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Abstract Combinatorial and logic constraints arising in a number of challenging
optimization applications can be formulated as vanishing constraints. Quadratic
programs with vanishing constraints (QPVCs) then arise as subproblems dur-
ing the numerical solution of such problems using algorithms of the Sequential
Quadratic Programming type. QPVCs are nonconvex problems violating stan-
dard constraint qualifications. In this paper, we propose a primal–dual paramet-
ric active set method for finding strongly stationary points of QPVCs under the
MPVC–LICQ regularity condition. We develop a local search strategy that al-
lows to improve such points up to global optimality for this subclass of nonconvex
QPVC subproblems. A parametric programming framework facilitates the realiza-
tion of hot–starting capabilities which improves the efficiency of both the active
set method and the local search. We apply the developed methods to solve several
instances of a robot path–finding problem with logic communication constraints.
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1 Introduction

This paper is concerned with a sequential quadratic programming (SQP) frame-
work and a parametric primal–dual active set method for finding locally optimal
solutions of a subclass of difficult mathematical programs with so–called vanishing

constraints, short MPVCs. The problem class was first introduced and named in
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[2], and reads

min
x∈Rn

F (x) (1a)

s.t. 0 = C(x), (1b)

0 ≤ D(x), (1c)

0 ≤ Hj(x) ·Gj(x), j ∈ l, (1d)

0 ≤ Hj(x), j ∈ l. (1e)

All functions are assumed to be twice continuously differentiable with respect
to the unknown x. The constraints 0 ≤ Gj(x), j ∈ l := {1, . . . , l} ⊂ N in (1d)
are taken into consideration for a point x ∈ R

n of the feasible set if and only if
the associated residual Hj(x) is strictly greater than zero in (1e). Conversely, a
constraint 0 ≤ Gj(x) is called vanished if Hj(x) = 0, giving rise to the name of the
problem class.

Problem (1) has a nonconvex feasible set with combinatorial structure. The
subclass of problems considered in this paper is assumed to satisfy a regularity
condition referred to as MPVC–LICQ in the literature. This allows to retain the
concept of iterating towards KKT (Karush–Kuhn–Tucker) based optimality.

1.1 Motivation and Applications

Problem (1) can be interpreted as an NLP including a logic implication,

min
x∈Rn

F (x) (2a)

s.t. 0 = C(x), (2b)

0 ≤ D(x), (2c)

0 ≤ H(x), (2d)

0 < Hj(x) =⇒ 0 ≤ Gj(x) j ∈ l. (2e)

In the following we give two examples of challenging applications in which a
vanishing constraint formulation appears in this way.

Robot Motion Planning One example of logic constraints in a real-world application
arises in robot motion planning [1,22,32]. Here, a communication network of a
given density needs to be maintained among a swarm of independent mobile robots.
For each pair (i, j) of robots, Hi,j(x) > 0 indicates that the pair is communicating.
Then, 0 ≤ Gi,j(x) must be satisfied to ensure that the distance between robots
i and j actually allows for communication. Conversely, this distance constraint
vanishes for each pair (i, j) of robots with Hi,j(x) = 0 which do not communicate.
We return to this application in Section 5.

Truss Topology Optimization A prominent example of vanishing constraints arises
in truss topology optimization. Here, one is interested in finding the optimal de-
sign of a truss structure using the ground structure approach [9]. On a grid in R

2

or R3 a set of l potential truss bars with cross-sectional areas xi ≥ 0 is considered



A parametric active set method for quadratic programs with vanishing constraints 3

for optimization. In order to prevent structural failure under external loads, con-
straints are imposed on the internal force and the stress in each truss bar. These
constraints vanish for any bar with cross-sectional area xi = 0, which is not imple-
mented as a real bar. The objective may include structural weight, deformation
energy, manufacturing cost, or similar performance indicators. Further details on
the problem class as well as numerical results for case studies can be found e.g. in
[2,14,16].

1.2 Contributions

In this paper we follow an idea for the numerical solution of a family of structurally
nonconvex NLPs that has been described as a general framework for nonconvex
SQP in [30], see also Section 2.4. Its possible application to MPVC was first men-
tioned in passing in [2]. Subsequent works, such as [14,16,18], in general pursue
the idea of solving regularized problems using interior-point methods. Active set
approaches for solving nonconvex problems date back to [13] and subsequent works
which treat piecewise linear models. In [10] an active set method with anti-cycling
measures for linear programs with complementarity constraints is described.

Sequential Quadratic Programming Approach In contrast to [14,16,18] we propose
an active set approach in an SQP framework to solve MPVCs. For the local
quadratic subproblems, we propose to refrain from linearizing the vanishing con-
straint, thereby carrying the nonconvexity over to the subproblems. We refer to the
arising subproblems as quadratic programs with vanishing constraints (QPVCs).

Active Set Approach We propose a parametric primal–dual active set method for
the solution of QPVCs. A related method has been described for convex quadratic
programming (QP) in [7] and applied to model–predictive control in [12].

Partitioning and Hot Starts The parametric active set method either traces a piece-
wise affine linear homotopy to a locally optimal solution of the QPVC located in a
certain convex subset of the problem’s nonconvex feasible set, or indicates failure
on the boundary of that subset. In the latter case, efficient continuation of the
homotopy in an adjacent convex subset is necessary. To this end, we propose a
technique for so–called hot starts of the parametric active set method.

Computational Results Reports of computational results for MPVC are still scarcely
found. We are only aware of [2,14] where numerical results for truss bar optimiza-
tion problems are given. We apply the proposed algorithm to a discretized nonlin-
ear optimal control problem, variants of which have previously been investigated
in [1,22,32]. This problem involves a type of logic constraints for which we give a
formulation as vanishing constraints. We compute locally optimal solutions to a
range of problem instances for which we are not aware of previous solution reports
so far.
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1.3 Outline

The remainder of this paper is organized as follows. In Section 2 we describe an
SQP framework for the class of NLPs with vanishing constraints. Carrying the
structural nonconvexity of the NLP over to the SQP subproblems, we introduce
the problem class of QPVCs. Constraint qualifications and stationarity concepts
as found in the literature are briefly discussed as we settle on the assumption of
MPVC–LICQ. In Section 3 we propose an active set approach for the solution of
QPVC. It is based on an overlapping subdivision of the feasible set into convex
subsets. By analyzing MPVC strong stationary conditions we develop rules for
searching these subsets based on MPVC multiplier information. These rules can
be extended to include progress towards global optimality for the QPVC. We de-
scribe a tree-search type algorithm and an active-set type algorithm which realize
searches over the convex subsets. In Section 4 we present a primal–dual parametric
active set method for convex QPs. It is efficient for solving a sequence of closely re-
lated QPs. We propose extensions to this method that allow to efficiently hot-start
this algorithm during movement from one convex subset of the QPVC to another.
In Section 5 a vanishing constraint formulation for the robot path-finding and
communication problem is presented. Logic communication constraints are for-
mulated as vanishing constraints. We apply the proposed primal–dual parametric
active set strategy for QPVC in an SQP framework to solve a number of problem
instances to optimality. We compare the obtained solutions to those known from
the literature. Section 6 concludes this paper with a brief summary.

2 Nonlinear Programs with Vanishing Constraints

In this section we briefly collect results on the violation of commonly assumed
constraint qualifications by problem (1) and on appropriately modified concepts
of stationarity. Additionally, we indicate why conventional SQP methods are likely
to fail or at least show serious deterioration of numerical convergence behavior.
This establishes the need for new numerical methods for the efficient solution of
problem (1), and we introduce the concept of MPVC strong stationarity ([15])
under the regularity assumption of MPVC–LICQ ([2]) to this end. Based on this
concept we realize a nonconvex SQP framework on the basis of [30] for the case of
NLPs with vanishing constraints. Therein, we chose to carry the nonconvexity of
the NLP problem over to the SQP subproblems (QPVCs).

2.1 Constraint Qualifications

To ease the notation we consider the following NLP with vanishing constraints,

min
x∈Rn

F (x) (3a)

s.t. 0 ≤ Hj(x) ·Gj(x), j ∈ l, (3b)

0 ≤ Hj(x), j ∈ l. (3c)

dropping standard equality and inequality constraints from problem (1). These
are included in the presented theory and algorithms as special case Gj(x) = 1.
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Active Set and Index Sets The conventional definition of sets AGH(x),AG(x) of
active NLP constraints for a feasible point x ∈ R

n of problem (3),

AGH(x) :=
{

j ∈ l | Hj(x) ·Gj(x) = 0
}

, (4a)

AH(x) :=
{

j ∈ l | Hj(x) = 0
}

, (4b)

is extended for the problem class of MPVCs as follows. According to [2] we intro-
duce the index sets

I0+(x) :=
{

j ∈ l | Hj(x) = 0, Gj(x) > 0
}

, I++(x) :=
{

j ∈ l | Hj(x) > 0, Gj(x) > 0
}

,

I00(x) :=
{

j ∈ l | Hj(x) = 0, Gj(x) = 0
}

, I+0(x) :=
{

j ∈ l | Hj(x) > 0, Gj(x) = 0
}

,

I0−(x) :=
{

j ∈ l | Hj(x) = 0, Gj(x) < 0
}

. (5)

which partition the set of active constraints according to signs of G(x) and H(x),

AHG(x) = I0+(x) ∪ I00(x) ∪ I+0(x) ∪ I0−(x), (6a)

AC
HG(x) := l \ AHG(x) = I++(x), (6b)

AH(x) = I0+(x) ∪ I00(x) ∪ I0−(x), (6c)

AC
H(x) := l \ AH(x) = I++(x) ∪ I+0(x). (6d)

From these relations, it already becomes clear that feasible points x with different
index sets I0+(x), I00(x), and I0−(x) cannot be told apart using the standard
perception of an active set. Figure 1 depicts active sets and corresponding index
sets.

H j

G j

AGH, A C
H

A C

GH, A C
H

AGH, AH

AGH, AH

AGH, AH

(a) Active sets (4).

H j

G j

I+0

I++

I00

I0−

I0+

(b) Index sets (5).

Fig. 1 Active set and index sets in a neighborhood of a feasible point x ∈ R
n of problem (3).

Lower Level Strict Complementarity Condition Clearly, if I00(x) = ∅, then in a
neighborhood of x problem (3) is a standard NLP including only those constraints
0 ≤ Gj(x) for which j ∈ AC

H = I++(x) ∪ I+0(x). This condition, referred to as
LLSCC (lower level strict complementarity condition) in the literature, obviously is
too strong to be imposed on the entire feasible set of (3), as this would defy the
idea of capturing its combinatorial nature.
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Violation of Commonly Assumed Constraint Qualifications If I00(x) 6= ∅ and LLSCC
does not hold, then in a neighborhood of x the feasible set has combinatorial
structure. Both LICQ (linear independence constraint qualification, [24]) and MFCQ
(Mangasarian–Fromovitz constraint qualification, [25]) are violated, as is easily ver-
ified e.g. in [14]. This poses a number of significant difficulties to KKT based
descent methods, which we describe in Section 2.2.

2.2 Consequences for Algorithms of SQP Type

Unbounded Dual Variables As a consequence of CQ violations, the dual solution y∗

is unbounded. Update schemes for approximations of the Hessian of the NLP La-
grangian, such as BFGS updates [26], however crucially rely on secant information
involving the dual solution. We may therefore expect such Hessian approximations
to become ill-conditioned.

Ill-conditioned Constraint Jacobians Linearizations of the vanishing constraint (3b)
in the neighborhood of points x ∈ R

n with some Hj(x) = 0, i.e. violating LICQ,
become severely ill-conditioned. This poses a challenge to active set methods that
may fail to reliably detect active sets.

Cycling and Stalling of Active Set Methods When applying standard active set based
QP and NLP codes to problems with vanishing constraints, a consequence of ill-
conditioning that can often be observed is cycling of the active set, i.e. repeated
addition and removal of the same sequence of constraints without progress in
the primal iterate. Hence, if the method successfully solves the QP subproblem
at all, QP iteration counts and computation time for a single SQP step increase
significantly.

Suboptimal and Infeasible Steps Linearizations of the vanishing constraint (3b) fail
to properly represent the geometry of the feasible set in the neighborhood of
points x ∈ R

n with Hj(x) = 0, Gj(x) = 0. SQP methods hence perform steps
that are grossly suboptimal or infeasible on the NLP level. Hence, unnecessarily
many SQP iterations may be required than would be required if the subproblem’s
combinatorial nature had been captured properly.

2.3 Modified Stationarity Concept

In view of the practical difficulties listed in Section 2.2, a modified concept of
optimality under a possibly weaker constraint qualification is desirable. In order
to retain the concept of iterating towards KKT based optimality, this CQ should
ensure that stationary points of (3) are indeed KKT points.

A Regularity Assumption To this end we introduce the regularity assumption of
MPVC–LICQ, see e.g. [2].
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Definition 1 We say that MPVC–LICQ holds for a feasible point x ∈ R
n if the

gradients

∇Hj(x), j ∈ I0+ ∪ I00 ∪ I0−, (7)

∇Gj(x), j ∈ I+0 ∪ I00

are linearly independent.

While the assumption of MPVC–LICQ is sometimes held for too strict for the
full class MPVCs [2,18], one frequently observes that problem instances arising
from practical applications indeed comply. This in particular is the case for the
vanishing constraints (30g, 30h) of the robot motion planning problem we shall
investigate in Section 5. For the remainder of this paper, we will assume MPVC–
LICQ to hold and refer the reader to e.g. [14] for details on weaker concepts of
constraint qualification for MPVC, resulting stationarity concepts, and applicable
numerical methods.

Strong Stationarity Conditions Under MPVC–LICQ, a KKT–like necessary condi-
tion for local optimality of a candidate point x ∈ R

n of problem (3) can be given.
It is based on the so-called MPVC-Lagrangian Λ(x,µG, µH) of problem (3),

Λ(x,µG, µH) := F (x)− (µG)TG(x)− (µH)TH(x). (8)

The vectors µG, µH ∈ R
l are referred to as MPVC multipliers. The notion of strong

stationarity for MPVC has been defined in [15] as follows:

Definition 2 A feasible point x ∈ R
n of problem (3) is called MPVC strongly

stationary if there exist MPVC multiplier µG, µH ∈ R
l such that it holds that

Λx(x, µ
G, µH) = 0, (9a)

µG
j ≥ 0 j ∈ I+0(x), (9b)

µG
j = 0 j ∈ I0−(x) ∪ I00(x) ∪ I0+(x) ∪ I++(x), (9c)

µH
j ≥ 0 j ∈ I00(x) ∪ I0+(x), (9d)

µH
j = 0 j ∈ I+0(x) ∪ I++(x). (9e)

In [2] it has been shown that under MPVC–LICQ strong stationarity (9) for MPVC
is equivalent to KKT stationarity for problem (3). The following stronger result is
due to [17] and can also be found in [18].

Theorem 1 Let x ∈ R
n feasible for (3) satisfy MPVC–LICQ. If x is a locally optimal

point of (3), then x is an MPVC strongly stationary point. The associated MPVC

multipliers (µG, µH) are unique.
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2.4 Nonconvex Sequential Quadratic Programming

In [30] a general framework for applying SQP methods to structurally nonconvex
problems has been described. Of special interest for us is the result concerning
local convergence for nonconvex problems. We introduce the generic formulation

min
x∈Rn

F (x) s.t. C(x) ∈ Z (10)

with the set Z capturing the nonconvex structure of the problem’s feasible set.

Definition 3 A constraint function Cj of problem (10) is called inactive in a fea-
sible point x if the validity of the statement C(x) ∈ Z is independent of the value
of Cj(x) in a neighborhood of x. The constraint function is called active otherwise.

Definition 4 A feasible point x ∈ R
n of problem (10) is called regular if the

gradients of all active constraint functions are linear independent.

Based on this notion, the following convergence result for exact Hessian SQP holds.

Theorem 2 Let (x∗, µ∗) be a regular and stationary point of (10), and let the set Z be

locally star-shaped in z∗ = C(x∗). Let strict complementarity hold in (x∗, µ∗) and let

the exact Hessian be positive definite on the null–space of the active constraints. Then

exact Hessian SQP converges locally quadratically to a stationary point x∗.

Proof See [30]. ⊓⊔

This result can now be used for the special case of the MPVC (3).

Theorem 3 Let (x∗, µ∗) be an MPVC strongly stationary point of (3) and satisfy

MPVC–LICQ. Let strict complementarity hold in (x∗, µ∗) and let the exact Hessian be

positive definite on the null–space of the active constraints. Then exact Hessian SQP

converges locally quadratically to a stationary point x∗.

Proof We define C(x) := (H(x),G(x)) in (10). The set Z is then described by

Z :=
{

(z′, z′′) ∈ R
2l
∣

∣ ∀j ∈ l : (z′j ≥ 0 ∧ z′′j ≥ 0) ∨ (z′j = 0)
}

⊂ R
2l. (11)

Being a finite union of non-disjoint convex sets, it is locally star shaped, c.f. [30].
Observe now that for any point x ∈ R

n in a neighborhood of a feasible point x of
problem (10), the functions Gj(x) are inactive iff j ∈ I0−(x) ∪ I0+(x) ∪ I++(x),
whereas the functions Hj(x) are inactive iff j ∈ I+0 ∪ I++. Hence by Definition 1
regular points are exactly the points satisfying MPVC–LICQ and Theorem 2 is
applicable. ⊓⊔

2.5 Convex Quadratic Programs with Vanishing Constraints

In the proposed SQP framework for vanishing constraint problems, the subprob-
lems that arise from a local quadratic model of the MPVC-Lagrangian are convex
quadratic programs extended by affine linear vanishing constraints,

0 ≤ (Hjx− hj) · (Gjx− gj), j ∈ l, (12a)

hj ≤ Hjx, j ∈ l. (12b)
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We denote by G, H ∈ R
l×n the vanishing constraint Jacobians, and by g, h ∈

R
l the vanishing constraint vectors of lower bounds. Again, the feasible set of

(12) is structurally combinatorial, hence nonconvex. In the interest of a simplified
notation we restrict ourselves to the more specific vanishing constraint formulation

0 ≤ xj · (Gjx− gj), 0 ≤ xj , j ∈ l (13)

in place of (12). This problem structure can always be obtained by introduction
of l additional variables x̃j := Hjx−hj and suitable arrangement of the constraint
rows in G. In addition, we restrict ourselves to vanishing constraints having lower
constraint bounds only. We are hence interested in the QPVC

min
x∈Rn

1
2x

TBx+ xT b (14a)

s.t. 0 ≤ xj · (Gjx− gj), 0 ≤ xj , j ∈ l. (14b)

Different from standard convex QP notation, in problem (14) B ∈ R
n×n denotes

the Hessian of the MPVC Lagrangian, or a suitable positive definite approximation
thereof. With b ∈ R

n we denote a gradient vector.

3 Partitioning and Continuation for the QPVC Subproblems

In this section we show how the nonconvex feasible set of a QPVC can be par-
titioned into multiple, mutually overlapping convex subsets by introduction of
an additional constraint. We compare KKT conditions for this subproblem with
MPVC strong stationarity conditions to obtain MPVC multiplier information that
allows for an efficient iteration over the set of convex subproblems. To this end we
describe a tree–search type algorithm and an active set type algorithm.

3.1 Convex Quadratic Programs on Subsets

In the neighborhood of a feasible point x ∈ R
n of the QPVC (14) we consider the

following convex QP with smaller but convex feasible set,

min
x∈Rn

1
2x

TBx+ xT b (15a)

s.t. gj ≤ Gjx, j ∈ I0+(x) ∪ I++(x) ∪ I00(x) ∪ I+0(x), (15b)

0 ≤ xj , j ∈ I0+(x) ∪ I++(x) ∪ I00(x) ∪ I+0(x), (15c)

0 = xj , j ∈ I0−(x). (15d)

A selected convex subset (15b–15d) of problem (14) is uniquely determined by
prescribing the set I0− ⊆ l of vanishing constraints that have vanished. We as-
sume problem (15) to have a positive definite Hessian B ∈ R

n×n of the MPVC
Lagrangian. We denote the gradient vector by b ∈ R

n, the matrix of vanishing
constraints G ∈ R

l×n, and the constraint bounds vectors by g ∈ R
l.
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Based on usual KKT optimality ([26]) for every solution x∗ ∈ R
n of problem

(15) there exists a (unique) vector of MPVC multipliers µG∗
, µH∗

∈ R
l such that

the following system of optimality conditions for subproblem (15) is satisfied,

0 = Bx∗ + b−
∑

j∈l\I0−

(Gj)
TµG

j

∗
− In×lµH∗

, (16a)

0 ≤ Gjx
∗ − gj , j ∈ l \ I0−(x), (16b)

0 ≤ x∗j , 0 = x∗k, j ∈ l \ I0−(x), k ∈ I0−(x), (16c)

(Gjx
∗ − gj)µ

G
j

∗
= 0, µG

j

∗
≥ 0 j ∈ l \ I0−(x), (16d)

x∗jµ
H
j

∗
= 0, µH

j

∗
≥ 0 j ∈ l \ I0−(x). (16e)

In (16a) In×l denotes the l × l identity matrix with n − l zero rows appended.
Moreover, let µG

j := 0 for j ∈ I0−, i.e. those vanishing constraints that have
vanished in problem (15). By positive definiteness of B the solution x∗ is unique,
and it is a global solution of (15). We obtain the following result.

Theorem 4 Let I0− ⊂ l be given and let (x∗, µG∗
, µH∗

) be a KKT point of the subset

QP associated with I0−. Then this point is MPVC strongly stationary if and only if

µG
j

∗
= 0 for all j ∈ I00.

Proof We observe that the set of KKT conditions (16) is almost identical to the set
of MPVC strong stationarity conditions (9) plus constraint (15d): MPVC strong
stationarity is defined for primary feasible points which is also given by (16b, 16c,
15d) and the gradient of the Lagrangian vanishes in (9a) due to (16a). Furthermore,
the inequalities in (16d) and (16e) imply (9b) and (9d), respectively. Finally, the
equality conditions in (9c) and (9e) are implied by the equalities in (16d) and
(16e) for all indices j with Gjx

∗ − gj 6= 0 and xj 6= 0. This leaves condition (9c)
for j ∈ I00.

The requirement µG
j

∗
= 0 for j ∈ I00 (9c) is relaxed to µG

j

∗
≥ 0 in (16d), giving

rise to the if and only if condition in the claim. ⊓⊔

Exploiting the multiplier information found in µG
j

∗
, j ∈ I00, and additionally

in µH
j

∗
, j ∈ I0− for the imposed subset constraint (15d), turns out to be crucial

for the development of an efficient continuation method.

3.2 Continuation in Adjacent Subsets

Given a subset QP (15) associated with a choice of I0−, that solution of this QP
can fall into one of three categories.

KKT Point with µG
j

∗
> 0 for some j ∈ I00 For a KKT Point with µG

j

∗
> 0 for

some j ∈ I00 we know that this point violates MPVC strong stationarity which
requires µG

j

∗
= 0. Consequently, the convex subset of problem (14) selected by the

current choice of I0− ⊆ l does not contain an MPVC strongly stationary point,
as otherwise this point would have been found as the unique KKT point. We may
continue the solution of the QPVC in any convex subset selected by an index set
I0− ∪ {j}.
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Any Other KKT Point A KKT point that does not fall into the above category
is said to lie “in the interior” ([30]) of problem (15). The chosen subset I0− of

vanishing constraints having vanished is locally optimal. The point (x∗, µG∗
, µH∗

)
is an MPVC strongly stationary point of the original problem (14), albeit not
necessarily a globally optimal one as will be addressed in Section 3.3.

Infeasible Subproblem Subproblem (15) may have an empty feasible set for certain
choices of I0−. Initially, it is not clear whether starting with either of the obvious
choices I0− = ∅ (all vanishing constraints must be satisfiable at once) or I0− = l

(all variables xj are fixed to zero) will lead to a feasible subproblem. We return to
this issue in Section 4.4.

3.3 Improvement up to Global Optimality

MPVC strongly stationary points of (14) are not necessarily globally optimal. Sta-
tionarity of the solution of all SQP subproblems is sufficient to reach stationarity
of the NLP solution, see e.g. [30]. Still, in QPVCs derived from applications we
might be missing some more or less obvious “switches” modeled by vanishing con-
straints. This observation motivates the continuation of the QPVC subproblem
solution in order to improve MPVC strongly stationary points, potentially up to
global optimality.

To this end, a sufficient condition for global optimality is given in ([14], Corol-
lary 6.2.5) which applies in particular to the QPVC subproblems (14) with B

positive definite. We state this condition in the following, more restrictive form for
problem (3):

Theorem 5 Let the objective function F be convex, and the constraint functions G,

H be concave. Further, let x∗ ∈ R
n be an MPVC strongly stationary point of problem

(3). If µG
j

∗
= 0 for all j ∈ I+0(x

∗) and µH
j

∗
≥ 0 for all j ∈ I0−(x

∗) then x∗ is a

globally optimal solution of problem (3).

From this theorem we derive two further continuation rules in addition to the
those found in Section 3.2 and comment on the benefits of memorizing stationary
points.

KKT Point with µG
j

∗
> 0 for some j ∈ I+0 For a KKT point (x∗, µG∗

, µH∗
) with

µG
j

∗
> 0 for some j ∈ I+0, i.e. a vanishing constraint active at its lower bound,

but with inactive associated variable xj > 0, we may continue the solution in
the adjacent convex subset of problem (14) with I0− ∪ {j}, now including the
vanishing constraint j indicating possible improvement towards global optimality.
This effectively means extending the first rule of Section 3.2 from the set I00 also
to the set I+0.

KKT Point with µH
j

∗
< 0 for some j ∈ I0− For a KKT Point with µH

j

∗
< 0 for some

j ∈ I0− we know that the additionally introduced equality constraint (15d) would
be inactive if it was an inequality constraint as in (13). Consequently, improvement
of the objective may be possible if xj > 0. We may continue the solution of the
QPVC in any convex subset selected by an index set I0− \ {j}.
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Memorizing Stationary Points In an actual implementation of this strategy of im-
provement towards global optimality, we need to be aware of the nature of Theo-
rem 5. As it is a sufficient condition only, there may well exist stationary points
being globally optimal solutions but violating the conditions of Theorem 5. Hence
a memory of MPVC strongly stationary points found so far needs to be main-
tained, including the associated objective function value of problem (14) in these
points. Upon exhaustion of the proposed continuation procedure, the best point
that has been found is returned.

3.4 Tree Search Algorithms for Selection of Convex Subsets

The described process of subdivision into convex subsets lends itself to treatment
in a branching type algorithm on the power set P(l) of vanishing constraint indices.
Starting with an initial choice I0− ∈ P(l) we solve the corresponding subset QP for

(x∗, µG∗
, µH∗

). Analysis of the multiplier information on the index sets I00, I0+,
and I0− as proposed in Sections 3.2, 3.3 yields a list of candidate subproblems
to continue with. These can be evaluated in a recursive depth-first search, or
alternatively in a list-based breadth-first search.

Several challenges remain with this approach, though. As mentioned, the ini-
tial choice of I0− is not obvious. Moreover, a choice associated with an infeasible
subproblem does not yield sufficient multiplier information that would allow for
continuation in a feasible one. Second, the convex subsets do not form a proper
partition of the feasible set of (14) but are mutually overlapping. Hence solving a
convex QP afresh on each convex subset comes with a significant computational ef-
fort as identical subsequences of active set exchanges have to be repeatedly carried
out for each QP.

3.5 Active Set Algorithm for Selection of Convex Subsets

To address these issues, we propose an active set type framework for the selection
of convex subsets that blends with the QP active set method used for solving the
subset QPs. In the following, we describe in more detail those active set exchange
moves between index sets that are different from a standard active set method.
Figure 2 depicts the discussed active set exchange moves.

A vanishing constraint enters I00 from I+0 If for an active vanishing constraint
gj ≤ Gjx the controlling variable xj becomes zero, the associated MPVC multiplier
µG
j may remain positive and is then in violation of MPVC strong stationarity

conditions (9). We immediately let the constraint’s index j enter the set I0− of
constraints that have vanished. Thereby, a move to a neighboring convex subset
problem (15) of the QPVC (14) is accomplished. In Figure 2(a), two arcs have to
be traversed.

A vanishing constraint leaves I0− for I00 If an infeasible and hence vanished con-
straint gj ≤ Gjx becomes feasible, we remove the constraint’s index j from the set
I0−. The index will enter the set I00 if µH

j > 0, or the set I+0 if µH
j ≤ 0. In the

latter case, we must set µH
j := 0 and restore stationarity as detailed in Section 4.4.
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Again, a move to a neighboring convex subset problem (15) of the QPVC (14) is
accomplished. In Figure 2(a), one or two arcs are traversed.

If we choose to include the global optimality criterion in the active set strategy,
further active set exchange moves need to be considered. As the criterion is of
sufficient nature only, these moves are not binding.

A vanishing constraint enters I+0 from I++ If a vanishing constraint gj ≤ Gjx

becomes active with xj > 0, the associated MPVC multiplier µG
j may become

positive. This is in accordance with MPVC strong stationarity, but in violation
of the sufficient condition for global optimality (Theorem 5). We may choose to
let the constraint’s index j enter the set I0− of constraints that have vanished. If
we do so, we must set xj := 0 and make this simple lower bound active. Primal
and/or dual feasibility are restored as detailed in Section 4.4. This move is shown
in Figure 2(b) together with its counterpart move. The previously addressed move
from I+0 to I00 can then not occur anymore.

Linear dependence caused by vanishing constraints Adding the simple lower bound
xj = 0 to the active set, required when moving a constraint index j to I0− from
either I+0 or I++ as just described, may cause linear dependence of the active
constraint Jacobian rows. In Section 4 we give references to a fast and efficient
resolution procedure that indicates a constraint k 6= j to be removed from the
active set in order to restore linear independence.

It may happen that for this constraint k ∈ I0− holds, i.e. the simple bound
xk = 0 is to be removed even though the associated vanishing constraint gk ≤ Gkx

would be violated. In this case, linear dependence cannot be resolved inside the
convex subset selected by the current choice of I0−. We remove k from the set I0−,
thus moving to an adjacent convex subset, and restore feasibility of the vanishing
constraint by modifying a homotopy between quadratic problems in a suitable
manner. Details are given in Section 4.4.

4 A Parametric Primal-Dual Active Set Strategy for Hot Starting

In this section we make a recourse to the more familiar problem class of convex
QPs. We describe a parametric primal–dual active set method for the numerical
solution of such programs. The method is due to [7], and has been proposed for
application in an online optimization in [12] and related works. In [6], it has been
used for sensitivity analysis of convex QP solutions. Here we propose to use the
described method to realize a hot starting facility for the subsequent solution of
multiple QPs in convex feasible subsets of a QPVC as described in Section 3.
Hot starting procedures are presented for each of the active set exchange moves
described in Section 3.5 that move to neighboring convex subsets of the QPVC.

4.1 Parametric Convex Quadratic Programs

A convex QP becomes a convex parametric quadratic program if the gradient vector
and all constraint bound vectors are affine linear vector valued functions, depend-
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ing on a scalar homotopy parameter τ ∈ [0,1] ⊂ R,

min
x∈Rn

1
2x

TBx+ xT b(τ) (17a)

s.t. c(τ) ≤ Cx, (17b)

with b ∈ Hn, c ∈ Hm, and Hk denoting a set of affine linear functions

Hk :=
{

f : [0,1] → R
k | ∀τ ∈ (0,1) : f(τ) = (1− τ)f(0) + τf(1)

}

, k ≥ 1. (18)

The restriction to homotopies of the gradient and constraint vectors is not a real
one. Affine linear homotopies of the Hessian B or the constraint matrices C,D

can be rewritten as vector-valued ones by virtue of a simple transformation of the
system of KKT conditions.

In problem (17) we seek a solution of the QP in τ = 1, assuming a–priori
knowledge of a solution in τ = 0. Most often, these two QPs will be closely related
in a certain way. Progressing along the homotopy path then constitutes a highly
efficient way of accomplishing hot starts. This situation arises naturally in a num-
ber of application cases, e.g. Sequential Quadratic Programming (SQP) methods,
model predictive control algorithms [12], or in algorithms of the branching type
with QP subproblems on the branch tree’s nodes, cf. Section 3.

The QPVC subproblem (15) assumes the shape of (17) if for notational con-
venience we collect vanishing constraints j /∈ I0− and simple lower bounds and
equality constraints in the common matrix C.

No Phase One Necessary Note that an optimal solution in τ = 0 for the “trivial
QP” with b(0) = 0, c(0) = 0 is always available with (x∗(0), µ∗(0)) = (0,0), such
that the homotopy also makes a phase one strategy unnecessary. Such a strategy
might otherwise be required to find an initial feasible guess if none is available.

I0+ I++

I00 I+0

I0−

G j(x) = 0 µG
k < 0

µH
k < 0

x j = 0

µH
k < 0

x j = 0

G j(x) = 0 µG
k < 0

µG
k > 0 G j(x) = 0

(a) Schematic of the active set algorithm.
Emphasized moves may violate MPVC
strong stationarity (but not KKT conditions
for the subset QP) and trigger a second move
as detailed in Section 3.5.

I0+ I++

I0−

G j(x) ↓ 0

G j(x) = 0

µH
k < 0

µH
k < 0

x j = 0

G j(x) ↑ 0 ∧

µH
k ≥ 0

(b) Schematic of the proposed active set al-
gorithm including the global optimality cri-
terion. Emphasized moves require appropri-
ate modification of the QP to restore feasi-
bility and/or stationarity as detailed in Sec-
tion 4.4.

Fig. 2 Schematics of the proposed active set algorithms for the selection of convex subsets.
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4.2 The Parametric Active Set Method

For a fixed value τ ∈ [0,1] ⊂ R and a given active set A ⊆ m the system of
optimality conditions (16a–16c) for problem (17) reads in matrix form

(

B CA
T

CA 0

)(

x∗(τ)
−µ∗

A(τ)

)

=

(

−b(τ)
cA(τ)

)

, (19)

with (x∗(τ), µ∗
A(τ)) denoting the primal–dual optimal solution in τ . Based on the

fact that affine linearity of the right hand side of (19) in τ necessarily leads to
piecewise affine linearity of the solution set (x∗(τ), µ∗

A(τ)), τ ∈ [0,1], the underlying
idea of the primal–dual parametric active set strategy now is to proceed as follows.

Iteration k = 0 starts in τ (0) = 0 with the known optimal solution (x∗(0), µ∗
W(0))

and a maximal linear independent subset W ⊆ A(x∗(0)) of the active set, referred
to as the working set.

In each iteration k, the step direction (∆x(k),∆µ(k)) is determined by solving
the system of optimality conditions

(

B CT
W

CW 0

)

(

∆x(k)

−∆µ
(k)
W

)

=

(

−∆b(τ (k))

∆cW(τ (k))

)

. (20)

Herein, the vectors ∆b(τ (k)) and ∆cW(τ (k)) denote the gradient and constraint

vector steps from τ (k) to end τ = 1 of the homotopy. Let further ∆µ
(k)
j = 0 for

j ∈ m \ W.
The step length α(k) ∈ [0,1] is determined as the maximum advance in the

homotopy parameter τ that satisfies both (16b, 16c) and positivity of the duals
µ∗(τ), i.e. that keeps the working set W both primal and dual feasible, given the
computed primal–dual step direction.

In the obtained solution for τ (k+1) := τ (k) + α(k),

(x∗(τk+1), µ∗(τ (k+1))) = (x∗(τk), µ∗(τ (k))) + α(k)(∆x(k), ∆µ(k)) (21)

the primal or dual blocking constraint is added to or removed from the working
set W. The homotopy advances by letting

b(τ (k+1)) := b(τ (k)) + α(k)∆b(τk), (22a)

c(τ (k+1)) := c(τ (k)) + α(k)∆c(τ (k)), (22b)

and the procedure continues with iteration k + 1. Once the homotopy end point
τ (k) = 1 has been reached, the procedure terminates and a piecewise affine linear
solution trajectory for problem (17) has been determined.

4.3 Algorithmic Details

Several details of the described algorithm merit further discussion and need to
be addressed in an efficient implementation of the parametric active set strategy.
We mention them briefly and give appropriate references. Concerning publicly
available implementations of the parametric active set strategy, we are only aware
of the code qpOASES [12].
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Solution of the Saddle Point Problem Finding the step direction (∆x,∆µ) requires
the solution of the linear system (20). The numerically stable and efficient solution
of this saddle-point problem in n+m unknowns requires exploitation of the problem
structures, a topic outside the scope of this paper. We refer the reader to e.g. [5,26]
for surveys of applicable linear algebra. Block structured linear algebra techniques
applicable to optimal control problem structures can be found e.g. in [19,33].
Matrix update procedures are used to recover KKT system factorizations after a
constraint entered or left the active set. We refer to [26] for updates in the dense
null-space method, to [3] for Schur complement updates, and to [20] for updates
to optimal control problem block structures.

Regularity of the Working Set Addition of a primal blocking constraint to the work-
ing set may cause singularity of the constraints matrix CW , i.e. the working set
may become degenerate. In [7,12] a cheap and efficient strategy for degeneracy res-
olution is described that determines a constraint to be removed from the working
set W, allowing the primal blocking one to be added without loss of regularity.

Primal and Dual Ties Neither the primal nor the dual blocking constraint found
when determining the step length are necessarily unique. The situation of non-
uniqueness is referred to as a tie. The authors are not aware of implementations
that systematically resolve ties. A costly procedure to this end that requires the
solution of a larger auxiliary QP is proposed in [34]. In [29] a fast heuristic is de-
scribed that avoids a tie in τ by applying a suitable perturbation of the homotopy.

4.4 Parametric Hot Starting for QPs with Vanishing Constraints

The described parametric active set method can be efficiently used to facilitate hot
starts if the solution of a QP on an adjacent convex subset of a QPVC’s feasible
set, once an initial QP has been solved.

Hot Starting if a Constraint Vanishes If in a point τ (k) ∈ (0,1) on the homotopy
path a vanishing constraint j ∈ l\I0− vanishes, one two situations arises as derived
in Section 3.5. If j ∈ I00, the active simple bound x∗j (τ

(k)) = 0 becomes an equality
constraint, and the active vanishing constraint is removed from the QP. If j ∈ I+0,
the variable x∗j (τ

(k)) 6= 0 must be set to zero in addition. In the latter case, both

feasibility and stationarity of the perturbed solution (x̃(τ (k)), µ∗(τ (k))) are lost.
We compute a suitable perturbation of the problem’s right hand side in τ (k),

b̃(τ (k)) := CTµ∗(τ (k))−Bx̃(τ (k)), (23a)

c̃(τ (k)) := Cx̃(τ (k)), (23b)

This approach can be viewed as determining the QP in τ (k) for which the perturbed
point (x̃(τ (k)), µ∗(τ (k))) with x̃j(τ

(k)) = 0 is optimal. This is done without affecting
the QP in τ = 1, which is the QP we’re interested in. We continue by progressing
along the new homotopy towards τ = 1.
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Hot Starting if a Constraint Appears If in a point τ (k) ∈ (0,1) on the homotopy
path a vanishing constraint j ∈ I0− appears, again one two situations arises as
derived in Section 3.5. If j ∈ I0− enters the index set I00, the equality constraint
on xj is lifted and becomes a simple lower bound. If j enters I+0 and µH

j

∗
< 0 must

be set to zero, stationarity of the perturbed solution (x∗(τ (k)), µ̃(τ (k))) is lost. We
again compute a suitable perturbation of the problem’s right hand side in τ (k),

b̃(τ (k)) := CT µ̃(τ (k))−Bx∗(τ (k)), (24)

and continue by progressing along the homotopy path towards the unaffected QP
to be solved in τ = 1.

The Initial QP Subproblem in the First SQP Iteration For the first QPVC of the
first SQP iteration k = 0, we initially do not have an optimal solution to a related
QPVC at hand. We start with the “trivial” QPVC

min
x∈Rn

1
2x

TB(0)x (25a)

s.t. 0 ≤ C
(0)
j x j /∈ I0−, (25b)

0 = xj j ∈ I0−, (25c)

which allows to use the choice I0− = l. The associated optimal solution is (x∗, µ∗) =
(0,0). The first parametric QPVC solution then progresses along the new homo-
topy

b(τ) : [0, 1] −→ R
n : τ 7→ 0 + τb(0)(1), (26a)

c(τ) : [0, 1] −→ R
l : τ 7→ 0 + τc(0)(1), (26b)

where b(0)(1), c(0)(1) denote the gradient and constraint bound vector of the QPVC
for SQP iteration k = 0. This has been noted in [11] for convex QPs. As the initial
problem (25) turns out to have m ties in τ = 0, an alternative initialization is
proposed in [29] that relies on a homotopy perturbation concept.

Initial QP Subproblem in Subsequent Iterations For all subsequent SQP iterations
k > 0, we have an MPVC strongly stationary point (x∗, µ∗) of the previously
solved QP subproblem at hand. Denoting the old and new Hessians by B(k−1) and
B(k), and the old and new constraint Jacobians by C(k−1) and C(k), we start the
solution of the parametric QP

min
x∈Rn

1
2x

TB(k)x+ b(τ)Tx (27a)

s.t. c(τ) ≤ C
(k)
j x j /∈ I0−, (27b)

0 = xj j ∈ I0−, (27c)

with homotopy

b(τ) : [0,1] −→ R
n : τ 7→ (1− τ)b(k)(0) + τb(k)(1), (28a)

c(τ) : [0,1] −→ R
l : τ 7→ (1− τ)c(k)(0) + τc(k)(1). (28b)
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starting in τ = 0 with the modified initial right hand side

b(k)(0) := b(k−1)(1)− (B(k) −B(k−1))x∗ + (C(k) − C(k−1))Tµ∗, (29a)

c(k)(0) := c(k−1)(1) + (C(k) − C(k−1))x∗. (29b)

This choice maintains optimality of the known previous solution (x∗, µ∗) for τ = 0.
In [29] an alternative initialization is proposed that does not require evaluation of
the matrix differences (29).

5 A Robot Pathfinding and Communication Problem

In this section, we demonstrate the applicability of the described parametric active
set method for QPVCs by computing a family of optimal solutions to a robot
motion planning problem with logic communication constraints that can be cast
as vanishing constraints.

5.1 Problem Formulation

Robot motion planning problems are frequently studied, see e.g. [22] for an intro-
duction and [1] for details on modeling questions and a variant of the problem we
investigate here. We consider a swarm of N two-wheeled mobile robots indexed by
i = 1, . . . , N moving on prescribed fixed paths (x(s), y(s)) on the cartesian plane
(x, y) according to tangential accelerations a and velocities v. Starting in the given
initial position (x(0), y(0)) on its respective path, each robot shall complete its
path to the given final position (x(1), y(1)) in the minimum possible time. Each
robot is able to communicate at any point in time with any other robot of the
swarm that satisfies a communication constraint, e.g. that is within a prescribed
distance T . While the swarm of robots proceeds along the paths, a communication
network needs to be maintained among the swarm: each robot is required to be in
communication with at least K other robots.

(a) Model of a two-wheeled mo-
bile robot.
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(b) Predefined paths for a swarm of ten robots.

Fig. 3 Model of a two-wheele mobile robot, and predefined paths for a swarm of ten robots on
the cartesian plane. Nodes delimit piecewise cubic spline segments. Initial positions are found
in the lower left corner, and final ones in the upper right corner.
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Optimal Control Problem The resulting nonlinear optimal control problem can be
formulated as follows: We minimize a time transformation parameter h,

min
a,c,s,v,h

h (30a)

subject to the dynamic equations of movement on the time horizon [0, h] ⊂ R for
the swarm of robots on the fixed paths (x(s), y(s)) on the cartesian plane,

dsi
dt

(t) = h · vi(t) t ∈ [0,1], i ∈ N, (30b)

dvi
dt

(t) = h · ai(t) t ∈ [0,1], i ∈ N. (30c)

At t = 0 all robots are located at the their prescribed initial positions,

0 = si(0), i ∈ N, (30d)

0 = vi(0), i ∈ N, (30e)

and at t = 1 arrival of all robots at the end of their prescribed paths is required,

0 = si(1)− smax,i, i ∈ N. (30f)

We introduce a communication function ci,j(t) ≥ 0 for each pair (i, j) of robots.
This function may assume a positive value if and only if the associated pair of
robots is within communication distance,

0 ≤ ci,j(t) · (T −D2
i,j(t)) t ∈ [0,1], (i, j) ∈ N ×N, (30g)

0 ≤ ci,j(t) ≤ 1 t ∈ [0,1], (i, j) ∈ N ×N. (30h)

In (30g) the Euclidean distance D2
i,j(t) between any pair (i, j) of two robots is

defined as

D2
i,j(t) := [xi(si(t))− xj(sj(t))]

2 + [yi(si(t))− yj(sj(t))]
2
. (30i)

The communication network is maintained by imposing a communication con-
straint for each robot that counts the number of swarm members that are within
reach,

K + 1 ≤
∑

j∈N

ci,j(t), t ∈ [0,1], i ∈ N.

Hence, any optimal solution will assume ci,j(t) = 1 for a pair (i, j) within reach,
if constraint (30j) is active. Finally, simple bounds apply to the positions s on the
prescribed paths, to the path tangential velocities, and to the acceleration of each
robot,

0 ≤ si(t) ≤ smax,i, t ∈ [0,1], i ∈ N, (30j)

0 ≤ vi(t) ≤ 0.5, t ∈ [0,1], i ∈ N, (30k)

−1 ≤ ai(t) ≤ 0.5, t ∈ [0,1], i ∈ N. (30l)
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To complete problem (30), piecewise cubic spline representations for the paths
(xi(si), yi(si)) on si ∈ [0, smax,i] according to Figure 3 are required. By courtesy
of Hande Y. Benson, the same scenario as in [1] could be used. Note that prob-
lem formulation (30) leaves ample freedom for implementation of a more detailed
communication range model, taking e.g. frequency, noise, fading, or crosstalk into
account, and also allows for asymmetric communication conditions. We refer the
reader to [1,22] and the references found therein. For the purpose of this paper,
we’re interested in the combinatorial structure introduced into problem (30) by
the communication variables ci,j in (30g, 30h) and the imposed constraint (30j)
only.

Discretized Problem Problem (30) is transformed into a time-discrete NLP by in-
troducing a discretization

0 = t0 < t1 < . . . < tM−1 < tM = 1 (31)

of the time horizon [0,1], and replacing (30b, 30c) by a fixed-step integration
scheme using e.g. a higher-order Runge-Kutta method. For details on more elab-
orate adaptive schemes for the numerical solution of ODE initial value problems,
and for numerically stable and efficient methods for sensitivity generation, we refer
to e.g. [4,27]. Constraints are enforced on the grid {ti} (31) only. This approach
may in general yield optimal solutions that are slightly infeasible with respect to
the original problem, but serves the purpose. We refer to [28] for semi-infinite pro-
gramming techniques that handle this issue in an exact way, and to [1] for more
detailed evaluations of the effects of discretized constraints on optimal solutions
for the class of robot motion planning problems.

5.2 Numerical Results

We chose M = 10 time intervals, and a swarm of N = 10 robots. The obtained
NLP has 836 unknowns, 550 constraints, and 450 additional vanishing constraints.
NLP unknowns introduced in the M+1 points {tk} of the grid (31) were initialized
to

si(tk) =
k

M
smax,i, i ∈ N, 0 ≤ k ≤ M, (32a)

vi(tk) = 0, i ∈ N, 0 ≤ k ≤ M, (32b)

ai(tk) = 0, i ∈ N, 0 ≤ k ≤ M, (32c)

ci,j(tk) = 0, (i, j) ∈ N ×N, 0 ≤ k ≤ M, (32d)

The initial values for the total time h required until all robots have reached their
destinations are listed in Table 1.

The SQP algorithm proceeds as detailed in Section 2.4, where we did not
implement a globalization strategy but always performed full steps. The Hessian
matrix of the MPVC-Lagrangian was approximated using BFGS updates on the
space of primal variables and MPVC multipliers. For the ODE system solution, a
4th order Runge-Kutta method with fixed step size was used. All QPVCs and all
NLPs were solved up to a KKT tolerance (see [23]) of 10−8. For all computations
we used a single core of an Intel Core i7 940 at 2.67 GHz, running Ubuntu Linux

9.10 (64 bit).
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Table 1 Initial values for h used for the computations presented in Tables 2 and 3. Empty
fields denote known infeasible choices of T and K.

T = 2.0 2.5 3.0 3.5 4.0 4.5 5.0
K = 1 10 10 10 10 10 10 10

2 10 10 10 10 10 10
3 35 9 10 10 10 10
4 FAIL 11 10 10 10 10
5 20 10 10 10 10
6 11 12 10
7 10 12 10
8 50 12 10

Optimal Solutions Found The objective functions (minimal path completion times)
of the optimal solutions we found for the presented robot motion planning problem
are listed in Table 2. We evaluated 56 problem instances, with communication
radii T ranging from 2.0 to 5.0 in steps of 0.5, and with communication network
constraints K ranging from 1 to 8 other robots within reach.

Table 2 Optimal solutions found for the robot path-finding and communication problem of
Section 5 for various values of the communication radius R and the minimum number K of
robots required to be in communication. Empty fields denote known infeasible choices of T
and K.

T = 2.0 2.5 3.0 3.5 4.0 4.5 5.0
K = 1 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575

2 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575
3 12.7161 8.58713 7.99575 7.99575 7.99575 7.99575
4 FAIL 9.54828 8.64826 7.99575 7.99575 7.99575
5 14.3232 10.2715 7.99575 7.99575 7.99575
6 10.1474 7.99575 7.99575
7 13.7652 7.99575 7.99575
8 21.3840 11.1614 7.99575

The number of SQP iterations and the total accumulated number of QPVC
iterations for all solved problem instances is listed in Table 3.

Table 3 Number of SQP steps and total number of QPVC iterations required to compute the
solutions reported in Table 2. Empty fields denote known infeasible choices of T and K.

T = 2.0 2.5 3.0 3.5 4.0 4.5 5.0
K = 1 16/440 16/ 501 16/ 440 16/ 387 16/ 336 15/317 15/285

2 17/ 578 17/ 524 16/ 391 16/ 342 16/319 16/289
3 32/15845 25/ 875 16/ 445 16/ 355 16/337 16/295
4 FAIL 25/ 2920 27/ 539 16/ 388 16/347 16/296
5 33/22295 44/3247 16/ 427 16/398 16/334
6 28/ 541 28/657 17/355
7 16/1195 26/962 17/463
8 21/2454 13/737 21/551
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Discussion We evaluated 56 problem instances, of which 17 turned out to be infea-
sible. In addition, all problem instances with K = 9, i.e. requiring all robots to be
in communication with all other robots in all points of the time grid, are infeasible.
For 27 of the remaining 39 feasible problems, a minimum time for completion of
7.99575 seconds was determined. This solution corresponds to the isolated time
optimal solution for robot number 8, subject only to acceleration and velocity
constraints. Hence, this solution is the globally optimal one. For 11 problem in-
stances we determined minimum times for completion that are larger, depending
on the restrictiveness of the choice of K and T . Verification of global optimality
is not easily possible in the proposed framework, though. The proposed approach
failed to solve only the single instance K = 4, T = 2.5 due to divergence of the
SQP method. We conjecture that the use of a suitable globalization procedure for
the SQP method, e.g. transferring the works of [8,21,31] to MPVC, may lead to
improvements here.

Table 3 shows that all problems that could be solved were solved within 15 to
44 SQP iterations. Increases in the number of QPVC iterations can generally be
observed for the more difficult instances with larger values of K, respectively with
smaller values of T . The increased number of SQP iterations for the solution of
the instances (K,T ) = (3, 2.5) and (5,3.0) could possibly also be improved upon
using a suitable globalization procedure.

We conclude our discussion with the remark that, using a standard SQP
method based on linearizations of the multiplicative vanishing constraint (30g,
30h), hence ignoring the combinatorial nature of the problem and its implications
for the validity of constraint qualifications, we have not been able to solve even
a single instance of this robot motion planning problem with N = 10 robots.
This observation again demonstrates the necessity of exploiting the combinatorial
problem structure explicitly.

6 Summary and Conclusions

In this paper we have considered the challenging class of NLPs with vanishing con-
straints. Problems that fall into this class violate commonly assumed constraint
qualifications, and we have given a number of detrimental consequences arising
when standard SQP type methods are applied to such problems. To address this
issue, we have presented a nonconvex SQP framework for the subclass of MPVCs
that satisfy the regularity condition of MPVC–LICQ. We have described a search
procedure for the solution of QPVCs that has been derived by partitioning the
problem’s nonconvex feasible set into overlapping feasible convex subsets and com-
paring MPVC strong stationarity conditions to KKT conditions. We have shown
how multiplier information can be exploited to efficiently move between the in-
troduced convex subsets in an active set method. In addition, iterations towards
global optimality of the QPVC subproblem solution can be made. We have em-
bedded the proposed approach in a parametric primal-dual active set method for
convex QPs and have used the parametric framework of this method to facilitate
hot starts when moving between the convex subsets. Within an SQP framework,
we have applied the derived QPVC active set method to a robot path-finding and
communication problem. Here, communication constraints on a swarm of robots
have been formulated as vanishing constraints. We have considered 39 feasible
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problem instances of varying combinatorial difficulty. Using the proposed algo-
rithm we have solved 27 of them to global optimality and have found solutions
to a further 11 instances whose global optimality cannot be verified easily. One
problem instance failed to solve and we have conjectured that the development
of a suitable globalization procedure for the proposed SQP framework could yield
improved convergence behavior here.
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20. C. Kirches, H.G. Bock, J.P. Schlöder, and S. Sager, A factorization with update pro-

cedures for a KKT matrix arising in direct optimal control, Technical Report, Interdisci-
plinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 368,
69120 Heidelberg, Germany, November 2009. Available Online: http://www.optimization-
online.org/DB HTML/2009/11/2456.html.

21. D. Klatte and B. Kummer, Constrained minima and Lipschitzian penalties in metric

spaces, SIAM J. Optim., 13 (2002), pp. 613–633.
22. J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Norwell, MA, 1991.
23. D.B. Leineweber, Analyse und Restrukturierung eines Verfahrens zur direkten Lösung

von Optimal-Steuerungsproblemen, Diplomarbeit, Ruprecht–Karls–Universität Heidel-
berg, 1995.

24. D.G. Luenberger, Optimization by vector space methods, Wiley Professional Paperback
Series, John Wiley & Sons, Inc., New York, NY, 1969. ISBN 0471-18117-X (paperback).

25. O.L. Mangasarian and S. Fromovitz, Fritz John necessary optimality conditions in

the presence of equality and inequality constraints, Journal of Mathematical Analysis and
Applications, 17 (1967), pp. 37–47.

26. J. Nocedal and S.J. Wright, Numerical Optimization, Springer Verlag, Berlin Heidel-
berg New York, 2nd ed., 2006.

27. L. Petzold, S. Li, Y. Cao, and R. Serban, Sensitivity analysis of differential-algebraic

equations and partial differential equations, Computers and Chemical Engineering, 30
(2006), pp. 1553–1559.

28. A. Potschka, H.G. Bock, and J.P. Schlöder, A minima tracking variant of semi-
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