS, 56h 214h 9 CPs
II Mathematik (Master) 4SWS, 56h 124h 6 CPs
III Comp. Methods for Engineering (Master) 4SWS, 56h 94h 5 CPs
Die Vorlesung kann als Pflichtmodul im I Bachelor-Studiengang Mathematikingenieur bzw. III Master-Studiengang Computational Methods for Engineering und als Wahlpflichtmodul im I Master-Studiengang Mathematik verwendet werden. Bei III sind auch andere Masterstudiengänge wie z.B. Kybernetik möglich, bei denen ebenfalls 5 CP benötigt werden.
Inhalte

Inhaltlich geht es um die Modellierung von Optimierungsfragestellungen vor allem bei gewöhnlichen Differentialgleichungen mit Anwendungen aus den Ingenieurwissenschaften. Den unterschiedlichen Vorkenntnissen und Erfordernissen der angesprochenen Studiengänge wird durch einen modularen Zugang und unterschiedlichen Anforderungen für das Selbststudium Rechnung getragen. Einige Inhalte sind für einige Studierende (insbesondere I Mathematik Master) Wiederholung und werden genau wie manche detaillierteren Inhalte nur im inverted classroom Format angeboten. Inhaltsverzeichnis und Zuordnungen der Kapitel zu den Studiengängen:

Kapitel Präsenz I II III
1. Einführung und Beispiele für die Modellierung dynamischer Prozesse
2. Überblick Lineare Optimierung: Formulierung, Optimalitätsbedingungen, Algorithmen
3. Überblick Nichtlineare Optimierung: Formulierung, Optimalitätsbedingungen, Algorithmen
4. Überblick Simulationsmethoden
5. Einführung Python und CasADi
6. Optimierung mit Differentialgleichungen
7. Fallstudien
8. Maschinelles Lernen und Hybride Modelle (Details: ICF)

In die Präsenzzeit werden neben Vorlesungen auch Übungen im Umfang von 1 bis 2 SWS integriert. Zielsetzung wird neben mathematischen Aufgaben der Umgang mit modernen Modellierungs- und Optimierungstools sein. Bei der Betrachtung der Fallstudien sollen eigene Problemstellungen der Studierenden mit eingebracht werden.

Ziele und Kompetenzen

Die Studierenden erwerben fachliche Kompetenzen bezüglich der mathematischen Modellierung von ingenieurwissenschaftlichen Fragestellungen. Hierbei liegt ein Fokus auf der Modellierung mit Differentialgleichungen und den Wechselwirkungen zwischen Modellierung auf der einen und Simulation und Optimierung auf der anderen Seite. Es wird ein Überblick über elementare algorithmische Techniken gegeben. Hierzu gehören Parameterschätzung und Versuchsplanung für dynamische Systeme, sowie bezüglich Optimalitätsbedingungen und Algorithmen für die nichtlineare, ableitungsbasierte Optimale Steuerung, also der Optimierung mit unterliegenden differentiellen Gleichungen. Neben der Modellierung der unterliegenden physikalischen, biologischen oder chemischen Prozesse werden Modellierung von Beschränkungen und Zielfunktionen und deren Einfluss auf Algorithmik, Komplexität und Ergebnisse diskutiert.

In begleitenden Übungen vertiefen Studierende ihr diesbezügliches Verständnis und erlernen dabei, Algorithmen effizient auf dem Computer zu implementieren und auf konkrete Problemstellungen anzuwenden.

Fragen?

Ich freue mich über generelles Interesse und Fragen:

Prof. Dr. rer.nat. habil. Sebastian Sager
Head of MathOpt group
at the Institute of Mathematical Optimization
at the Faculty of Mathematics
at the Otto von Guericke University Magdeburg

Universitätsplatz 2, G02-224
39106 Magdeburg, Germany

: +49 391 67 58745
: +49 391 67 11171
:

Susanne Heß

Universitätsplatz 2, G02-206
39106 Magdeburg, Germany

: +49 391 67-58756
: +49 391 67-11171
:

Prof. Dr. rer.nat. habil. Sebastian Sager
Head of MathOpt group
at the Institute of Mathematical Optimization
at the Faculty of Mathematics
at the Otto von Guericke University Magdeburg

Universitätsplatz 2, G02-224
39106 Magdeburg, Germany

: +49 391 67 58745
: +49 391 67 11171
:

Susanne Heß

Universitätsplatz 2, G02-206
39106 Magdeburg, Germany

: +49 391 67-58756
: +49 391 67-11171
: