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Optimal control of self-organized dynamics

in cellular signal transduction

O. SLABY{, S. SAGER{, O. S. SHAIK{, U. KUMMER{ and
D. LEBIEDZ*{

{Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany
{European Media Laboratory, Heidelberg, Germany

We demonstrate how model-based optimal control can be exploited in biological and
biochemical modelling applications in several ways. In the first part, we apply optimal control
to a detailed kinetic model of a glycolysis oscillator, which plays a central role in immune cells,
in order to analyse potential regulatory mechanisms in the dynamics of associated signalling
pathways. We demonstrate that the formulation of inverse problems with the aim to determine
specific time-dependent input stimuli can provide important insight into dynamic regulations of
self-organized cellular signal transduction. In the second part, we present an optimal control
study aimed at target-oriented manipulation of a biological rhythm, an internal clock
mechanism related to the circadian oscillator. This oscillator is responsible for the approximate
endogenous 24 h (latin: circa dies) day-night rhythm in many organisms. On the basis of a
kinetic model for the fruit fly Drosophila, we compute switching light stimuli via mixed-integer
optimal control that annihilate the oscillations for a fixed time interval. Insight gained from
such model-based specific manipulation may be promising in biomedical applications.

Keywords: Self-organization; Biochemical oscillations; Circadian clock; Signal transduction;
Inverse problems; Direct multiple shooting; Mixed-integer optimal control; Bang-bang control;

AMS Subject Classifications: 37N25; 49J15; 90C11

1. Introduction

Self-organized dynamical processes under nonequilibrium conditions are often
observed as impressing phenomena in nature. Since the elucidation of their theoretical
foundations by Glansdorff and Prigogine [1], there is increasing interest in modelling
and simulating such phenomena in living systems for a better understanding of the
underlying dynamical mechanisms and especially to study their possible physiological
significance. Self-organized systems displaying oscillations and pattern formation in
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space and time are believed to be important players in the huge variety of dynamical
mechanisms of cellular processes. Advanced mathematical methods are essential, not
only for numerical simulation but also for model analysis.
Optimal control, for example, is a promising tool to analyse how dynamic

perturbations of a given system might look like to achieve an observed or desired
dynamical behaviour. In this article, we will concentrate on two different aspects of
how optimal control can be exploited in biological and biochemical modelling. The first
aspect is the formulation and solution of inverse problems to detect appropriate
temporally varying input signals leading to specific experimentally measured output.
The second is the control of self-organized processes by target-oriented external
manipulation to induce desired behaviour. In the future, the latter approach might be
valuable for the development of drugs and treatment strategies aimed at so-called
dynamic diseases that are caused by malfunctions in the dynamics of cellular signalling
and metabolism. Due to the challenges posed by numerical optimal control of self-
organized systems displaying pattern formation in time (and space) involving inherent
unstable dynamical modes, the use, adaptation and extension of elaborate and efficient
optimization techniques are important issues. In this article, we apply state-of-the-art
optimal control methods based on multiple shooting for the solution of inverse
problems with time-dependent input controls for ODE/DAE and present the
application of a novel multiple-shooting mixed-integer approach to a bang-bang
control scenario aimed at annihilation of biochemical oscillators.

2. Glycolysis oscillations in immune cells

2.1 Neutrophils in immune defence

In this section, we will demonstrate how optimal control methods can be used to gain
insight into possible cellular signalling routes. Cells react and adapt to changes in their
environment by relaying information through signal transduction pathways. The
spatiotemporal dynamics of the signalling routes encode transduced information and
modelling and simulation techniques integrating quantitative in vivo experimental data
are believed to be crucial on the way towards an elucidation of the enormous
complexity of signalling mechanisms. Neutrophils are cells of the human immune
system and exhibit central functions in the first line of defence against inflammation.
Their major role is the detection, internalization (phagocytosis), and digestion of
invading pathogens. While normally circulating in the blood stream, at sites of
inflammation they adhere to endothelial cells that form the blood vessel wall and
polarize, acquiring a flat, elongated shape. Then they leave the vascular system
(extravasation) and migrate actively, stimulated by chemotactic factors, towards
the centre of tissue inflammation where they engulf the target pathogens. The
destruction of pathogens is supported by synthesis and release of reactive oxygen
species leading to degradation of the foreign biomaterial. Because of their autonomous
functions without being integrated in tissue, neutrophils are ideal objects for single cell
studies of signalling mechanisms and the associated physiology. A thorough under-
standing of the signal transduction involved in polarization, direction finding, and
pathogen targeting of neutrophils by help of spatiotemporal mathematical modelling
and simulation may have the long-term potential to lead to medical applications in
immunology.

488 O. Slaby et al.
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Recently, signalling processes involving biochemical oscillations and highly
asymmetric and localized Ca2þ waves [2] and metabolic NAD(P)H (Nicotinamid-
adenine-dinucleotide and its phosphate) waves [3] have been observed which correlate
with orientation and migration of neutrophils following chemotactic stimulation as
well as specific targeting of pathogens by reactive oxygen intermediates (ROI). In these
studies, high-speed fluorescence microscopy has been used to track Ca2þ in polarized,
adherent neutrophils. Every 20 s, a concentration spike occurs, a Ca2þ wave departs
from the front (lamellipodium) of a polarized neutrophil, travels along the inner
perimeter of the cell membrane in counterclockwise direction until the point of
departure is reached. When the chemotactic factor fMLP is applied locally to the cell
membrane, the frequency of Ca2þ spikes increases to 10 s and the counterclockwise
wave splits at the fMLP binding site, emitting a second wave travelling in a similar
fashion in clockwise direction. These two waves cross at the other end of the cell and
continue propagation until they again reach the fMLP binding site where they both
terminate. Eventually, by rearrangement of the cellular shape, this site becomes the
new lamellipodium and determines the new direction of active movement. Thus, the
observed signalling routes seem to be involved in early events related to cellular
orientation and direction finding.

In addition to the calcium waves, metabolic NAD(P)H oscillations and waves are
observed in adherent, polarized neutrophils. These propagate unidirectionally from the
rear to the front of the cell. A well-defined phase relation between corresponding
NAD(P)H oscillations and calcium spikes suggests a direct correlation between the
signalling apparatus and cell metabolism. The NAD(P)H waves obviously drive the
target-oriented ‘‘‘shooting’’ of reactive oxygen towards pathogens by spatiotemporally
controlling the activity of the enzyme NAD(P)H oxidase located in the cell membrane.
After chemoattractant stimulation, the NAD(P)H oscillation frequency reduplicates
and the wave splits in the middle of the cell into two counter-propagating waves that
are now reflected at front and rear end plasma membrane and cross each other
unaffectedly. The mechanism and the function of oscillations and waves and the
increase of the frequency upon activation are unknown.

Given the fact that the metabolism of neutrophils relies heavily on anaerobic
degradation of glucose, the assumption that glycolysis is at the core of the oscillations
is reasonable since glycolysis produces NADH and is known to be able to display
oscillatory kinetics [4]. It is known that transport of glucose into the cell is variable
and after activation of the neutrophils an increase of glucose-transport into the
cell is observed experimentally [5]. Our hypothesis is therefore that a dynamically
regulated influx of glucose may control self-organized dynamics in neutrophil
metabolism.

2.2 Modelling and optimal control

Glycolysis is composed of a series of reactions which step-wise convert glucose to
pyruvate. It is the central part of the general cellular energy metabolism and consists of
11 reactions which are catalyzed by enzymes.

A scheme of the major part of the reaction pathway is depicted in figure 1. The
model equations are based on a model for neutrophilic glycolysis [7]. The model is
based on [8] and [9] and directly relates to experimental in vivo data. The full model-
equations are given in Appendix A. Exemplarily, we provide the rate equation for the

Optimal control of self-organized dynamics 489
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most important reaction which is catalyzed by the enzyme phosphofructokinase
(PFK). For the PFK reaction an allosteric regulation of the enzyme by its product FBP
is known which leads to sigmoidal saturation kinetics. This can be modelled by an
extended Hill-equation [10] of the form

vPFK ¼
Vpfk

½F6P�
Kpfk

� �hpfk
½F6P�
Kpfk

� �hpfk
þ

1þ kx ½FBP�
Kfba

� �hfba

1þah kx ½FBP�
Kfba

� �hfba

; ð1Þ

Figure 1. Scheme of the major part of glycolysis captured by our kinetic ODE model. v describes the reaction
rates of the indexed enzymes. A part of the G6P flows into a branching pathway, the hexosemonopho-
sphateshunt, which is not modelled explicitly but by assuming a first-order leakage of G6P. For explanation
of the chemical species see for example [6].

490 O. Slaby et al.
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with a variable Hill coefficient

h�pfk ¼ hpfk � ðhpfk � hactÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
s

½FBP�
Kfba

1þ ½FBP�Kfba

 !
: ð2Þ

For a detailed explanation of kinetic constants and the modelling itself which is
beyond the scope of this work we have to refer to [7]. With the full model the oscillations
of an adherent neutrophil with a period in the range of 20 s can be simulated (see
figure 2(a)).

However, the simulated periodic NADH concentrations do not have the experi-
mentally observed harmonic sine shape [12] but are rather oscillations of the relaxation
type. They cannot be fitted to experimental results in a biochemically reasonable range
of parameter values.

Here, our aim is to demonstrate that the oscillations might be dynamically controlled
by variable glucose influx u(t) giving rise to the observed shape. For that purpose, we
consider the following optimal control problem with periodic boundary conditions and
fixed end time appropriately chosen near the experimentally observed value for three
oscillation periods:

min c;u

Z T¼60

0

cNADHðtÞ � �cðtÞð Þ2dt

Figure 2. (a) Simulation of the glycolysis model with relaxation-type shape of the oscillations (numerical
integration with the BDF-code DAESOL [11]). (b) Induced NADH oscillations with dynamical glucose influx
computed as a solution of the optimal control problem. (c) Optimal control function: glucose influx u(t).

Optimal control of self-organized dynamics 491
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subject to

_cðtÞ ¼ fGlycoðt; cðtÞ; uðtÞÞ; cðtÞ 2 ½0; cmax�; t 2 ½0; 60�
cðtÞ � 0: ð3Þ

The vector c(t)2R9 denotes the considered metabolite concentrations and u2R1

represents a dynamical influx of glucose. �c(t) is a sine function a sin(btþ d)þ e with the
parameters a ¼ 0.1, b ¼ 0.345, d ¼ 0, and e ¼ 0.785 to which the NADH oscillations
are supposed to be fitted. These values are experimentally motivated [12] and account
for the range of relative oscillation amplitude and frequency. The additional inequality
constraints for the metabolite concentrations are obviously physically motivated.
The optimal solution of this problem is computed by the direct multiple shooting

(DMS) code MUSCOD-II [13] with a piecewise polynomial discretization of the
control functions. More methodical details on DMS can be found in Section 4. The
obtained optimal control and the corresponding oscillating optimal trajectory are
shown in figures 2(b) and 2(c).
Interestingly, the obtained control and the induced oscillations have a phase

difference of approximately 908. This is the same phase shift observed between
NAD(P)H and Ca2þ oscillations in experiments [12]. Because of the detected phase
relation between optimal control input (dynamic glucose influx) and system response
(desired shape of NADH oscillations) and the correlation with Ca2þ-oscillations, we
argue that the NAD(P)H oscillations may be controlled by calcium signals. Calcium is
well known as a messenger in signal transduction and information can be encoded in its
dynamic characteristics like frequency and amplitude of oscillations [14]. In our case, a
hypothetical mechanism underlying the correlation between calcium and NAD(P)H
oscillations could be that glucose transporters in the plasma membrane of the cell are
activated by increased calcium concentration. This is supported by some experimental
data, see e.g. [15] for an early study.

3. Optimal control of the circadian clock

3.1 Rhythms in biology

In the second part of the article, we present optimal control results for another
biological rhythm, the circadian clock, and apply a novel approach related to mixed-
integer optimal control to obtain bang-bang solutions. Rhythmic processes are
encountered at all levels of biological organization and are a subject of great interest
for both biological and mathematical research communities (see e.g. the review [16]).
The role of circadian rhythms with a period of nearly 24 h is of particular importance
because many physiological and behavioural functions of living creatures, ranging
from insects to mammals, appear to be governed by this so-called ‘‘master clock’’. The
pacemaker delivers a circadian rhythm, generated by periodic activation/inhibition of
transcription of a set of genes, denoted as ‘‘clock genes’’. The molecular basis of these
mechanisms has been clarified over the past decade, first for an insect, the fruit fly
Drosophila, and more recently also for mammals (see [17] for a review). The central
mechanism seems to be conserved and is based on a feedback regulated gene
transcription network in the cell nucleus and its corresponding protein translation
products in the cytoplasm. Some of the most intriguing observations related to
circadian rhythms are that they seem to be entrained by periodic light and darkness

492 O. Slaby et al.
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periods, persist under conditions of complete darkness and can be modified (phase
shifted) by external light pulses. In particular, well-defined suppression and restoration
of circadian rhythms are interesting scenarios to be studied. However, neither the phase
at which stimuli for suppression or restoration of oscillations have to be applied nor the
characteristics of the critical stimulus strength are a priori clear. Winfree proposed an
approach to determine these parameters by probing the phase resetting response for
various stimulus intensities and corresponding phase relations between stimulus
and system state and construction of so-called phase resetting curves [18]. Here, we
demonstrate how model-based optimal control of mixed-integer type can be exploited
for the task of systematically finding appropriate strength and timing of critical
external stimuli leading to specific suppression and restoration of circadian rhythms.
To our knowledge, this is the first application of mixed-integer optimal control to
systematic phase shift of circadian rhythms by light.

3.2 Model

One of the most reliable detailed models available for the circadian clock is based
on experimental observations collected for Drosophila, a widely used model organism
in biology; the model [19] (schematized in figure 3) is centred around negative auto-
regulation of gene expression.

It takes into account nuclear transcription of the per and tim genes and transport of the
per and tim mRNAs into the cytoplasm, where they are translated into PER and TIM
proteins. The latter can be multiply phosphorylated and form a complex that enters the
nucleus and represses per and tim transcription. The model incorporates degradation of
the PER and TIM proteins and their mRNAs. Light influences the Drosophila clock by
triggering TIM degradation [20], the maximum rate of TIM degradation ndT increases
with increasing light intensity. (In mammals, where per and tim genes are also found, light
acts by enhancing the rate of per expression nsP.) The Drosophila model is described by a
set of 10 ordinary differential equations (ODE) that govern the time evolution of the
concentrations of per and timmRNAs and of the various forms of PER and TIMproteins
and the PER–TIM complex [19]. The model can reproduce circadian oscillations in
continuous darkness, entrainment by light – dark cycles, and phase shifting by light
pulses. The full model-equations are given in Appendix B.

On the basis of this model, we consider suppression of circadian rhythmicity by
directly controlling the light-sensitive parameter ndT. The aim of our control approach is
to identify strength and timing of the light-induced parameter changes for TIM protein
degradation corresponding to a phase singularity which suppresses the circadian
rhythms immediately. We address this problem by model-based mixed-integer optimal
control via formulation of the control objective as the minimization of the system state
deviation from the desired steady state integrated over time. We are interested, in
particular, in control functions ndT that switch once between the value ndT¼ ndTmin

and
ndT¼ ndTmax

, corresponding to a maximum amount of light and once back to the
background intensity (bang-bang control). By setting ndT(t)¼ ndTmin

þw(t)(ndTmax
7ndTmin

)
this can be formulated assuming a binary-valued control function w(t) which can take
only boundary values low or up of a relaxed feasible domain [0,1]. The corresponding
mixed-integer optimal control problem is

min wðtÞJðx;wðtÞÞ :¼
Z T

0

X10
i¼1
ðxiðt;wðtÞÞ � xsi Þ

2dt ð4Þ

Optimal control of self-organized dynamics 493



D
ow

nl
oa

de
d 

B
y:

 [L
eb

ie
dz

, D
.] 

A
t: 

12
:5

5 
9 

O
ct

ob
er

 2
00

7 

subject to the ODEs, the integer constraints w(t)2 {0,1}, positive valued concentrations xi(t),
and initial conditions. The vector xsidenotes the steady state coordinates. For rhythm
restoration, a maximization of the same objective functional turned out to be suitable.
In the uncontrolled case, the model shows endogenous limit-cycle oscillations with a

period of approximately 24 h in a numerical simulation for the chosen parameter
values [19]. A bifurcation analysis of the model (not shown) reveals a bistability region
in the range of the applied basal background illumination strength, namely, the
coexistence of a stable steady state and a stable limit cycle after a Hopf-bifurcation.
This situation is important to obtain stability in our open-loop control scenarios aimed
at switching between the periodic and stationary states.
For limit-cycle attractors surrounding a steady state, Winfree has proven via

topological arguments under very general assumptions that a critical stimulus with
appropriate timing, length, and strength corresponding to a so-called phase singularity
must exist which takes the system immediately to steady state, meaning instantaneous
suppression of the oscillations [18]. We apply a novel approach based on the direct

Figure 3. Model for circadian oscillator in Drosophila involving negative regulation of gene expression by
PER and TIM. per (MP) and tim (MT) mRNAs are synthesized in the nucleus and transferred into the
cytoplasm, where they accumulate at the maximum rates nsP and nsT, respectively. There they are degraded
enzymatically at the maximum rates, nmP and nmT, with the Michaelis-Menten constants, KmP and KmT. The
rates of synthesis of the PER and TIM proteins are proportional to MP and MT characterized by
the apparent first-order rate constants ksP and ksT. Parameters ViP(ViT) and KiP(KiT) (i ¼ 1, . . . ,4) denote the
maximum rate and Michaelis constant of the kinases and phosphatases involved in the reversible
phosphorylation of P0 (T0) into P1 (T1) and P1 (T1) into P2 (T2), respectively. The fully phosphorylated forms
(P2 and T2) are degraded by enzymes with maximum rate {ndP and ndT and Michaelis-Menten constants KdP

and KdT and reversibly form a complex C (association and dissociation are characterized by the rate
constants k3 and k4), which is transported into the nucleus at a rate characterized by the apparent first-order
rate constant k1. Transport of the nuclear form of the PER-TIM complex (CN) into the cytoplasm is
described by the apparent first-order rate constant k2. The negative feedback exerted by the nuclear PER-
TIM complex on per and tim transcription is modelled by a Hill-type equation. For the full kinetic model
equations see [19].

494 O. Slaby et al.



D
ow

nl
oa

de
d 

B
y:

 [L
eb

ie
dz

, D
.] 

A
t: 

12
:5

5 
9 

O
ct

ob
er

 2
00

7 

multiple shooting method (DMS) [21] which can treat bang-bang control scenarios with
a piecewise constant control parameterization to obtain such an optimal light stimulus
to suppress and subsequently restore the circadian rhythm in the Drosophila model at
a priori defined time points. We compute an optimal control ndT(t) as a solution of
problem (4) via convex relaxation of the integer constraints. The result is shown in
figure 4(a). Obviously the rhythm can be suppressed and restored by adjustable time-
varying light pulses. However, these are difficult to realize in practice. Therefore, we go
on to compute a bang-bang solution of problem (4) (see figure 4(b)). Figure 5 shows the
corresponding controlled system state trajectory for the TIM protein concentration.
Obviously, it is possible to achieve a well-defined optimal switching between stationary
and oscillatory states on the basis of the circadian rhythm model.

4. Numerical methods for optimal control

There are various methods in the literature to solve optimal control problems for ODE/
DAE. We choose Bock’s direct multiple shooting method, [21], as this approach has
proven to be a reliable tool not only for mechanics and chemical engineering, but
also in systems biology of self-organization, e.g. [22], [23]. It is a direct method
and therefore based on a transformation of the infinite – dimensional control problem

Figure 4. Optimal control for the relaxed problem (a) and the bang-bang problem (b) of circadian rhythm
suppression by light and subsequent restoration of the rhythm based on the Drosophila model. Control
input: light-sensitive maximum rate of protein degradation ndT as a function of time.

Figure 5. Rhythm suppression by a light stimuli corresponding to the optimal control functions in figure 4, (a)
relaxed control scenario, (b) bang-bang control scenario. The plot shows the TIM protein concentration in
nM as a function of time.

Optimal control of self-organized dynamics 495
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to a finite – dimensional nonlinear program (NLP) by a discretization of the control
functions. A time grid of multiple shooting nodes is introduced,

0 � t1 � � � � � tnms
¼ T: ð5Þ

With finitely many control parameters qi 2 Rni ,

q ¼ ðq0; q1; . . . ; qnms�1Þ
T;

a piecewise approximation û of the control functions u on the grid (5) is then defined
by

ûðtÞ ¼ jiðt; qiÞ; t 2 ½ti; tiþ1�; i ¼ 0; . . . ; nms � 1: ð6Þ

In practice, the functions ji are typically vectors of constant or linear functions. On the
grid (5) node values sxi � xðtiÞ 2 Rnx are introduced, from now on 0� i5 nms, that
serve as initial values of intermediate trajectories. All values x(t) in between the grid
points are obtained by a decoupled integration with an ODE/DAE solver on each of
the multiple shooting intervals. Continuity of the state trajectory at the multiple
shooting grid points

sxiþ1 ¼ xðtiþ1; sxi ; qi; pÞ ð7Þ

is incorporated via equality constraints into the NLP. Here x(�) denotes the solution
of the ODE on interval [ti, tiþ 1] with initial values sxi at time ti. Figure 6 illustrates
the concept of direct multiple shooting. The control variables qi, the global para-
meters p, that may include the time horizon length h ¼ tf7 t0 for problems with
free end time, and the node values sxi are the degrees of freedom of the discretized
and parameterized optimal control problem. If we write them in one nx-dimensional
vector

x ¼ ðsx0 ; q0; s
x
1 ; . . . ; qnms�1; s

x
nms
; pÞT; ð8Þ

Figure 6. Illustration of direct multiple shooting during SQP iterations. The controls are discretized, the
corresponding states obtained by piecewise integration. The matching conditions are violated in this
scheme—the overall trajectory is not yet continuous.

496 O. Slaby et al.
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subsuming all equality constraints and continuity conditions (7) in a function G(x) and
all inequality constraints in a function H(x), the resulting NLP can be formulated as

min x FðxÞ ð9Þ

s:t: GðxÞ ¼ 0; ð10Þ

HðxÞ � 0: ð11Þ

This NLP can be solved with tailored iterative methods exploiting the structure of the
problem, e.g. by sequential quadratic programming (SQP). The continuity conditions
do not necessarily have to be satisfied during the iterations of the SQP algorithm used to
solve the NLP, but surely when convergence has been achieved. Direct multiple
shooting is therefore a so-called all – at – once approach that solves the dynamic
equations and the optimization problem at the same time opposed to the sequential
approach of single shooting that computes a continuous trajectory as a feasible ODE/
DAE solution in every iteration. For more details on direct multiple shooting, see [21] or
[13]. If the optimal control problem under consideration contains control functions w(�)
with a restriction to values in a disjoint set, say to {0, 1}nw, the methods have to be
extended. We say that a trajectory T ¼ ðx;w; u; pÞ is binary feasible, if all constraints
are fulfilled and w(t)2 {0, 1}nw for all t2 [t0, tf]. For the application treated in this
article, we apply the novel algorithm MSMINTOC introduced in [24] that can be
sketched as follows. We relax the control functions to w(�)2 [0,1]nw. We solve the
relaxed problem for a given control discretization G0 and obtain the grid – dependent
optimal function value FRL

G0 . We iterate on a refinement of the grid for next steps with
the idea to extrapolate towards nms 7!?. We obtain FRL ¼ FRL

Gnext as the objective
function value on the finest grid Gnext . This objective function value serves as a lower
bound that can be approximated up to any user – specified tolerance e4 0 by a binary
admissible trajectory, for a proof see [24]. If the optimal trajectory on Gnext is already
binary admissible then stop. Otherwise apply a rounding or penalty heuristics on the
grid. If the trajectory is binary admissible, obtain an upper bound FROU. If
FROU5FRLþ e then stop. Otherwise optimize the switching times for a fixed
switching structure, initialized with the trajectory obtained by heuristics. Again, if the
obtained trajectory is binary admissible, obtain an upper bound FSTO and if
FSTO5FRLþ e then stop. For most practical problems and the model under
consideration in this study a modest iteration on next is sufficient to obtain a binary
admissible trajectory that is within a certain tolerance to the reachable objective
function value. If this is not the case, a further interplay between a tailored rounding
strategy with an adaptive refinement of the control discretization grid or even a
rigorous determination of the global solution on a grid by, e.g. Branch & Bound is
necessary. See [24] for details, proofs and applications.

5. Conclusion

In this article, we demonstrate how optimal control can be used in biochemical
modelling. We discuss optimal control first as a means to analyse potential dynamic
signalling functions and second to compute external perturbations in order to obtain a
specific desired behaviour. In particular, the understanding of the role of specific
self-organization and its control will be of fundamental interest because various
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experimental observations suggest that information is encoded in different shape of the
temporal and spatiotemporal patterns which may be eventually exploited even for drug
development [25]. In this context, the example application to circadian rhythms is
interesting per se because circadian rhythms seem to be related to the regular cycles of
cell division which are both malfunctioning in many tumour cells [26] giving rise to
uncontrollably proliferating cancer.
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Appendix A: Glycolysis model-equations and rate-constants

d½Glc�
dt
¼ Zufluss �HK

d½G6P�
dt

¼ HK�GPI� kHMS½G6P�

d½F6P�
dt

¼ GPI� PFK

d½FBP�
dt

¼ PFK� FBA

d½PPI�
dt

¼ 2 FBA�GAPDH

d½BPG�
dt

¼ GAPDH� PGK

d½3PGA�
dt

¼ PGK� PGM

d½2PGA�
dt

¼ PGM � kab½2PGA�

d½NADH�
dt

¼ GAPDH� kNADH½NADH�

with the reaction equations

HK ¼ Vhk½Glc�
Khk þ ½Glc�

GPI ¼ kgpi½G6P� � kgpir½F6P�

PFK ¼
Vpfk

½F6P�
Kpfk

� �hpfk�s ½FBP�
Kfba

1þ½FBP�
Kfba

� �

½F6P�
Kpfk

� �hpfk�s ½FBP�
Kfba

1þ½FBP�
Kfba

� �
þ

1þ kx ½FBP�
Kfba

� �hfba

1þah kx ½FBP�
Kfba

� �hfba

FBA ¼ Vfba½FBP�
Kfba þ ½FBP�

GAPDH ¼ Vgapdh½PPI�½NADþ�
K1K2K3½PPI�

�
1þ ½PPI�K0

3

�
þ K3½Pi�½NADþ�
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þ K1K2½NADþ�½PPI�
Ki2

þ K2½PPI�ð1þ ½PPI�K0
3
Þ þ ½Pi�½NADþ�½PPI�

PGK ¼ Vpgk½BPG�
KiADPKpgk þ KpgkKiADP½BPG�

KiBPG
þ ½ADP�Kpgk þ ½ADP�½BPG�

PGM ¼ Vfpgm½3PGA� � Vrpgm½2PGA�
K3PGAK2PGA þ ½3PGA�K2PGA þ ½2PGA�K3PGA

Appendix B: Drosophila model-equations and rate-constants

dMp

dt
¼ vsP

KIP
n

KIP
n þ CN

n � vmP
MP

KmP þMP
� kdMP

dP0

dt
¼ ksPMP � V1P

P0

K1P þ P0
þ V2P

P1

K2P þ P1
� kdP0

dP1

dt
¼ V1P

P0

K1P þ P0
� V2P

P1

K2P þ P1
� V3P

P1

K3P þ P1
þ V4P

P2

K4P þ P2
� kdP1

dP2

dt
¼ V3P

P1

K3P þ P1
� V4P

P2

K4P þ P2
� k3P2T2 þ k4C� vdP

P2

KdP þ P2
� kdP2

Table A1. Rate constants for the Glycolysis model.

Kinetic parameter Parameter value

VHK 170 mmol
kgpi 1800 s71

Vpfk 2220 mmol
kx 10
Kfba 5 mmol
hpfk 2.5
Vfba 200 mmol
K1 3160 mmol
K3 95 mmol
Ki2

45 mmol
Kiadp 80 mmol
Kibpg 1600 mmol
Vfpgm 6600 mmol
K3pga 168 mmol
kNADH 155 s71

kHMS 0.5 s71

csum 60 mmol
KHK 47 mmol
kgpir 2100 s71

Kpfk 4000 mmol
hfba 2.5
a 5
� 1.5
Vgapdh 1.103 107 mmol
K2 45 mmol
K0ppi 31 mmol
Vpgk 120 000 mmol
Kbpg 2 mmol

½ADP� 110 mmol

Vrpgm 5900 mmol
K2pga 14 mmol
kab 0.1 s71

½Pi� 1000 mmol
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dMT

dt
¼ vsT

KIT
n

KIT
n þ CN

n � vmT
MT

KmT þMT
� kdMT

dT0

dt
¼ ksTMT � V1T

T0

K1T þ T0
þ V2T

T1

K2T þ T1
� kdT0

dT1

dt
¼ V1T

T0

K1T þ T0
� V2T

T1

K2T þ T1
� V3T

T1

K3T þ T1
þ V4T

T2

K4T þ T2
� kdT1

dT2

dt
¼ V3T

T1

K3T þ T1
� V4T

T2

K4T þ T2
� k3P2T2 þ k4C� vdT

T2

KdT þ T2
� kdT2

dC

dt
¼ k3P2T2 � k4C� K1Cþ k2CN � kdCC

dCN

dt
¼ k1C� k2CN � kdNCN

The total (nonconserved) quantities of PER and TIM proteins, Pt and Tt are
given by

Pt ¼ P0 þ P1 þ P2 þ Cþ CN

Tt ¼ T0 þ T1 þ T2 þ Cþ CN

Table B1. Rate constants for the Drosophila model.

Kinetic parameter Parameter value

vsP 1 nM h71

vsT 1 nM h71

vmP 0.7 nM h71

vmT 0.7 nM h71

KmP 0.2 nM
KmT 0.2 nM
ksP 0.9 h71

ksT 0.9 h71

vdP 2 nM h71

vdT 2 nM h71

k1 0.6 h71

k2 0.2 h71

k3 1.2 nM71 h71

k4 0.6 h71

KIP 1.0 nM
KIT 1.0 nM
KdP 0.2 nM
KdT 0.2 nM
n 4
kd 0.01 h71

kdC 0.01 h71

kdN 0.01 h71

V1P 8 nM h71

V1T 8 nM h71

V2P 1 nM h71

V2T 1 nM h71

V3P 8 nM h71

V3T 8 nM h71

V4P 1 nM h71

V4T 1 nM h71

K4T 2.0 nM
K4P 2.0 nM

(continued)
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Table B1. (Continued).

Kinetic parameter Parameter value

K3T 2.0 nM
K3P 2.0 nM
K2T 2.0 nM
K2P 2.0 nM
K1T 2.0 nM
K1P 2.0 nM
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