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Abstract We consider integer-restricted optimal control of systems governed by ab-
stract semilinear evolution equations. This includes the problem of optimal control
design for certain distributed parameter systems endowed with multiple actuators,
where the task is to minimize costs associated with the dynamics of the system
by choosing, for each instant in time, one of the actuators together with ordinary
controls. We consider relaxation techniques that are already used successfully for
mixed-integer optimal control of ordinary differential equations. Our analysis yields
sufficient conditions such that the optimal value and the optimal state of the relaxed
problem can be approximated with arbitrary precision by a control satisfying the inte-
ger restrictions. The results are obtained by semigroup theory methods. The approach
is constructive and gives rise to a numerical method. We supplement the analysis with
numerical experiments.

Keywords Optimal control · Abstract evolution systems · Partial differential
equations · Integerprogramming · Relaxation methods

1 Introduction and problem formulation

The factoring of decision processes interacting with continuous evolution plays an
important role in model-based optimization for many applications. For example,
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when optimally controlling chemical processes there are often both continuous deci-
sions such as inlet and outlet flows, as well as discrete decisions, such as the operation
of on–off valves and pumps that may redirect flows within the reactor, [14, 21]. Such
mixed-integer optimal control problems are therefore studied in different communi-
ties with different approaches. Most of these approaches address problems that are
governed by systems of ordinary differential equations in Euclidean spaces, see [22]
for a survey on this topic.

Total discretization of the underlying system obviously leads to typically large
mixed-integer nonlinear programs. Hence, relaxation techniques have become an in-
tegral part of efficient mixed-integer optimal control algorithms, either in the context
of branch-and-bound type methods or, more directly, by means of nonlinear optimal
control methods combined with suitable rounding strategies. An important result is
that the solution of the relaxed problem can be approximated with arbitrary precision
by a solution fulfilling the integer requirements [23].

In this paper, we extend such relaxation techniques to problems that are gov-
erned by certain systems of partial differential equations. Motivating applications
are for example to switch between reductive and oxidative conditions in order to
maximize the performance in a monolithic catalyst [27], port switching in chromato-
graphic separation processes [5, 14], or to optimize switching control within pho-
tochemical reactions [26]. Our problem setting also includes the switching control
design in the sense that systems are equipped with multiple actuators and the opti-
mizer has to choose one of these together with ordinary controls for each instant in
time.

Concerning systems involving partial differential equations, such switching con-
trol design has already been studied using several techniques: In [18, Chap. 8] opti-
mal switching controls are constructed for systems governed by abstract semilinear
evolution equations by combining ideas from dynamic programming and approxima-
tions of the value function using viscosity solutions of the Hamilton-Jacobi-Bellman
equations. Switching boundary control for linear transport equations using switching
time sensitivities has been studied in [9]. Exemplary for the heat equation and based
on variational methods, the controllability in case of switching among several actua-
tors has been considered in [29] and null-controllability for the one-dimensional wave
equation with switching boundary control has been considered in [7]. Based on linear
quadratic regulator optimal control techniques and enumeration of the integer values
for a fixed time discretization, optimal switching control of abstract linear systems
has been considered in [13].

Our approach is complementary to the above, as we break the computationally
very expensive combinatorial complexity of the problem by relaxation. This comes at
the downside of providing only a suboptimal solution and possibly at the price of fast
switching but, as we will see, with arbitrary small integer-optimality gap, depending
on discretization, and extensions to limit the number of switching.

We will be concerned with the following problem of mixed-integer optimal con-
trol: Minimize a cost functional

J = φ
(
z(tf )

) +
∫ tf

0
ψ

(
z(t), u(t)

)
dt (1)
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over trajectories z ∈ X[0,tf ] ⊂ {z : [0, tf ] → X} and control functions u ∈ U[0,tf ] ⊂
{u : [0, tf ] → U} and v ∈ V[0,tf ] ⊂ {v : [0, tf ] → V } subject to the constraints that z

is a mild solution of the operator differential equation
{

ż(t) = Az(t) + f
(
t, z(t), u(t), v(t)

)
, t ∈ (0, tf ]

z(0) = z0 ∈ X
(2)

and that the control functions satisfy

u(t) ∈ Uad ⊂ U, v(t) ∈ Vad ⊂ V, t ∈ [0, tf ] (3)

where X, U and V are Banach spaces, X[0,tf ], U[0,tf ] and V[0,tf ] are normed linear
spaces, A : D(A) → X is the infinitesimal generator of a strongly continuous semi-
group {T (t)}t≥0 on X, tf ≥ 0 is a fixed real number, f : [0, tf ] × X × U × V → X,
φ : X → R and ψ : X × U → R are given functions, Uad is some subset of U and
Vad is a finite subset of V . This setting is for the most part classical, except for the
assumptions on Vad.

We will refer to the above infinite-dimensional dynamic optimization problem as
mixed-integer optimal control problem, short (MIOCP), and to the control function
[u,v] as a mixed-integer control. This accounts for the fact that we do not impose
restrictions on the set Uad ⊂ U while we can always identify the finite set Vad ⊂ V of
the feasible control values for v with a finite number of integers

Vad = {
v1, . . . , vN

} � {1, . . . ,N}. (4)

Moreover, the operator differential equation (2) is an abstract representation of certain
initial-boundary value problems governed by linear and semilinear partial differential
equations, see, e.g., [20].

The existence of an optimal solution of the problem (MIOCP) depends, inter alia,
on the spaces X[0,tf ], U[0,tf ] and V[0,tf ] where we seek z : [0, tf ] → X, u : [0, tf ] →
U and v : [0, tf ] → V , respectively. Common choices are, for U[0,tf ], the spaces of
square integrable (L2), piecewise k-times differentiable (Ck

pw) or (piecewise) k-times

weakly differentiable (Hk
pw) functions u : [0, tf ] → U and, for V[0,tf ], the spaces of

essentially bounded (L∞) or piecewise constant (PC) functions v : [0, tf ] → V . We
defer these considerations by assuming later that there exists an optimal solution of
a related (to a certain extent convexified and relaxed) optimal control problem and
present sufficient conditions guaranteeing that the solution of the relaxed problem
can be approximated with arbitrary precision by a solution satisfying the integer re-
strictions. We do only assume that X[0,tf ] ⊂ C([0, tf ];X), U[0,tf ] ⊂ L1(0, tf ;U) and
V[0,tf ] ⊂ L1(0, tf ;V ) to ensure that certain quantities in problem (MIOCP) are well-
defined.

This relaxation method becomes most easily evident from writing problem
(MIOCP) using a differential inclusion, that is, minimize (1) subject to the constraints
that z is a solution of

{
ż(t) ∈ Az(t) + {

f
(
t, z(t), u(t), vi

) : vi ∈ Vad
}
, t ∈ (0, tf ]

z(0) = z0.
(5)
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and u satisfies

u(t) ∈ Uad, t ∈ [0, tf ].
It is well known that, under certain technical assumptions, the solution set of (5) is
dense in the solution set of the convexified differential inclusion

{
ż(t) ∈ Az(t) + co

{
f

(
t, z(t), u(t), vi

) : vi ∈ Vad
}
, t ∈ (0, tf ]

z(0) = z0,
(6)

where co denotes the closure of the convex hull. This is proved in [6] for the case
when X is a separable Banach space and in [2] for non-separable Banach spaces.
While these results rely on powerful selection theorems, our main contribution is a
constructive proof based on discretization, giving rise to a numerical method at the
prize of additional regularity assumptions.

We will see that the advantage of such a relaxation method is that the convexified
problem, using a particular representation of (6), falls into the class of optimal control
problems with partial differential equations without integer-restrictions. The already
known theory, in particular concerning existence, uniqueness and regularity of opti-
mal solutions as well as numerical considerations such as sensitivities, error analysis
for finite element approximations, etc., can thus be carried over to the mixed-integer
problem under consideration here. We also discuss the possibility to include state-
constraints for example enforcing time-periodicity constraints

z(tf ) = z(0), (7)

as occurring in chromatographic separation processes [5, 14]. The disadvantage of
this approach is that we target at a solution that is only suboptimal (though with arbi-
trary precision) and that switching costs, a standard regularization of mixed-integer
problems to prevent chattering solutions, or additional combinatorial constraints can
lead to larger optimality/feasibility gaps. Nevertheless, we will show how a-priori
bounds for such a gap can be obtained when constraints on the number of switches
are incorporated.

The framework we use for the analysis here will be semigroup theory. Recall that
for given z0 ∈ X and given control functions u,v, the mild solution of the state equa-
tion (2) is given by a function z ∈ C(0, tf ;X) satisfying the variation of constants
formula

z(t) = T (t)z0 +
∫ t

0
T (t − s)f

(
s, z(s), u(s), v(s)

)
ds, 0 ≤ t ≤ tf (8)

in the Lebesgue-Bochner sense. This abstract setting covers in particular the usual
setup for weak solutions of linear parabolic partial differential equations with dis-
tributed control on reflexive Banach spaces where A arises from a time-invariant
variational problem, see [1, Sect. 1.3].

We include in our analysis explicitly the possibility to approximate the state equa-
tion (2) and say that z̃ ∈ X[0,tf ] is an ε-accurate solution of (2) if z is the mild solution
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and ‖z̃(t) − z(t)‖X ≤ ε for all t ∈ [0, tf ]. Accordingly, we define for a given ε ≥ 0
the set of ε-admissible solutions for (MIOCP) as

Ξε := {
(u, v, z) ∈ U[0,tf ] × V[0,tf ] × X[0,tf ] : u,v satisfy (3)

and z = z(u, v) is an ε-accurate solution of (2)
}
. (9)

Further, we denote throughout the paper by H 1
pw(0, tf ;X) the space of X-valued

functions defined on the interval [0, tf ] and being piecewise once-weakly differ-
entiable with a piecewise defined weak derivative that is square-integrable in the
Lebesgue-Bochner sense. Consistently, we denote by C

0,ϑ
pw (0, tf ;X) the space of

X-valued functions defined on the interval [0, tf ] being piecewise Hölder-continuous
with a Hölder-constant ϑ . In both constructions, piecewise means that there exists a
finite partition of the interval [0, tf ]

0 = τ0 < τ1 < τ2 < · · · < τKtf
< τKtf

+1 = tf (10)

so that the function has the respective regularity on all intervals [τk, τk+1), k =
0, . . . ,Ktf . We denote by ‖ · ‖X the norm on X and by ‖ · ‖L(X) the operator norm
induced by ‖ · ‖X . Further, we denote by ‖ · ‖U[0,tf ] and ‖ · ‖V[0,tf ] the norm of U[0,tf ]
and V[0,tf ], respectively. For simplicity of notation, we also define T (−t) = Id for all
t > 0, Id denoting the identity on X.

The paper is organized as follows. In Sect. 2, we present details of the relax-
ation method and the main results concerning estimates of the approximation error.
In Sect. 3, we discuss extensions of the method to incorporate certain combinatorial
constraints. In Sect. 4, we discuss applications for linear and semilinear equations
and present numerical results for the heat equation with spatial scheduling of differ-
ent actuators and a semilinear reaction-diffusion system with an on-off type control.
In Sect. 5, we conclude with some additional remarks and point out open problems.

2 Relaxation method

Consider the following problem involving a particular representation of the convexi-
fied differential inclusion (6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
[ω,α,y]∈U[0,tf ]×Ṽ[0,tf ]×X[0,tf ]

J = φ
(
y(tf )

) +
∫ tf

0
ψ

(
y(t),ω(t)

)
dt s.t. (11a)

ẏ(t) = Ay(t) +
N∑

i=1

αi(t)f
(
t, y(t),ω(t), vi

)
, t ∈ (0, tf ] (11b)

y(0) = y0 := z0 (11c)

ω(t) ∈ Uad, t ∈ [0, tf ] (11d)

α(t) = (
α1(t), . . . , αN(t)

) ∈ [0,1]N, t ∈ [0, tf ] (11e)
N∑

i=1

αi(t) = 1, t ∈ [0, tf ], (11f)
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Algorithm 1 Relaxation method

1: Choose a time discretization grid G 0 = {0 = t0
0 < t0

1 < · · · < t0
n0 = tf }, a sequence

of non-negative accuracies {εk}k∈N and some termination tolerance ε > 0. Set
k = 0.

2: LOOP
3: Find an εk-accurate optimal solution [ωk,αk, yk] of the relaxed problem

(11a)–(11f) and set J k
rel := J (ωk,αk, yk).

4: If αk ∈ PC(0, tf ; {0,1}N) and εk ≤ ε, then set vk(t) = ∑N
i=1 αk

i (t)v
i and

zk(t) = yk(t) for t ∈ [0, tf ] and STOP.
5: Using Gk and αk , define a piecewise constant function βk = (βk

1 , . . . , βk
N) :

[0, tf ] → {0,1}N by

βk
i (t) = pk

i,j , t ∈ [tkj , tkj+1), i = 1, . . . ,N, j = 0, . . . , nk − 1 (A1)

where for all i = 1, . . . ,N , j = 0, . . . , nk − 1

pk
i,j =

⎧
⎪⎨

⎪⎩

1 if (p̂k
i,j ≥ p̂k

l,j ∀l ∈ {1, . . . ,N} \ {i}) and

(i < l ∀l ∈ {1, . . . ,N} \ {i} : p̂k
i,j = p̂k

l,j )

0 else

p̂k
i,j =

∫ tkj+1

0
αk

i (τ ) dτ −
j−1∑

l=0

pk
i,l

(
tkl+1 − tkl

)
.

(A2)

6: Set uk(t) = ωk(t), vk(t) = ∑N
i=1 βk

i (t)vi for t ∈ [0, tf ] and J k = φ(zk(tf )) +
∫ tf

0 ψ(zk(t),ωk(t)) dt where zk is an εk-accurate solution of

ż(t) = Az(t) +
N∑

i=1

βk
i (t)f

(
t, z(t),ωk(t), vi

)
, t ∈ (0, tf ], z(0) = z0.

(A3)
7: If |J k

rel − J k| ≤ ε
2 and εk ≤ ε

2 then STOP.

8: Choose Gk+1 = {0 = tk+1
0 < tk+1

1 < · · · < tk+1
nk+1 = tf } such that Gk ⊂ Gk+1 and

set k = k + 1.
9: END LOOP

10: Set u∗(t) = ωk(t), v∗(t) = vk(t) and z∗(t) = zk(t) for t ∈ [0, tf ].

where we write ω,α,y for u,v, z, respectively, to emphasize the relaxation of the
original problem (MIOCP). Here, Ṽ[0,tf ] = {α : [0, tf ] → R

N : ‖α‖V[0,tf ] < ∞}.
Observe that the control functions αi take values on the full interval [0,1], but that

any optimal controls [ω∗, α∗] of (11a)–(11f) yields an optimal mixed-integer control

[
u∗, v∗] :=

[

ω∗,
N∑

i=1

α∗
i vi

]

(12)
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of problem (MIOCP) if α∗(t) ∈ {0,1}N for almost every t ∈ (0, tf ). However, it is
not very difficult to construct examples where α∗(t) ∈ (0,1)N for t on some interval
of positive measure. It is only in some special cases where optimality of α∗(t) ∈
[0,1]N implies that α∗ takes only values on the boundary of its feasible set. For
examples where this property, known as the bang-bang principle, can be verified in
the context of partial differential equations, see [28, Sect. 3.2.4] and the references
therein. Moreover, the relaxed problem (11a)–(11f) can in most applications only be
solved approximately.

Therefore, consider the following hypothesis.

(H0) Problem (11a)–(11f) has an optimal solution in U[0,tf ] × Ṽ[0,tf ] × X[0,tf ].

Under this assumption, we will accept ε-accurate optimal solutions of the relaxed
problem (11a)–(11f) and propose in Algorithm 1 an iterative procedure to obtain
from these solutions a mixed-integer control taking values in Uad × {0,1}N . We then
show in Theorem 1 under certain technical assumptions that the optimal value and the
optimal state of problem (11a)–(11f) can be approximated by the proposed procedure
with arbitrary precision. To make our terminology precise, we include the following
definition.

Definition 1 Given some ε ≥ 0, we say that [ωε,αε, yε] ∈ U[0,tf ] × Ṽ[0,tf ] × X[0,tf ]
is an ε-accurate optimal solution of (11a)–(11f) if yε is an ε-accurate solution of
(11b)–(11c) with ω = ωε and α = αε , the constraints (11d)–(11f) hold with ω = ωε

and α = αε and

J
(
ωε,αε, yε

) ≤ inf
ω,α,y s.t. (11b)–(11f)

J (ω,α, y) + ε. (13)

So any ε-accurate optimal solution of the relaxed problem (11a)–(11f) is admissi-
ble with respect to the control constraints on α and ω, ε-close admissible with respect
to the state variable y and the corresponding value of the cost function is ε-close to
the optimal value of problem (11a)–(11f).

Now, consider Algorithm 1 on p. 202 to obtain a mixed-integer control for problem
(MIOCP). The main result is the following.

Theorem 1 Assuming (H0), let [ω∗, α∗, y∗] denote an optimal solution of the relaxed
problem (11a)–(11f) and assume that the following assumptions hold true.

(H1) The functions φ, ψ , and f satisfy the Lipschitz-estimates

∣∣φ(y1) − φ(y2)
∣∣ ≤ η‖y1 − y2‖X,

∣∣ψ(y1,ω1) − ψ(y2,ω2)
∣∣ ≤ ξ

(‖y1 − y2‖X + ‖ω1 − ω2‖U

)
,

∥∥f
(
t, y1,ω1, v

i
) − f

(
t, y2,ω2, v

i
)∥∥

X
≤ L

(‖y1 − y2‖X + ‖ω1 − ω2‖U

)
,

for all y1, y2 ∈ X,ω1,ω2 ∈ Uad, t ∈ [0, tf ] and i = 1, . . . ,N with positive con-
stants η, ξ and L.
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(H2) For all i = 1, . . . ,N and t ∈ [0, tf ] the function

s �→ T (t − s)f
(
s, y∗(s),ω∗(s), vi

)

is in H 1
pw(0, tf ;X) and there exists a positive constant Ci such that

∥∥∥∥
d

ds

(
T (t − s)f

(
s, y∗(s),ω∗(s), vi

))
∥∥∥∥

X

≤ Ci a.e. in 0 < s < t < tf .

Let C = ∑N
i=1 Ci .

(H3) For all i = 1, . . . ,N , there exists a positive constant Mi such that

sup
t∈[0,tf ]

∥∥f
(
t, y∗(t),ω∗(t), vi

)∥∥
X

≤ Mi.

Let M = ∑N
i=1 Mi .

(H4) The solution [ω∗, α∗, y∗] is stable in the sense that there exists a positive con-
stant CJ such that

∥∥ω∗(t) − ω(t)
∥∥

U
+ ∥∥α∗(t) − α(t)

∥∥
RN

≤ CJ

∣∣J
(
ω∗, α∗, y

(
ω∗, α∗)) − J

(
ω,α,y(ω,α)

)∣∣ a.e. in (0, tf ) (14)

for [ω,α] in some neighborhood of [u∗, α∗] in U[0,tf ] × Ṽ[0,tf ].

Moreover, assume that εk → 0 and that the sequence {Gk}k in Algorithm 1 is such
that 
tk → 0 with


tk = max
i=1,...,nk

{
tki − tki−1

}
. (15)

Define the constants C1 = (CJ (M + 1)(1 + η + ξ)etf M̄L + 1), C2 = (M +
tf C)etf M̄L, C3 := (η + tf ξ)C1 + tf ξCJ and C4 := (η + tf ξ)C2, where M̄ =
supt∈[0,tf ] ‖T (t)‖L(X) and the constants η, ξ , M , C, L and CJ are given by hy-

pothesis (H1)–(H4). Then, [uk, vk, zk] defined by Algorithm 1 is in Ξεk for all
k = 0,1,2, . . . and satisfies the estimates

∥∥y∗(t) − zk(t)
∥∥

X
≤ C1ε

k + C2(N − 1)
tk, t ∈ [0, tf ], (16)

and
∣∣J

(
ω∗, α∗, y∗) − J

(
uk, vk, zk

)∣∣ ≤ C3ε
k + C4(N − 1)
tk. (17)

In particular, Algorithm 1 terminates in a finite number of steps with an ε-feasible
mixed-integer solution [u∗, v∗, z∗] ∈ Ξε of Problem (MIOCP) satisfying the estimate

∣∣J
(
ω∗, α∗, y∗) − J

(
u∗, v∗, z∗)∣∣ ≤ ε, (18)

where ε > 0 is chosen arbitrarily in step 1.
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Before we prove Theorem 1, we first prove a result saying that the deviation of
two mild solutions in X[0,tf ] equipped with the uniform norm can be estimated in
terms of the absolute value of the integrated difference of two linearly entering con-
trol functions. This estimate is non-standard and generalizes the result in [23] to a
Banach space setting, noting that the absolute value of the integrated difference is
not a norm and in particular not comparable to the V[0,tf ]-norm as a natural choice.
This estimate, together with an approximation result for this integrated difference is
the key ingredient in order to prove all a-priori estimates needed for the proof of
Theorem 1.

Lemma 1 Let ε > 0 and M̄ = supt∈[0,tf ] ‖T (t)‖L(X). Suppose that [ω∗, α∗, y∗] is a
feasible solution of the relaxed problem (11a)–(11f) and assume that the hypotheses
(H1)–(H3) of Theorem 1 hold true. Let β = (β1, . . . , βN) ∈ L∞(0, tf ; [0,1]N) be
such that

max
i=1,...,N

sup
t∈[0,tf ]

∣∣∣∣

∫ t

0
α∗

i (τ ) − βi(τ ) dτ

∣∣∣∣ ≤ ε (19)

and let z be the mild solution of (A3) in Algorithm 1 with βk
i = βi , i = 1, . . . ,N , and

ωk = ω∗. Then
∥∥y∗(t) − z(t)

∥∥
X

≤ (
(M + Ct)eM̄Lt

)
ε, t ∈ [0, tf ]. (20)

Proof Fix t ∈ [0, tf ] and set, for the sake of brevity, δ(t) = ‖y∗(t) − z(t)‖X and
f i(t, y(t)) = f (t, y(t),ω∗(t), vi). Recalling (10) and using hypothesis (H2), let
{τ0, τ1, . . . , τK+1} be the set of partition points of the functions s �→
T (t − s)f i(s, y∗(s)) as objects in H 1

pw(0, t;X), i = 1, . . . ,N , so that τ0 = 0 and
τK+1 = t . From the definition of the mild solutions for (11a)–(11f) and (A3), we
have

δ(t) =
∥∥
∥∥∥

N∑

i=1

∫ t

0
T (t − s)f i

(
s, y∗(s)

)
α∗

i (s) − T (t − s)f i
(
s, z(s)

)
βi(s) ds

∥∥
∥∥∥

X

.

Adding 0 = T (t −s)f i(s, y∗(s))βi(s)−T (t −s)f i(s, y∗(s))βi(s) under the integral,
applying the triangular inequality and rearranging terms this yields

δ(t) ≤
N∑

i=1

∥∥∥
∥

∫ t

0
T (t − s)

[
f i

(
s, y∗(s)

) − f i
(
s, z(s)

)]
βi(s) ds

∥∥∥
∥

X

+
N∑

i=1

∥∥∥∥∥

K∑

k=0

∫ τk+1

τk

T (t − s)f i
(
s, y∗(s)

)[
α∗

i (s) − βi(s)
]
ds

∥∥∥∥∥
X

.

Now using integration by parts in the second part, we obtain

δ(t) ≤
N∑

i=1

∥∥∥∥

∫ t

0
T (t − s)

[
f i

(
s, y∗(s)

) − f i
(
s, z(s)

)]
βi(s) ds

∥∥∥∥
X
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+
N∑

i=1

∥∥∥∥∥

K∑

k=0

(T (t − τk+1)f
i
(
τk+1, y

∗(τk+1)
)∫ τk+1

0
α∗

i (s) − βi(s) ds

− T (t − τk)f
i
(
τk, y

∗(τk)
) ∫ τk

0
α∗

i (s) − βi(s) ds

−
∫ τk+1

τk

d

ds

(
T (t − s)f i

(
s, y∗(s)

))∫ s

0
α∗

i (ϑ) − βi(ϑ)dϑ ds)

∥∥∥∥∥
X

.

Then by rearranging terms, noting that the appearing telescopic sum evaluates as

K∑

k=0

(T (t − τk+1)f
i
(
τk+1, y

∗(τk+1)
)∫ τk+1

0
α∗

i (s) − βi(s) ds

− T (t − τk)f
i
(
τk, y

∗(τk)
)∫ τk

0
α∗

i (s) − βi(s) ds)

= f i
(
t, y∗(t)

)∫ t

0
α∗

i (s) − βi(s) ds

because of τ0 = 0, τK+1 = t , T (t − t) = Id and
∫ 0

0 α∗
i (ϑ) − βi(ϑ)dϑ = 0, and by

applying the triangular inequality this estimate simplifies to

δ(t) ≤
N∑

i=1

∫ t

0

∥∥T (t − s)
∥∥

L(X)

∥∥f i
(
s, y∗(s)

) − f i
(
s, z(s)

)∥∥
X

∣∣βi(s)
∣∣ds

+
N∑

i=1

∥∥f i
(
t, y∗(t)

)∥∥
X

∣∣∣∣

∫ t

0
α∗

i (s) − βi(s)

∣∣∣∣ds

+
N∑

i=1

∫ t

0

∥∥∥∥
d

ds

(
T (t − s)f i

(
s, y∗(s)

))
∥∥∥∥

X

∣∣∣∣

∫ s

0
α∗

i (ϑ) − βi(ϑ)dϑ

∣∣∣∣ds.

Then, by definition of δ, f i and the constant M̄ , the definition of the constants L,
C and M in hypotheses (H1)–(H3), assumption (19) and the fact that βi(t) ≤ 1, this
yields

δ(t) ≤ M̄L

∫ t

0
δ(s) ds + Mε + Ctε.

Finally, using the Gronwall lemma and rearranging terms, we obtain the desired esti-
mate

δ(t) ≤ (
(M + Ct)eM̄Lt

)
ε. �

Next, we recall from [23] the following result on integral approximations.

Lemma 2 Let α = (α1, . . . , αN) : [0, tf ] → [0,1]N be a measurable function sat-
isfying

∑N
i=1 αi(t) = 1 for all t ∈ [0, tf ]. Define a piecewise constant function
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β : [0, tf ] → {0,1}N by

βi(t) = pi,j , t ∈ [tj , tj+1), i = 1, . . . ,N, j = 0, . . . , n − 1 (21)

where for all i = 1, . . . ,N , j = 0, . . . , n − 1, pi,j is defined by (A2) in Algorithm 1
with pk

i,j = pi,j . Then it holds for 
t = maxi=1,...,n{ti − ti−1}
1. maxi=1,...,N | ∫ t

0 αi(τ ) − βi(τ ) dτ | ≤ (N − 1)
t for all t ∈ [0, tf ],
2.

∑N
i=1 βi(t) = 1 for all t ∈ [0, tf ].

Proof See Theorem 5 of [23]. �

With the above two results we are now in the position to prove Theorem 1.

Proof of Theorem 1 Let the assumptions of Theorem 1 hold true. First we show
that the sequence [uk, vk, zk] obtained by Algorithm 1 is εk-feasible for the problem
(MIOCP). We have uk = ωk ∈ Uad for all k by construction of ωk in step 3, vk(t) =∑N

i=1 βk
i (t)vi , t ∈ [0, tf ], by construction in step 6 so vk(t) ∈ Vad, t ∈ [0, tf ], because

βk
i (t) ∈ {0,1} for all i, k and t ∈ [0, tf ] as seen from (A1) and (A2). By construction

in step 6, zk is an εk-accurate solution of (A3). Thus, recalling (9), [uk, vk, zk] ∈ Ξεk

for all k = 0,1,2, . . . .
Next, we show (16). To this end, let y(·;ωk,βk), z(·;ω∗, βk) = y(·;ω∗, βk) and

y(·;ω∗, αk) denote the mild solutions of (11b), (11c) with the respective controls.
The stability assumption (H4) and the continuity assumption (H1) implies that

∥∥α∗(t) − αk(t)
∥∥

RN + ∥∥ω∗(t) − ωk(t)
∥∥

U

≤ CJ

∣∣J
(
ω∗, α∗, y

(
ω∗, α∗)) − J

(
ωk,αk, y

(
ωk,αk

))∣∣

≤ CJ

(∣∣J
(
ω∗, α∗, y

(
ω∗, α∗)) − J

(
ωk,αk, yk

)∣∣

+ ∣∣J
(
ωk,αk, yk

) − J
(
ωk,αk, y

(
ωk,αk

))∣∣)

≤ CJ

(
εk + ∣∣φ

(
yk(tf )

) − φ
(
y
(
tf ;ωk,αk

))∣∣

+
∫ tf

0

∣∣ψ
(
yk(t),ωk(t)

) − ψ
(
y
(
t;ωk,αk

)
,ωk(t)

)∣∣dt
)

≤ CJ (1 + η + tf ξ)εk (22)

for a.e. t ∈ (0, tf ), where we added 0 = −J (ωk,αk, yk) + J (ωk,αk, yk), used the
triangular inequality and that [ωk,αk, yk] is an ε-accurate optimal solution of (11a)–
(11f). Moreover, by fixing t ∈ [0, tf ], adding 0 = −y(t;ωk,βk) + y(t;ωk,βk),
0 = −z(t;ω∗, βk)+ y(t;ω∗, βk) and 0 = −y(t;ω∗, αk)+ y(t;ω∗, αk) and using the
triangular inequality, we see that

∥∥zk(t) − y∗(t)
∥∥

X
≤ δ1(t) + δ2(t) + δ3(t) + δ4(t) (23)
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with

δ1(t) = ∥∥zk(t) − y
(
t;ωk,βk

)∥∥
X
, δ2(t) = ∥∥y

(
t;ωk,βk

) − z
(
t;ω∗, βk

)∥∥
X

δ3(t) = ∥∥z
(
t;ω∗, βk

) − y
(
t;ω∗, αk

)∥∥
X
, δ4(t) = ∥∥y

(
t;ω∗, αk

) − y∗(t)
∥∥

X
.

Observe that δ1(t) ≤ εk , because zk is an εk-accurate solution of (A3) and thus of
(11b), (11c) with controls ωk,αk . By definition of the mild solution and using (H1),
we have

δ2(t) ≤
N∑

i=1

∫ t

0

∥∥T (t − s)
∥∥

L(X)

∥∥βk
i (s)

∥∥∥∥(
f

(
s, y

(
s;ωk,βk

)
,ωk(s), vi

)

− f
(
s, z

(
s;ω∗, βk

)
,ω∗(s), vi

))∥∥
X

ds

≤ M̄L

∫ t

0
δ2(s) + ∥∥ωk(s) − ω∗(s)

∥∥
U

ds. (24)

Using (22), the Gronwall inequality implies that

δ2(t) ≤ CJ (1 + η + ξ)eM̄Ltεk. (25)

From Lemma 2 with α = αk , β = βk and 
t = 
tk with 
tk from (15), we get that

max
i=1,...,N

∣∣∣∣

∫ t

0
αk

i (τ ) − βk
i (τ ) dτ

∣∣∣∣ ≤ (N − 1)
tk, t ∈ [0, tf ]. (26)

Moreover, Lemma 1 used with y∗ = y(·;ω∗, αk), α∗ = αk , β = βk and ε =
(N − 1)
tk implies that

δ3(t) = ∥∥z
(
t;ω∗, βk

) − y
(
t;ω∗, αk

)∥∥
X

≤ (
(M + Ct)eM̄Lt

)
(N − 1)
tk. (27)

Again by definition of the mild solution we have

δ4(t) ≤
N∑

i=1

∫ t

0

∥∥T (t − s)
∥∥

L(X)

∥∥αk
i (s)f

(
s, y

(
s,ω∗, αk

)
,ω∗(s), vi

)

− α∗
i (s)f

(
s, y

(
s;ω∗, α∗),ω∗(s), vi

)∥∥
X

ds. (28)

Adding 0 = αk(s)(−f (s, y(s;ω∗, α∗),ω∗(s), vi) + f (s, y(s;ω∗, α∗),ω∗(s), vi))

under the integral, we obtain

δ4(t) ≤ M̄

N∑

i=1

∫ t

0

∥∥αk
i (s)

[
f

(
s, y

(
s;ω∗, αk

)
,ω∗(s), vi

)

− f
(
s, y

(
s,ω∗, α∗),ω∗(s), vi

)]
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+ [
αk

i (s) − α∗
i (s)

]
f

(
s, y

(
s;ω∗, α∗),ω∗(s), vi

)∥∥
X

ds

≤ M̄L

∫ t

0
δ4(s) + M

∣∣αk
i (s) − α∗

i (s)
∣∣ds. (29)

Using again (22) and the Gronwall inequality we obtain that

δ4(t) ≤ MCJ (1 + η + ξ)eM̄Lt εk. (30)

Thus, summing up the estimates for δ1(t), . . . , δ4(t) and rearranging terms we obtain
from (23) that for all t ∈ [0, tf ]

∥∥zk(t) − y∗(t)
∥∥

X
≤ C1ε

k + C2(N − 1)
tk (31)

with C1 = (CJ (M +1)(1+η+ξ)etf M̄L +1) and C2 = (M + tf C)etf M̄L. This proves
(16).

By definition of the cost function (1) we get from the triangular inequality that
∣∣J

(
ω∗, α∗, y∗) − J

(
uk, vk, zk

)∣∣

≤ ∣∣φ
(
y∗(t)

) − φ
(
zk(t)

)∣∣

+
∫ tf

0

∣∣ψ
(
y∗(t),ω∗(t)

) − ψ
(
zk(t),ωk(t)

)∣∣dt (32)

so that using hypothesis (H1), (22) and (31) we obtain
∣∣J

(
ω∗, α∗, y∗) − J

(
uk, vk, zk

)∣∣ ≤ C3ε
k + C4(N − 1)
tk (33)

with the constants C3 = (η+ tf ξ)C1 + tf ξCJ and C4 = (η+ tf ξ)C2(tf ). This proves
(17).

Next, suppose that the main loop in Algorithm 1 terminates in step 4 or in step 7.
In the first case, the termination criterion implies that

∣∣J
(
u∗, v∗, z∗) − J

(
ω∗, α∗, y∗)∣∣ = ∣∣J

(
ωk,αk, yk

) − J
(
ω∗, α∗, y∗)∣∣ ≤ εk ≤ ε (34)

for some k, because J (ωk,αk, zk) is an εk-accurate optimal solution of (11a)–(11f).
Similarly, in the second case the termination criterion implies that

∣∣J
(
u∗, v∗, z∗) − J

(
ω∗, α∗, y∗)∣∣

≤ ∣∣J
(
u∗, v∗, z∗) − J

(
ωk,αk, yk

)∣∣ + ∣∣J
(
ωk,αk, yk

) − J
(
ω∗, α∗, y∗)∣∣

≤ ∣
∣J k − J k

rel

∣
∣ + εk ≤ ε

2
+ ε

2
≤ ε (35)

for some k. This proves (18) under the assumption that Algorithm 1 terminates.
Finally suppose that Algorithm 1 loops infinitely many times, that is,

∣
∣J k

rel − J k
∣
∣ >

ε

2
or εk >

ε

2
for all k = 0,1,2, . . . (36)
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By adding 0 = −y∗(t) + y∗(t) and using that yk is an εk-accurate optimal solution,
we obtain from (31) that

∥∥zk(t) − yk(t)
∥∥

X
≤ ∥∥zk(t) − y∗(t)

∥∥
X

+ ∥∥y∗(t) − yk(t)
∥∥

X

≤ C1ε
k + C2(N − 1)
tk + εk. (37)

Using that εk → 0 and 
tk → 0 as k → ∞ by assumption, we see from (37) that
supt∈[0,tf ] ‖zk(t) − yk(t)‖X → 0 as k → ∞. By definition of J k

rel and J k and using
the triangular inequality we have

∣∣J k
rel − J k

∣∣ = ∣∣J
(
ωk,αk, yk

) − J
(
ωk,βk, zk

)∣∣ ≤ ∣∣φ
(
yk(tf )

) − φ
(
zk(tf )

)∣∣

+
∫ tf

0

∣
∣ψ

(
yk(t),ωk(t)

) − ψ
(
zk(t),ωk(t)

)∣∣dt, (38)

so that supt∈[0,tf ] ‖zk(t) − yk(t)‖X → 0 as k → ∞ implies by continuity of φ and

ψ that also |J k
rel − J k| → 0 as k → ∞. Together with the assumption that εk → 0 as

k → ∞ this contradicts (36) and completes the proof. �

Theorem 1 can be seen as a performance analysis of the relaxation method pro-
posed in Algorithm 1. The estimates (16) and (17) prove a bilinear dependency of the
mixed-integer control approximation error for the differential state and the optimal
value in terms of the chosen maximal integer-control discretization mesh size 
tk

and accuracy εk . This relates to the convergence speed of Algorithm 1 in terms of the
chosen refinements for 
tk and εk . Note that the estimates (16) and (17) suggest to
choose 
tk and εk of the same order. On the other hand, Theorem 1 can be regarded
as an existence result of suboptimal solutions for (MIOCP). To emphasize this, we
formulate the precise statement explicitly.

Corollary 1 Under the hypothesis (H0)–(H3) there exists for every ε > 0 a feasible
solution (uε, vε, zε) ∈ U[0,tf ] × V[0,tf ] × X[0,tf ] of problem (MIOCP) satisfying

J
(
uε, vε, zε

) ≤ J
(
ω∗, α∗, y∗) + ε, (39)

where (ω∗, α∗, y∗) is the optimal solution of the relaxed problem (11a)–(11f).

Proof Apply Theorem 1 with εk = 0 for all k. Then, (ωk,αk, yk) = (ω∗, α∗, y∗) and
it can be seen from proof of Theorem 1 that (H4) is then not needed for the estimate
(17). Moreover, Ξ0 is contained in the feasible set of problem (11a)–(11f) and thus
J (ω∗, α∗, y∗) ≤ J (u, v, z) for all (u, v, z) ∈ Ξ0. Thus, (39) follows from (18). �

Hypothesis (H0) can be checked by classical arguments, cf., e.g., [28]. Hypoth-
esis (H1)–(H3) are needed to estimate the proximity of mixed-integer solutions of
(MIOCP) to the optimal solution of the relaxed problem (11a)–(11f) while hypoth-
esis (H4) guarantees in a sense the proximity of the ε-accurate optimal solutions of
(11a)–(11f) to the optimal ones. Hypothesis (H1) and (H3) are standard assumptions
and can be weakened to appropriate ‘local’ versions using standard arguments. This



Relaxation methods for mixed-integer optimal control of PDEs 211

can also tighten the estimates in Theorem 1. The last conclusion of Theorem 1 con-
cerning the termination of Algorithm 1 and Corollary 1 even hold for the functions φ

and ψ just continuous as it can be seen from the respective proofs. Hypothesis (H4)
can be verified for problems that are well-posed in the Tikhonov sense, cf. the dis-
cussion in [15, Sect. 4]. For sufficiently regularized parabolic problems it could also
be checked using methods as in [19]. Alternatively, instead of invoking Theorem 1,
Corollary 1 or a weaker conclusion presented in Proposition 2 below may be used
where (H4) is not needed.

Hypothesis (H2) of Theorem 1 clearly imposes certain regularity assumptions on
the linear operator A generating the semigroup {T (t)}t≥0, the function f , but also on
the time regularities of the optimal control functions of the relaxed problem (11a)–
(11f) in U[0,tf ] and Ṽ[0,tf ]. The main difficulty with proving (H2) is that y∗ as a solu-
tion of (8) with A unbounded may only be continuous and not absolutely continuous
in time, hence not necessarily differentiable almost everywhere as this is always true
when A = 0 (with T (·) = Id) and X is a finite dimensional space. This can be delicate
in particular for nonlinear systems. We will therefore exemplary discuss hypothesis
(H2) in Example 2 below for the case of a semilinear system where A is the generator
of an analytic semigroup. A more general analysis is possible for linear systems

ż(t) = Az(t) + f
(
t, u(t), v(t)

)
, z(0) = z0 (40)

when f is sufficiently smooth. We formulate this as an auxiliary result.

Proposition 1 Consider the problem (MIOCP) with equation (2) replaced by
equation (40), let M̄ = supt∈[0,tf ] ‖T (t)‖L(X) and suppose that the functions

gi : [0, tf ] → X defined by gi(t) = f (t,ω∗(t), vi), i = 1, . . . ,N , satisfy the follow-
ing conditions.

(i) gi(t) ∈ D(A) for a.e. t ∈ [0, tf ] and there exists constants L̄i such that

ess supt∈[0,tf ]
∥∥Agi(t)

∥∥
X

≤ L̄i .

(ii) gi is differentiable for a.e. t ∈ [0, tf ] and there exist constants C̄i such that

ess supt∈[0,tf ]
∥∥∥∥

d

dt
gi(t)

∥∥∥∥
X

≤ C̄i .

Then hypothesis (H2) of Theorem 1 holds with Ci := M̄(C̄i + L̄i).

Proof From condition (i) we get from the chain rule that

d

ds
T (t − s)g(t) = T (t − s)

d

ds
g(t) − T (t − s)Ag(t)

for all i = 1, . . . ,N and thus, by taking the norm, applying the triangular inequality
and using the definition of the constants in (i) and (ii) we obtain

∥∥∥∥
d

ds
T (t − s)f

(
s,ω∗(s), vi

)
∥∥∥∥

X

≤ M̄
(
C̄i + L̄i

)
. �
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The conditions (i) and (ii) are a natural extension of the differentiability assump-
tions imposed in [23, Corollary 6] for the case when A = 0 and X = R

n. In Sect. 4,
we will use such arguments in order to verify hypothesis (H2) in Example 1.

We note that the relaxation method works under much weaker assumptions with
slightly weaker conclusions. Suppose that we replace the main hypothesis (H0) by
the following much weaker hypothesis.

(H′
0) Problem (11a)–(11f) has a feasible solution in U[0,tf ] × Ṽ[0,tf ] × X[0,tf ].

Then, we still get the following result, being useful in particular in many practical ap-
plications when the solutions [ωk,αk, yk] found in step 3 only satisfy, for example,
necessary optimality conditions (up to an accuracy of εk). The following conclu-
sion can then still be very useful in order to provide bounds for the mixed-integer
problem (MIOCP) and we will take advantage of this when discussing the examples
in Sect. 4. Nevertheless, an approximation of a globally optimal solution of problem
(MIOCP) can of course only be obtained when the relaxed problem in step 3 is solved
to εk-global optimality.

Proposition 2 Under the hypothesis (H′
0), consider Algorithm 1 where we replace

step 3 by

3′ Select some [ωk,αk, yk] such that ωk and αk is feasible for problem (11a)–(11f)
and yk is an εk-accurate solution of (11b), (11c).

Assume hypothesis (H1) and that the hypothesis (H2) and (H3) hold with ω∗ = ωk and
y∗ = y(·;ωk,αk) with constants Ck and Mk for all k = 0,1,2, . . . and y(·;ωk,αk)

being the mild solution of (11b), (11c). Further assume that, as in Theorem 1, εk → 0
and that the sequence {Gk}k is such that 
tk → 0. Define the constants C1 = 2,
Ck

2 = ((Mk + tf Ck)etf M̄L), C3 = (η + tf ξ)C1 and Ck
4 = (η + tf ξ)Ck

2 , where M̄ =
supt∈[0,tf ] ‖T (t)‖L(X) and the constants η, ξ and L are given by hypothesis (H1).

Then, [uk, vk, zk] defined by Algorithm 1 is in Ξεk for all k = 0,1,2, . . . and satisfies
the estimates

∥∥yk(t) − zk(t)
∥∥

X
≤ C1ε

k + Ck
2 (N − 1)
tk, t ∈ [0, tf ], (41)

and
∣∣J

(
ωk,αk, yk

) − J
(
uk, vk, zk

)∣∣ ≤ C3ε
k + Ck

4(N − 1)
tk. (42)

In particular, if Mk and Ck can be chosen independently of k, then Algorithm 1
terminates in a finite number of steps κ with an ε-feasible mixed-integer solution
[u∗, v∗, z∗] ∈ Ξε of Problem (MIOCP) satisfying the estimate

∣∣J
(
ωκ,ακ, yκ

) − J
(
u∗, v∗, z∗)∣∣ ≤ ε, (43)

where ε > 0 was chosen arbitrarily in step 1.

Proof Let the assumptions of Proposition 2 hold true. First observe that the sequence
[uk, vk, zk] obtained by Algorithm 1 with step 3 replaced by 3′ is εk-feasible for the
problem (MIOCP) by the same arguments as in the proof of Theorem 1.
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To show (41) and (42), let y(·;ωk,αk) denote the mild solution of (11b), (11c)
and z(·;uk,βk) be the mild solution of (A3) with the respective controls. Then,

∥∥yk(t) − zk(t)
∥∥

X
≤ ∥∥y

(
t;ωk,αk

) − z
(
t;uk,βk

)∥∥
X

+ 2εk, t ∈ [0, tf ] (44)

because yk and zk are both εk-accurate solutions of (11b), (11c) and (A3), respec-
tively. From Lemma 2 with α = αk , β = βk , and 
t = 
tk with 
tk from (15), we
get that

max
i=1,...,N

∣∣∣∣

∫ t

0
αk

i (τ ) − βk
i (τ ) dτ

∣∣∣∣ ≤ (N − 1)
tk, t ∈ [0, tf ]. (45)

Moreover, under hypothesis (H1) and the assumption that the hypothesis (H2) and
(H3) hold with ω∗ = ωk and y∗ = yk with constants Ck and Mk for all k =
0,1,2, . . . , we may apply Lemma 1 with y∗ = y(·;ωk,αk), α∗ = αk , β = βk ,
ω∗ = ωk = uk and ε = (N − 1)
tk and obtain that

∥
∥y

(
t;ωk,αk

) − z
(
t;uk,βk

)∥∥
X

≤ ((
Mk + Ckt

)
eM̄Lt

)
(N − 1)
tk, t ∈ [0, tf ].

This proves (41) with C1 = 2 and Ck
2 = ((Mk + tf Ck)etf M̄L). Using again the con-

tinuity assumptions of φ and ψ in (H1), we obtain similarly as in the proof of Theo-
rem 1 that

∥∥J
(
ωk,αk, yk

) − J
(
uk, vk, zk

)∥∥
X

≤ C3ε
k + Ck

4 (t)(N − 1)
tk (46)

C3 = C1(η + tf ξ) and Ck
4 = (η + tf ξ)Ck

2 . This proves (42).
Finally, when the constants Ck and Mk can be chosen independently of k, εk → 0

and 
tk → 0, then Ck
4 is independent of k and we get by similar arguments as in the

proof of Theorem 1 that the iteration terminates after a finite number of steps such
that (43) holds. �

In order to solve the optimal control problem (11a)–(11f) numerically, the prob-
lem may have to be (adaptively) discretized. In particular, direct or indirect numerical
methods may be used. For an introduction to the basic concepts see, e.g., [12]. De-
pending on the method of choice for the time discretization of the control functions
ω ∈ U[0,tf ] and α ∈ Ṽ[0,tf ] it may in many cases be advantageous to discretize ωk and
αk simultaneously using the grid Gk . This is for example implemented in the software
package MS MINTOC designed for solving mixed-integer optimal control problems
with ordinary differential equations [22, 24].

We conclude this section with an interesting remark saying that, in the fashion of
Theorem 1 and Proposition 2, the relaxation method can also deal with state con-
straints.

Remark 1 Suppose that we wish to include a constraint of the form

G
(
z(t), t

) ≥ 0, t ∈ [0, tf ] (47)
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in the mixed-integer optimal control problem (MIOCP). Including this constraint also
in (11a)–(11f) with z(t) replaced by y(t) and assuming that there exists a function
ζ ∈ L∞(0, tf ) such that

∣∣G(y1, t) − G(y2, t)
∣∣ ≤ ζ(t)‖y1 − y2‖X, y1, y2 ∈ X (48)

then (16) yields that

∣∣G
(
y∗(t), t

) − G
(
zk(t), t

)∣∣ ≤ ζ(t)C1ε
k + ζ(t)C2(N − 1)
tk (49)

with C1 and C2 as in Theorem 1. This shows also a bilinear dependency of the integer-
control approximation error for the state constraint violation on 
tk and εk . The
conclusion of Proposition 2 can be adapted accordingly.

3 Combinatorial constraints

Suppose we wish to include combinatorial constraints of the form

#vi�vj (v) ≤ Ki,j , i ∈ I, j ∈ J (50)

into the mixed-integer optimal control problem (MIOCP) given by (1)–(3), where
#vi�vj (v) denotes the number of switches of the control function v : [0, tf ] → Vad

from value vi to value vj , Ki,j are given, non-negative constants and I, J ⊂
{1, . . . ,N}.

Note that the relaxation method considered in Sect. 2 typically satisfies

#vi�vj (v) → +∞

for some i, j ∈ {1, . . . ,N} as we let ε → 0, so eventually violating (50) for small ε.
Therefore, along the lines of [25], we propose in Algorithm 2 a modification of Algo-
rithm 1. The min-max problem (A5) can be written as a standard mixed-integer linear
problem (MILP) using slack variables and can be computed efficiently [25]. We then
have the following result.

Theorem 2 Suppose that the hypotheses of Theorem 1 hold true and let C1, C2, C3

and C4 be as in Theorem 1. Then Algorithm 2 terminates for every ε > 0 and kmax ≥ 0
after a finite number of steps κ ≤ kmax with an εκ -feasible solution [u∗, v∗, z∗] ∈ Ξεκ

of problem (MIOCP) satisfying the combinatorial constraints (50) and the estimates

∥∥y∗(t) − z∗(t)
∥∥

X
≤ C1ε

κ + C2
(
Jsub

(
pκ,∗) + δ

)
, t ∈ [0, tf ], (51)

and
∣∣J

(
ω∗, α∗, y∗) − J

(
u∗, v∗, z∗)∣∣ ≤ C3ε

κ + C4
(
Jsub

(
pκ,∗) + δ

)
(52)

for Jsub(p
κ,∗) given by Algorithm 2 and some 0 ≤ δ ≤ maxl=1,...,nκ 
tκl .



Relaxation methods for mixed-integer optimal control of PDEs 215

Algorithm 2 Relaxation method with switching constraints
Consider Algorithm 1 where we replace steps 4, 5 and 7 by

4′ If αk ∈ PC(0, tf ; {0,1}N), (50) holds with v = ∑N
i=1 αk

i v
i and εk ≤ ε, then set

βk(t) = αk(t) and zk(t) = yk(t) for t ∈ [0, tf ] and STOP.
5′ Using Gk , define a piecewise constant function βk = (βk

1 , . . . , βk
N) : [0, tf ] →

{0,1}N by

βk
i (t) = p

k,∗
i,j , t ∈ [tkj , tkj+1) (A4)

where p
k,∗
i,j is given by the solution of the min-max problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
pk

Jsub
(
pk

) = max
i=1,...,N

max
r=1,...,nk

∣∣∣∣∣

r∑

l=1

(
qk
i,l − pk

i,l

)

tkl

∣∣∣∣∣

subject to

nk∑

r=1

∣∣pk
i,r − pk

j,r+1

∣∣ ≤ Ki,j , i ∈ I, j ∈ J

N∑

i=1

pk
i,r = 1, r = 1, . . . , nk

pk
i,r ∈ {0,1}, i = 1, . . . ,N, r = 1, . . . , nk

(A5)

with 
tkl = tkl+1 − tkl , l = 1, . . . , nk , and

qk
i,l = 1


tkl

∫ tl+1

tl

αk
i (t) dt, i = 1, . . . ,N, l = 1, . . . , nk. (A6)

7′ If |Jsub(p
k,∗) − Jsub(p

k−1,∗)| < ε or k ≥ kmax then STOP.

Proof Algorithm 2 terminates by the criterion in step 7′ after κ steps, κ ≤ kmax,
with a solution [u∗, v∗, z∗]. We first show that this solution is εκ -feasible for the
problem (MIOCP). We have u∗ = ωκ ∈ Uad and by definition of ωκ in step 3,
vκ(t) = ∑N

i=1 βκ
i (t)vi , t ∈ [0, tf ], by definition in step 6, so vκ(t) ∈ Vad, t ∈ [0, tf ],

because βk
i (t) ∈ {0,1} for all i, k and t ∈ [0, tf ] as seen from (A4) and the constraints

in (A5).By construction in step 6, zκ is an εκ -accurate solution of (A3). Thus, recall-
ing (9), [u∗, v∗, z∗] ∈ Ξεκ . The constraints in (A5) also ensure that the combinatorial
constraints (50) are satisfied.

Next we show (51). For all k = 0,1, . . . the cost function in (50) is defined as

Jsub
(
pk,∗) = max

i=1,...,N
max

r=1,...,nk

∣∣∣∣∣

r∑

l=1

(
qk
i,l − pk

i,l

)

tkl

∣∣∣∣∣
. (53)
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By definition of qk
i,l in (A6) and βk

i (t) in (A4) and rearranging terms, we get

Jsub
(
pk,∗) = max

i=1,...,N
max

r=1,...,nk

∣∣
∣∣

∫ tr+1

0
αk

i (t) − βk
i (t) dt

∣∣
∣∣. (54)

Using that αk
i (t) ∈ [0,1] and βk

i (t) ∈ {0,1} for all t ∈ [0, tf ], this yields

Jsub
(
pk,∗) = max

i=1,...,N
sup

t∈[0,tf ]

∣∣∣∣

∫ t

0
αk

i (τ ) − βk
i (τ ) dτ

∣∣∣∣ − δ (55)

for some 0 ≤ δ ≤ maxl=1,...,nk 
tkl . Fixing some t ∈ [0, tf ], we have as in the proof
of Theorem 1

∥∥zk(t) − y∗(t)
∥∥

X
≤ δ1(t) + δ2(t) + δ3(t) + δ4(t), (56)

with δi(t), i = 1, . . . ,4, as in (15). Moreover, as in the proof of Theorem 1, we see
that δ1(t) ≤ εk , δ2(t) ≤ CJ (1 + η + ξ)eM̄Lt εk and δ4(t) ≤ MCJ (1 + η + ξ)eM̄Ltεk .
Using (H1)–(H3), we can apply Lemma 1 with y∗ = y(·;ω∗, αk), α∗ = αk , β = βk

and ε = Jsub(p
k,∗) + δ and get that

δ3(t) = ∥∥y
(
t;ω∗, βk

) − y
(
t;ω∗, αk

)∥∥
X

≤ (M + Ct)eM̄Lt
(
Jsub

(
pk,∗) + δ

)
. (57)

Summing up the estimates for δ1(t), . . . , δ4(t) and rearranging terms, this proves (51)
with the definition of C1 and C2 as in Theorem 1. The estimate (52) then follows
from (51) and the definition of the constants C3 and C4 as in Theorem 1 using the
definition of the cost function J in (1) and the Lipschitz constants η and ξ from (H1).
This completes the proof of Theorem 2. �

Remark 2 As already remarked in the case without combinatorial constraints, the
method can also deal with state constraints such as (47). Assuming again existence
of a function ζ ∈ L∞(0, tf ) such that (48) holds true, (51) yields a bounded deviation
of the feasible reference trajectory

∣∣G
(
y∗(t), t

) − G
(
zk(t), t

)∣∣ ≤ ζ(t)C1ε
k + ζ(t)C2

(
Jsub

(
pk,∗) + δ

)
, (58)

and hence a bound on the worst case constraint violation. Also, the conclusion of
Proposition 2 can be adapted analogously.

4 Examples

In this section we discuss the hypothesis (H1)–(H3) of Theorem 1 exemplary for
a linear and a semilinear control problem where A is the generator of an analytic
semigroup in view of Proposition 2 and present numerical results for a test problem
in each case using the conclusions.
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4.1 A linear parabolic equation with lumped controls

Let Ω be a domain in R
n and fi : Ω → R, i = 1, . . . ,N , be fixed control profiles.

Consider the internally controlled heat equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂z

∂t
(x, t) − ρ

n∑

j=1

∂2z

∂x2
j

(x, t) = fσ(t)(x)u(t), in Q

z(x, t) = 0, on Σ

z(x,0) = z0(x), in Ω

(59)

where Q = Ω × (0, tf ), Σ = ∂Ω × (0, tf ) and ρ is a positive constant.
Suppose that for some λ1 ≥ 0 and λ2 > 0 the control task is to minimize the cost

function

J =
∫

Ω

∣∣z(tf , x)
∣∣2

dx + λ1

∫ tf

0

∫

Ω

∣∣z(t, x)
∣∣2

dx dt + λ2

∫ tf

0

∣∣u(t)
∣∣2

dt (60)

where z is the weak solution of (59) by selecting u : [0, tf ] → R and a switching
signal σ(·) : [0, tf ] → {1, . . . ,N} determining the control profile fi applied at time
t ∈ [0, tf ].

In order to write the above problem in abstract form (2), we let X = L2(Ω),
set V = U = Uad = R, Vad = {1, . . . ,N} and define f : [0, tf ] × U × V → X

by f (t, u, v)(x) := fv(x)u, φ(z) = ‖z‖2
X , ψ(z,u) = λ1‖z‖2

X + λ2|u|2 and define
(A,D(A)) as

D(A) = H 2(Ω) ∩ H 1
0 (Ω)

(Az)(x) =
n∑

j=1

∂2z

∂x2
j

(x), z ∈ D(A).
(61)

It is well-known that (A,D(A)) is the generator of a strongly continuous (ana-
lytic) semigroup of contractions {T (t)}t≥0 on X, see, e.g., [20]. We choose X[0,tf ] =
C([0, tf ];X), U[0,tf ] = PC(0, tf ;R) and V[0,tf ] = L∞(0, tf ;R).

Let [ωk,αk, yk] be a sequence of feasible solutions of the corresponding re-
laxed problem (11a)–(11f) so that [ωk,αk, yk] ∈ S for k = 0,1,2, . . . , where S is
a bounded subset of X[0,tf ] × U[0,tf ] × Ṽ[0,tf ] and assume that the fixed control pro-
files fi satisfy

fi ∈ D(A) for all i = 1, . . . ,N. (62)

We now want to check if the assumptions of Proposition 2 are satisfied. For this,
we can restrict our analysis without loss of generality to S and, using that the func-
tions φ, ψ and f are locally Lipschitz continuous and S is bounded, we can see
that hypothesis (H1) holds. Moreover, due to (62) we have that f (t,ωk(t), vi) =
fv(x)ωk(t) ∈ D(A) and

∥∥Af
(
t,ωk(t), vi

)∥∥
X

≤ ‖Afi‖X

∣∣ωk(t)
∣∣ ≤ C̄i (63)
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for some constant C̄i and due to the choice of U[0,tf ] we have that f (s,ωk(s), vi) is
differentiable for a.e. s ∈ [0, tf ] and

∥∥∥∥
d

ds
f

(
s,ωk(s), vi

)
∥∥∥∥

X

=
∥∥∥∥

d

ds
fiω

k(s)

∥∥∥∥
X

≤ ‖fi‖X

∣∣∣∣
d

ds
ωk(s)

∣∣∣∣ ≤ L̄i (64)

for some constant L̄i . Noting that (59) and thus also the abstract system is linear, we
may apply Proposition 1 to see that hypothesis (H2) holds for every k = 0,1,2, . . . .
Also, the bound in (H3) holds for all k, observing that

sup
t∈(0,tf )

∥∥f
(
t,ωk(t), vi

)∥∥
X

≤ ‖fi‖X

∥∥ωk(t)
∥∥∞ ≤ Mi, (65)

for some constant Mi . Hence, for any such choices [ωk,αk, yk], any sequence
εk → 0, 
tk → 0 and any ε > 0, the relaxation method terminates after finitely many
steps κ with an ε-feasible solution [u∗, v∗, z∗] of problem (59) satisfying the estimate

∣∣J
(
ωκ,ακ, yκ

) − J
(
u∗, v∗, z∗)∣∣ ≤ ε, (66)

by Proposition 2. The desired switching structure σ : [0, tf ] → {1, . . . ,N} is finally
given by σ(t) = v∗(t).

Example 1 To demonstrate the applicability of the approach, we implemented the
relaxation method for a test problem of the form (59)–(60) with a two-dimensional
rectangular domain Ω and the following parameters.

Let Ω = [0,Lξ ] × [0,Lζ ], ρ = 0.01, Lξ = 1, Lζ = 2 and tf = 15 and suppose
that there are given 9 actuator locations xi with the positions given by (ξj , ζk) ∈ Ω ,
where

ξj = j + 0.005Lξ

4
, ζk = k + 0.005Lζ

4
, j, k = 1,2,3. (67)

Further suppose that there is a point actuator for each of these locations xi which we
model here by setting fi = Bi with

Bi(x) = 1√
2πε

e
−(xi−x)2

2ε (68)

for some small, but fixed ε > 0. Note that
∫
Ω

Bi(x) dx = 1 and that Bi(x) converges
to the Dirac delta function δ(x − xi) as ε → 0.

As initial data we take

z0(ξ, ζ ) = 10 sin(πξ)10 sin(πζ ) (69)

and as parameters in the cost function we take λ1 = 2 and λ2 = 1
500 .

We have chosen these numerical values to match as closely as possible the two-
dimensional example in [13] motivated by thermal manufacturing. The only differ-
ence is that the pointwise actuators δ(x − xi) were approximated in [13] by indicator
functions of an epsilon environment while we choose here a smoother approximation
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Table 1 Performance of the relaxation method for Example 1

k 
tkmax J k
rel = J (ωk, α̃k, yk) J k = J (uk, vk, zk) Error (J 2

rel)
−1|J 2

rel − J k |

0 1.8750 5.634024E+04 1.283813E+05 2.9809

1 0.9375 4.190360E+04 7.080185E+04 1.1955

2 0.4688 3.224914E+04 6.175488E+04 0.9149

in view of (62). Regarding a direct treatment of δ(x − xi) as an unbounded con-
trol operator instead of using the bounded approximation (68), see the comments in
Sect. 5.

The solution of the relaxed optimal control problem (11a)–(11f) has been com-
puted numerically. We discretized the state equation (59) in space using a standard
Galerkin approach with triangular elements and linear Ansatz-functions. We elim-
inated one control by setting α̃i (t) = αi(t), i = 1, . . . ,N − 1, where we then get
αN(t) = 1 − ∑N−1

i=1 α̃i (t) using the constraint
∑N

i=1 αi(t) = 1, t ∈ [0, tf ]. This con-
straint is then always fulfilled and the condition αN(t) ∈ [0,1], t ≥ t0, is equivalent
to imposing that α̃i ∈ [0,1] and

∑N−1
i=1 α̃i − 1 ≤ 0. The resulting semi-discretized

control problem was solved with Bock’s direct multiple shooting method [3, 17] im-
plemented in the software-package MUSCOD-II. The control functions ω and α̃ were
chosen as piecewise constant and initialized with ω(t) = 0 and α̃i (t) = 1

9 , t ∈ [0, tf ],
i = 1, . . . ,8.

The computations were made for an unstructured grid with 162 triangular ele-
ments and 8, 16 and 32 equidistant shooting intervals. Time integration was carried
out by a BDF-method and sensitivities were computed using internal numerical dif-
ferentiation. Error estimates for these methods provide an accuracy of some ε1 ≥ 0
for the so obtained approximations of the mild solutions.

We implemented Algorithm 1 where we compute in step 3 solutions satisfying
first order necessary conditions with an accuracy of ε2. The above discussion of the
abstract example thus applies. In particular, using that λ2 > 0, we obtain the existence
of a bounded set S containing the iterates [ωk,αk, yk]. We adaptively solved the
relaxed problem on a common control discretization grid Gk for u and α̃. For the
computations, we have chosen ε1 = 1.0E−04 and used bisection for refinements of
the control grids Gk in step 7. Thus, εk is given implicitly as a function of ε1, ε2 and

tk . This construction ensures that εk → 0 as k → ∞.

The performance of the relaxation method is summarized in Table 1. We see that
the relative error of the mixed-integer solution compared with the best found relaxed
solution decreases with the grid refinements in accordance with Proposition 2. The
best found controls and the evolution of the state norm of the corresponding solution
are displayed in Fig. 1. We see the rounding error in form of an overshooting behavior
when comparing the evolution of the L2(Ω)-norm of the relaxed and the mixed-
integer solution. This effect decreases with the size of the time discretization step size.
The cost corresponding to the best found solution is 6175. Unfortunately, [13] does
not report the cost of the best found solution, but a cumulative L2(0,15;L2(Ω))-
norm of 90.27. The cumulative L2(0,15;L2(Ω))-norm of our best found solution is
78.58.
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Fig. 1 Numerical results for Example 1. The upper figures show the best found integer controls v∗
i
(·)

and their relaxation α̃∗
i
(·), from bottom to top, i = 1, . . . ,4 (left) and i = 5, . . . ,8 (right). Control v∗

9 (·) is

defined by v∗
9 (t) = 1−∑8

i=1 v∗
i
(t), t ∈ [0,15]. The lower figures show the corresponding ordinary control

u∗(·) (left) and the evolution of the state norm (right)

4.2 A semilinear reaction-diffusion system

Let Ω be a bounded domain in R
n with a smooth boundary Γ and consider the

classical Lotka-Volterra system with diffusion

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂z1

∂t
(x, t) − d1

n∑

j=1

∂2z1

∂x2
j

(x, t) = z1(x, t)
(
a1 − b1v(t) − c1z2(x, t)

)
in Q

∂z2

∂t
(x, t) − d2

n∑

j=1

∂2z2

∂x2
j

(x, t) = z2(x, t)
(
a2 − b2v(t) − c2z1(x, t)

)
in Q

∂z1

∂ν
(x, t) = ∂z2

∂ν
(x, t) = 0 on Σ

z1(x,0) = z1,0(x), z2(x,0) = z2,0(x) in Ω

(70)
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with constants ai, bi, ci, di > 0, i = 1,2, domains Q = Ω × [0, tf ], Σ = Γ × [0, tf ]
and control 0 ≤ v(t) ≤ 1. System (70) describes the interaction of two populations z1
and z2, both spatially distributed and diffusing in Ω . The initial distribution z1,0, z2,0
at t = 0 is assumed to be non-negative. The boundary conditions then imply that
the populations z1 and z2 are confined in Ω for all t ≥ 0. The function v models a
control of the system and we shall investigate to approximate optimal controls v∗(t)
taking values in {0,1} as to minimize the distance of the population (z1, z2) to its
uncontrolled (v = 0) steady state distribution (z̄1, z̄2) given by the constant functions

z̄1(x) = a2

c2
, z̄2(x) = a1

c1
, x ∈ Ω.

In order to bring the system into abstract form (2), set X = L2(Ω) × L2(Ω),
U = Uad = {}, V = R, Vad = {0,1}, define the operator A : D(A) → X by

D(A) =
{
(z1, z2) ∈ H 2(Ω) × H 2(Ω) : ∂z1

∂ν
(x, t) = ∂z2

∂ν
(x, t) = 0, on Γ

}

A(z1, z2)(x) =
(

d1

n∑

j=1

∂2z1

∂x2
j

(x), d2

n∑

j=1

∂2z2

∂x2
j

(x)

)

, (z1, z2) ∈ D(A),

define the non-linear function f : X × U × V = X × V → X by

f
(
(z1, z2), v

)
(x) = (z1(x)

(
a1 − b1v − c1z2(x)

)
, z2(x)

(
a2 − b2v − c2z2(x)

)

and define the cost functions φ and ψ by

φ
(
(z1, z2)

) = 0, ψ
(
(z1, z2)

) =
∫

Ω

∥∥z1(x)− z̄1(x)
∥∥2 +∥∥z2(x)− z̄2(x)

∥∥2
dx. (71)

We choose X[0,tf ] = C([0, tf ];X) and V[0,tf ] = PC(0, tf ;R).
It is well-known, that (A,D(A)) is the generator of an analytic semigroup

on X and that for any non-negative initial data z1,0, z1,0 ∈ X, the system (70)
has a non-negative unique mild solution (z1, z2) ∈ C([0, tf ],X × X) for ev-
ery v ∈ L∞(0, tf ; [0,1]). Moreover, for initial data z1,0, z1,0 ∈ D(A) and v ∈
C

0,ϑ
pw (0, tf ; [0,1]), ϑ > 0, this solution is classical and satisfies

(z1, z2) ∈ C
([0, tf ];D(A) × D(A)

) ∩ H 1([0, tf ];X × X
)
. (72)

Existence (local in time) and uniqueness follows from classical theory for semilinear
parabolic equations, see, e.g., [20, Chap. 6]. Global existence results for (70) are
obtained by a-priori bounds on the solution using contracting rectangles [4].

Assume that the initial data satisfies z1,0, z1,0 ∈ D(A) and that [αk, yk] is a se-
quence of feasible solutions to the corresponding relaxed problem (11a)–(11f) in
a bounded set S ⊂ Ṽ[0,tf ] × X[0,tf ]. We want to discuss again the assumptions of
Proposition 2.

Hypothesis (H1) holds by the same arguments as in the previous example. More-
over, we claim that hypothesis (H2) holds. Let M̄ be the growth bound of {T (t)}t≥0
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on [0, tf ]. By analyticity of {T (t)}t≥0, we have for every feasible y ∈ X[0,tf ] that s

almost everywhere in (0, tf ),

d

ds
T (t − s)f

(
y(s), vi

)

= −AT (t − s)f
(
y(s), vi

) + T (t − s)fy

(
y(s), vi

)
ys(s), (73)

where fy = d
dy

f and ys = d
ds

y. Using that yk(s) ∈ D(A) × D(A) for all s ∈ [0, tf ]
and f : D(A) → D(A), we see that

∥∥ − AT (t − s)f
(
yk(s), vi

)∥∥
X

≤ ∥∥T (t − s)
∥∥

L(X)

∥∥Af
(
yk(s), vi

)∥∥
X

≤ C
k,i
1 (74)

for some constants C
k,i
1 . Using that f is a smooth function, we see that

∥∥T (t − s)fy

(
yk(s), vi

)
yk
s (s)

∥∥
X

≤ M̄
∥∥fy

(
yk(s), vi

)∥∥
X

∥∥yk
s (s)

∥∥
X

≤ C
k,i
2 . (75)

Thus (73) yields the estimate

∥∥∥∥
d

ds
T (t − s)f

(
y(s), vi

)
∥∥∥∥

X

≤ C
k,i
1 + C

k,i
2 (76)

for s ∈ [0, tf ] a.e. By well-posedness of the problem (70) for every v ∈ V[0,tf ] and
using the boundedness of S , we get an estimate

sup
t∈[0,tf ]

∥∥f
(
t, yk(t), vi

)∥∥
X

≤ Mi, (77)

for some constants Mi verifying hypothesis (H3). Further, using (H1) and the bound-
edness of S , ‖fy(y

k(s), vi)‖X and ‖Af (yk(s), vi)‖X can be bounded independently
of k. Using the state equation (11b), we get

∥∥yk
s (s)

∥∥
X

≤ ∥∥Ayk(s)
∥∥

X
+ ∥∥f

(
yk(s), vi

)∥∥
X

≤ ∥∥yk(s)
∥∥

D(A)
+ Mi (78)

for a.e. s ∈ [0, tf ]. So, boundedness of S and the regularity of y in (72) implies that
‖yk

s (s)‖X can be bounded independently of k for a.e. s ∈ [0, tf ]. Hence, the constants
C

k,i
1 and C

k,i
2 in (76) can be chosen independently of k and we can conclude from

Proposition 2 that the relaxation methods terminates after κ steps with an integer
solution [v∗, z∗] satisfying the estimate

∣∣J
(
ακ, yκ

) − J
(
v∗, z∗)∣∣ ≤ ε, (79)

for any sequences εk → 0, 
tk → 0 and every ε > 0.

Example 2 We applied the relaxation method to a semilinear test problem of the
form (70) again for a two dimensional domain Ω with the following parameters. Let
Ω being a circle with radius 1 centered at (1,1) and choose a1 = a2 = c1 = c2 = 1,
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Table 2 Performance of the relaxation method for Example 2

k 
tmax Rel. Cost J k
rel = J (α∗, y∗) J k = J (v∗, z∗) Error (J 2

rel)
−1|J 2

rel − J k |

0 2.0000 7.066392E+01 8.287875E+01 0.4065

1 1.0000 5.978818E+01 6.958250E+01 0.1809

2 0.5000 5.892414E+01 5.875641E+01 0.0028

Fig. 2 Numerical results for Example 2. The left figure shows the best found relaxed and integer control
α∗(·), v∗(·) and the right figure shows the corresponding evolutions of the populations y1(·), y2(·)

b1 = 7
10 , b2 = 1

2 , d1 = 0.05, d2 = 0.01, initial data z1,0, z2,0 ∈ D(A) approximated
by z̃1,0(x) = 1

2d 1
2
(x − 1), z̃2,0(x) = 7

10d 1
2
(x − 1), where dε(x) given by

dε(x) = 1√
2πε

e
−x2
2ε (80)

models a population concentrated at the origin. For v(t) = 0, t ≥ 0, the solution
z1(t, x), z2(t, x) converges asymptotically to a spatially constant and temporarily
non-constant, periodic solution.

The computations for the optimal control are made by the same numerical method
as in the previous example, but using a grid with 258 finite elements. For the perfor-
mance of the relaxation method see Table 2. The best found controls and the evolution
of the state norm of the corresponding solutions are displayed in Fig. 2. Again we see
a decrease of the integer-approximation error in accordance with Proposition 2. The
best found integer control yields a cost of 58.76.

5 Conclusions and open problems

We considered mixed-integer optimal control problems for abstract semilinear evo-
lution equations and obtained conditions guaranteeing that the value function and the
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state of a relaxed optimal control problem can be approximated with arbitrary pre-
cision using a control that satisfies integer restrictions. In particular, our approach is
constructive and gives rise to a numerical method for mixed-integer optimal control
problems with certain partial differential equations. Moreover, we showed how these
conditions imply a-priori estimates on the quality of the solution when combinatorial
constraints are enforced.

We note that we did not discuss convergence of the constructed sequence of integer
controls approximating the optimal value of the relaxed problem. It is not even clear
in which topology such a convergence would be meaningful. Several issues related
to this questions, in particular in a PDE-context, is discussed in [10, 11] and [8].

Compared to the previously available results on mixed-integer optimal control
problems with ordinary differential equations in [23, 24], the setting treated in this
paper involves a differential operator A, taken to be a generator of a strongly continu-
ous semigroup. This requires careful regularity considerations. When A is a Laplace
operator, we showed on a linear and a semilinear example how such regularity as-
sumptions can be met and provided numerical examples demonstrating the practica-
bility of the approach.

It is clear that the methodology considered in this paper generalizes to the case
when the generator A of a strongly continuous semigroup is replaced by a family
{A(t)}t∈[0,tf ] of unbounded linear operators generating an evolution operator in the
sense of [16]. On the other hand it is not so clear how to extend the results in case of
unbounded control action, for example, Neumann or Dirichlet boundary control for
the heat equation. Recalling the density of solutions to (5) in the set of solution to
(6) which motivated our approach, we note that the case of unbounded control is not
covered by the available results on operator differential inclusions. While in principle
semigroup techniques can deal with unbounded control operators, see for example
the exposition in [1, Chap. 3], this extension is non-trivial and requires additional
work.
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