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Abstract

In this article, four diferent mathematical models of chemotherapy from the liteeadre investigated with respect
to optimal control of drug treatment schedules. The varimaglels are based on twofidirent sets of ordinary
differential equations and contain either chemotherapy, inoti@napy, anti-angiogenic therapy or combinations of
these. Optimal control problem formulations based on timesdels are proposed, discussed and compared. For
different parameter sets, scenarios, and objective functiptima control problems are solved numerically with
Bock’s direct multiple shooting method.

In particular, we show that an optimally controlled therapy be the reason for thefidirence between a growing
and a totally vanishing tumor in comparison to standarditneat schemes and untreated or wrongly treated tumors.
Furthermore, we compareftirent objective functions. Eventually, we show that thera high potential for opti-
mization of chemotherapy schedules, although the cuyrentilable models are not yet appropriate for transferring
the optimal therapies into medical practice due to patjeaticer-, and therapy-specific components.
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1. Introduction cation of numerical methods to find answers to open

. N . oo guestions in medicine is not yet as evolved.
While scientific computing has become an indispens-

able ingredient of research and every-day-practice in ~ Scientific computing, and in particular modeling,

robotics and mechanics, chemical engineering, aero-Simulation, and optimization of processes, is often re-

space, transportation, and many other areas, the appli-garded as the third pillar of science, complementary to
theory and experiment. In medicine however, experi-

. ments are not so easily reproducable as in mechanics,
mici:ff'eandg‘iﬁit eiur .uni-heidelberg.de (Michael and the theoretic interpretation of drug influence is usu-
Engelhart) ally not as well understood as control parameters in
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There are many dierent levels on which tumor
growth and possible control targets can be modeled.
Inherently this is a complex multi-scale problem. A
mathematical model can be stochastic or determinis-
tic, spatially resolved or not, continuous or agent-based.
Also the level of detail may vary. For example, there
may be good reasons to include circadian rhythms and
the cell cycle, 1]. A comprehensive overview can be
found in the highly recommendable survey paper by
Jean Clairambaul®)].

We are aware of the fact that the influence of drugs is
often not fully understood in medicine, and of course
highly patient-dependent (e.g., see the parameter sets
“human 97*human 10” in B], respectively {]]). Hence
it cannot be expected that currently available models of
ordinary diferential equations are a good match to clini-
cal reality. A patient- and tumor-specific parameter esti-
mation for well-understood mathematical models based
on clinical data will hopefully lead the way and might
allow application of optimized treatment schedules in
the future.

This work is supposed to be another small step in
the direction of analysis and understanding of optimal
control chemotherapy models. The basic mathematical
models that have been proposed in the literature over the
last years (e.g.3 5, 6, 7, 8, 9, 10, 11]) should already
capture several important dynamigexts of chemother-
apy treatments. Having in mind that the gap between
simulated and real-world situation will still be large,
we focus in this work on general qualitative insight that
can be gained by optimization of available mathematical
models. Examples for basic questions that are important
in this context are

e What similarities and what flerences arise for
the diferent mathematical models? We discuss
two mathematical models for cancer and cancer

which, with a fixed amount of drugsjaximizethe
tumor size on a given time horizon. The result,
a therapy which makes the tumor grow as big as
possible under these constraints, can be considered
theworsttreatment one could apply. We compare
these results to standard treatments or untreated tu-
mors as well as the optimal control for a minimal
tumor, thebesttreatment. It turns out that there are
scenarios where theftiérences between worst and
best treatments are small, but we also demonstrate
scenarios where the same amount of drugs leads to
a growing tumor on the one hand and a total dis-
appearance on the other hand (see Figliyés 7,
and9).

How does the choice of the objective function in-
fluence the optimal control strategies? The for-
mulation of a reasonable objective function is cru-
cial for the optimal treatment schedules. We for-
mulate new optimal control problems with non-
standard objective functions for models for which
such problems have not been published yet, see
Sections.1, 5.2, 5.3 and5.4.

What role do local optima play? As the compu-
tational efort do perform a rigorous global opti-
mization for all of the scenarios we considered is
beyond the scope of this paper, we concentrated
on some case studies with multiple initializations.
Whereas for most scenarios the local optima seem
to be the unique global ones, also multiple local
optima were observed, compare Figérieft and
right. This dfect is closely linked to the choice of
the objective function. Including a penalization of
tumor volume integrated over time in the objective
function seems to favor multiple local optima.

Our approach to address these questions by numerical

chemotherapy. Although they both contain some optimization is based on Bock’s direct multiple shooting

kind of chemotherapy, theyfiér in the kind of ad-

approach to solve optimal control problems. The under-

ditional treatments and in type and amount of cell lying first discretize, then optimizeoncept allows for
types they include. For the two models, four pa- an dficient and fast solution of a multitude offtérent

rameter sets have been described in the literature.control problems.

We present optimal control results for all of them

This article is structured as follows. In the next two

(see sectio’), to the best of our knowledge three ~ sections, we review and present thefetient models

sets (see Sections2, 5.3, and5.4) were not solved
to optimality before.

(section2) and control problems (sectid®) that have
been investigated. Sectidrexplains the direct multiple

shooting techniques we used to solve the arising opti-

e How large is the potential for the right timing of

mal control problems. Numerical results can be found

drug delivery? In general, the aim of a therapy, in Section5, where also some interpretations and com-

no matter what kind, is toninimizethe tumor size,

parisons between theftiérent scenarios are discussed.

i.e., the tumor volume or the amount of tumor cells. We conclude with a summary of our results and an out-
To answer this question, we consider also therapies look on future work.
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2. Cancer Chemotherapy Models

The equation for the blood vessel volume is more
complex. It contains a term that represents the spon-

Two different models of cancer chemotherapy with a taneous loss of vasculature and one that represents the

total of four diferent parameter sets have been investi-

gated. The models consist of sets of ordinaffedéential

stimulation of neo-vascularizatiorby the tumor (e.g.,
by the cytokine/EGF, vascular endothelial growth fac-

equations and each feature a particular kind of medical tor),

treatment. In this section, an overview over the models

is given and diterences between them are highlighted.

We also present their scientific context and give a survey
of adjacent approaches we did not consider in detail. In

general, we stick to the notation of the original articles
if this does not conflict with the overall notation in this
article.

2.1. d’Onofrio et al.

The model byd’Onofrio et al.[7] is based on the
work by Hahnfeldt et al[5] and in particular on a modi-
fication of theHahnfeldtmodel byd’Onofrio and Gan-
dolfi[12, 13].

In [5], a model with two states and one control is pro-
posed. The states are the volume of the tumpon

the one hand and the volume of blood vessels in the

neighborhood of the tumox on the other hand. This

choice of state variables is due to the fact that the treat-

ment strategy includes amti-angiogenicherapyug in
this model, a concept introduced in the 19705oik-
man[14]. As a tumor needs proliferating blood vessels

to survive and to grow, the basic idea is to administer a

drug that suppressesgiogenesighe process of blood
vessel formation from existing vessels. While the cyto-

static agents applied in classical chemotherapy address

the proliferation of tumor cells directly, anti-angiogeni
drugs inhibit the stimulation of endothelial cells neces-
sary for neo-vascularization.
The tumor volume equation contains@Gompertz
term
Xo(t)

~cxatylog 223

X1 (t) @)

— uxa(t) + b xo(t). 3)

The third term,

—d%(t)ix (), (4)

reflects the ffect of endogenous inhibition of angiogen-
esis. Finally, with

= G Wp(t) Xa(t) — m Xa(t) ur(t) (5)

the response to the drugs is modeled. In contrast to
[5], drug concentration is identified with dosage here.
Hence, there is no concentration equation.

In d’Onofrio et al, the total amount of applied drugs
is limited. To be able to treat this constraint in our opti-
mization framework, we add two auxiliary states which
sum up the amounts of given drugs:

X2(t) = Uo(t),
X3(t) = ux(b).

(6)
(7)

Thus, the complete model is described by the system

mm=—puomG%Q—memm, (82)
310 =b%® - pa® - de® O g
— G Ug(t) X1(t) — m x2(t) ua(t),

%o(t) = Uo(t), (8¢c)
X3(t) = ug(t). (8d)

for t € [to, tf].
The parameter§, b, d, u, £, v in [5] have been de-
rived by about 1,000,000 runs of a Monte-Carlo algo-

in which the limit has been replaced by the endothelial "thm based on data from experiments with mice that

volume.Gompertz growthbesideogistic growthis one

have been injected Lewis lung carcinoma cells. Note

of the two types of growth chosen in all models that have that the parameters and bourfdsy, A, a, C, ¢ (com-
been investigated. Inserting the blood vessel volume asPare also Sectiod) are neither taken frond] nor based

carrying capacityinstead of a fixed value reflects that
the growth of the tumor is limited by the vasculature

volume. In [7] a classical chemotherapy treatment has

on experimental data. These values have been used for
numerical experiments only.

been added, so that a combination therapy is possible2-2: De Pillis etal. (2006)

and thus the model contains a second conitakepre-
senting a cytostatic drug:

— F xo(t) un (1) )

The model byde Pillis et al. (2006) 3] consists of
six states, three controls and 29 parameters in three pa-
rameter sets. The work is based on previous work by
the same or some of the autho8s 15, 16).



As a major diference to the model above, it con-
tains a combination othemotherapyndimmunother-
apy. The first state is again the tumor populatiy

On the other hand, e.g., the death rate of NK célis
derived fromKuznetsov et a[18], where a mathemati-
cal model is used to describe the kinetics of growth and

but now measured in absolute cell count. Instead of the regression of 8CL; lymphoma inBALBC mice. For
blood vessel volume, this model features three types of the parametens andv, no source is provided.

immune cell populations, all measured in absolute cell

count. NK cellsx; — unspecific immune cells which are
also present in a healthy body (“natural killer” cells) —
, CD8" T cells xo — tumor-specific cytotoxic T-cells —,
and circulating lymphocyte poos.

For thehumanparameter sets, the authors refer to an
article by Dudley et al[4]. This publication contains
real proband data of 13 melanoma patients. The data of
the ones numbered 9 and 10 have been used] ifof
fitting seven of the parameters. Again, farandv, no

The fifth and the sixth state represent the chemother- source is provided. Actually, there are eight more refer-

apeutic drug concentratioq respectivelynterleukin-2
(IL-2) concentratiorxs. 1L-2, which is one of the two
immunotherapeuticontrols, is a cytokine that stimu-
lates CD8 T activation cells and is used “to boost im-
mune system function’3. In addition, there is a con-
trol for a classiccytostatic drug g and one for au-
mor infiltrating lymphocyténjection (TIL) u,. The lat-
ter means an injection of CD8T cells that have been
stimulated against tumor cells outside the body.

The model is described by the following system of
ODEs. In favor of readability we omit the time depen-

ences for thddumanparameter set, e.g., the two murine
papers from thenouseparameter set. Another source
[19] refers among others tuznetsov et alNote that
this means that about one third of themanparameters
comes frommurineexperiments.

In[19 itis stated that the value of a certain parameter
in their model “(...) varies greatly from patient to patient
and cancer to cancer.” So this model may generally not
be adequate for generating useful treatment schedules —
in particular for humans since there is only little human
data used and the values may highly depend on the pa-

dence of states and controls. For more details on thetient and the type of cancer. But it still may be useful

equations we refer t®8] and [15].

Xo=ax(l-bx)-cx X —-Dx

9a
Kr (1- €)%, (92)
Xo2
Xxit=ex-fxi+g——=x1— px
1 8 1 gh+x02 1~ P X Xo (9b)
- Ky (1 — e’x“) X1,
. . D?%xy?
X2=—mX2+JmX2—QX2Xo
+(F1Xe + M2 Xg) Xo — V Xa X2 (9¢)
_ Xa Pi X2 X5
KL(l-¢€ )X+g|+x5+u2’
5(3 =a—fFX3— Ke (1 — e‘x“) X3, (gd)
(%e)

X4 = —y X4 + Uo,

X5 = —) X5 + Up (9f)

for t € [to, ty] and the shortcub = d sixf(/xO)'

for making general qualitative statements.

In summary, the heterogeneity of model parameters
makes an applicability of numerical results obtained by
us or other authors in clinical practice improbable.

2.3. Other Approaches

Finally we give a short survey on models we did not
consider in detail. There are lots ofidirent mathemat-
ical modeling approaches in the cancer chemotherapy
context, so we restrict ourselves to some that are con-
ceptually close to the ones presented above.

2.3.1. Ergun et al.

The model inErgun et al.[6] is — similar to the one
presented in sectio®.1 — a modification of thédahn-
feldt-model B]. In this article, a combination of radio-
therapy and anti-angiogenic therapy is investigated. The
major diference in the model is the decoupling of the

Three parameter sets can be founain the literature: vasculature equation from tumor volume by simply re-

mousehuman 9 andhuman 10 As the name suggests,

placing tumor volume by vasculature volume. For the

the mouseparameter set contains numerical values de- radiotherapy a.Q model is used. The authors report

rived from murine experimental data. In fact, the pa-
rameters come from flerent papers treating ftkrent
types of cancer and fierent types of mice. For ex-
ample thetumor growth parameter &as been fitted to
data from a paper b{iefenbach et al[17]. In that
article, EL4 thymoma,RMA lymphoma andB16-BL6
melanoma have been implanted iB6-Rag’~ mice.

on several optimal control results. There is also a de-
tailed analysis of the combination therapy for a slightly
modified version of the model hyedzewicz et al[20]

2.3.2. Chareyron and Alamir
The work byChareyron and Alamif10] is based on
the work byde Pillis et al.[8, 15, 16, 3]. The authors use



the model presented in secti@® to apply nonlinear the article. However, with a modified tumor growth pa-
model predictive contrdiNMPC) techniques. rameter (40 instead of D - 10°%) we succeeded to re-
However, only the chemotherapy control is consid- produce some optimal controls result of a first scenario.
ered for the NMPC scheme while both the immunother- For a second scenario, we could mostly reproduce the
apy and the TIL are derived hindirect methodsnde- result choosing again aft&rent tumor growth param-
pendently from the chemotherapy. The chemotherapy eter (20). Our attempts to contact the authors to re-
itself is fixed to a finite set of values (0%, 20%, 40%, solve these deviations have not been successful. As it
60%, 80%, and 100% of maximum). This means that ef- is not clear where the fierences originate from, espe-
fectively chemotherapy is not a continuous control but a cially as they do not seem to derive from a single wrong
mixed-integer one. Since NMPC techniques are not part parameter value, we eventually decided to not further
of our work and we also want to study optimal control of investigate this model. Details on our simulation and

continuouschemotherapy here, we did not further pur-
sue the approach @hareyron and Alamir

2.3.3. De Pillis et al. (2001)

The model oDe Pillis et al. (2001)8] is one of the
“ancestors” ofde Pillis et al. (2006) It only includes
a cytostatic chemotherapy control. An optimal control
problemis formulated (minimize tumor size at end time
subject to the number of “normal” cells is above some
lower bound) and optimal control results are presented
With one control and the constraint on normal cells, sur-

prising results are not to be expected and indeed the op-

timal schedules show a bang-bang-structure.

We wanted to verify these results in our optimization
framework, but some of the model's parameters are only
given in relations or intervals (e.g., ©s< 0.5”,“az <
a; < a&"). Since it was not possible to get the exact
parameter values from the authors, this approach was
not subject of further investigations.

2.3.4. De Pillis et al. (2008)

In analogy tode Pillis et al. (2006) 3] essentially
derived from previous work by the authodg Pillis et
al. (2008)[9] can be considered a descendant model of
de Pillis et al. (2006) It contains the same controls and
states as the one discussed in Sec?igh

In contrast to its predecessor, the latter article focuses
on optimal control results. There are some modifica-
tions of the equations, but overall they are very similar.
Most of the parameters have been adapted either from
themouseor thehuman $human 1Gsets. At least some
of the changes in the model equations compare@]to [
may be due to the tractability with @ndirect optimal
control approach As an example, the saturation term
for the influence of chemotherapy £1e67V) has been
replaced by the drug concentratigy) significantly fa-
cilitating the analytical work of thé&rst optimize, then
discretizeapproach chosen by the authors.

We could not reproduce the numerical results on the
basis of the equations and the parameter set given in

5

optimization studies can be found i21].

2.3.5. Isaeva and Osipov

The article bylsaeva and Osipopl]] is similar tode
Pillis et al. (2006)as it also takes classical chemother-
apy and two types of immunotherapy into account, but
the model also shows someffdirences. For example,
they usegGompertz growtlnstead ofogistic growthand
just one state for immune cell populations. Because of
the structural similarities tde Pillis et al. (2006)we
decided to investigate only one of the two similar ap-
proaches.

3. Chemotherapy Control Problems

Our goal is to investigate properties of optimal solu-
tions based on the ODE models in SectnThis in-
cludes the definition of an objective function, initial val-
ues, as well as constraints the trajectories have to fulfill.

D’Onofrio et al. formulated an optimal control prob-
lem for the model. The objective function supposed to
be minimized is

Xo(t) + @ f ) Up(t)? dt, (10)

to

while the end time; is free andx is small. Apparently

a value ofe = 0.005 has been used if][to identify the
correct control switching structure, whereas a value

0 has been used for the final calculation of the objective
value. In B] no control problem was specified, whereas
in [9] a weighted sum was used. In our study we use the
weighted sum

Nu— L

Pisz-Ui(t) dt (11)

tr 1
Po-Xo(t)+ [ Pr-Xo(t)® dt+
to i—0 Yo

with a L* penalization of the positive controls. Fer=
0 the objective 10) is a special case ofL{). We will



Name  Xo(to) Xa(to)  X2(to) X3(to) Xa(to) Xs(to) Parameter set
(T1) 1.10° 5.10* 1-10¢7 1.1-10 0 0 Mouse

(T2) 1-10° 1-10° 1-10? 6-109 0 0 Human 910
(T3) 1-10° 1-10° 1 6-10° 0 0 Human?9
(T4) 2.100 1.-1C° 1 6-10° 0 0 Human?9
(T5) 1-108 1.10° 1 6-10° 0 0 Human 910
(Te) 1-10" 1-10° 1 6-10° 0 0 Human?9
(T7) 1.1° 1.10° 1-10¢ 6-10° 0 0 Human10

Table 1: Initial values used fate Pillis et al. (2006) “Parameter set” indicates for which of the three paramstés “mouse”, “human 9”, and

“human 10" the initial values have been used in this article.

compare the influence of fiierent objective functions
in Sectionb, in particular,

po=1, p1=0, p2 =0, (01)
po=-1, p1=0, p2 =0, (02)
pp=5-10°  p; =10 p, =10 (O3)
po=-5-10% p =-10" p,=10" (04)
Po =1, p1=0, P2 =1, (05)
Po = -1, p1=0, P2 =1, (06)
po=1, py =107, p, =102, (07)

with p3 = ps = 0 in all cases. We will later identify
these parameter sets with an objective function, e.g., re
fer in short to O1) as the objective functiorl() with
values forpo, p1, p2 defined by O1).

The trajectories are constrained in the following way.
For all control problems we have the inequalities

0 < ui(t) < u™™ 0 < x(t). (12)

For the control problems based on the model of
d’Onofrio et al. we furthermore consider a maximal
dose over the whole time horizon in the form

Xo(t) < X3 X3(t) < xg& (13)

We will consider diferent scenarios in Secti&n In our

define

Xo(0) = 1200Q x1(0) = 1500Q (S1)
ul® =1, xg& =2,

%0(0) = 1200Q x1(0) = 1500Q (S2)
ui® =2, X3 =10,

%0(0) = 1400Q x1(0) = 500Q (S3)
ul® =1, xg¥ =2,

Xo(0) = 1400Q x1(0) = 500Q (S4)
ui® =2, X3 =10,

For the solutions of the control problems presented in
Sections.2to 5.4the upper bounds are given by* =
1,uf™ =5.10°, anduJ™ = 0. Note that for theumor
infiltrating lymphocytes (TILxontrol uy(-) no bounds
were given in the original paper, therefore we fixe()
to zero for this study. The value of the fixed end tithe
varies in our scenarios and can be seen in the plots. The
resulting scenarios are defined byfeient initial values
listed in Tablel.

4. Direct Multiple Shooting

We give a short introduction t@ock’s direct mul-
tiple shooting methaddeveloped byGeorg Bockand
coworkers 2] in the early 1980s. More information on
this technique can be found, e.g., 28].

4.1. Problem Formulation

The followingoptimal control problenmepresents the
class of problems we want to solve in this article:

context a scenario consists of a set of initial values and

values for the upper bounds i63) and (L3). For the
control problems solved in Sectidnl we fix xx(0) =
x3(0) = 0 andug® = 75,x7* = 300 in all cases and

6

min E(x(t;)) + f ) L(t, x(t), u(t), p) dt (14a)
X.u,p to



subjectto x{t) = f(t, x(t), u(t), p), (14b) which represent the initial values of the ODE on each in-
X(to) = Xs, (14c) tervall; respectively the final valug,. Now we solven
independeninitial value problems/i € {0,...,m— 1},

0 = re(X(to), X(tr), p) (14d)

0<1i(xllo), xit). p), - (14e) Xtri.s) = (L x@.atw).  (17a)

0 < g(t, x(t), u(t), p), (14f) X(7i;7,S) = S, (17b)
fort € [to, t;] almost everywhere, wittifferential states t € [, 7iva]. (17¢c)

X : [to,tf] = R™, control functions u: [to,t{] — R™,

fixed model parameters g R™, and arobjective func- For the numerical results presented in this paper, a BDF-

tion of Bolza type all functions assumed Siciently based DAE solveDAESOL[30], has been used to solve

smooth. the initial value problems. Note that the method is exact
Let x andu be the vectors of stateg and controlsy;, if the initial value problems are solved exactly.

then equation¥4b) represents the ODE model with @ Tg ensure equivalence to the original problem, we

right hand sidef depending otime te [to, tr] and initial have to addnatching conditionavhich are the equality
valuesxs are given in {40). In (14d) and (14¢) equality constraints

respectively inequality boundary conditions are summa-
rized, and {4f) contains state and path constraints. Su1 = X(tioi7i,S) Yielo,... .m—1}. (18)

4.2. Discretization of States and Controls . . .
The objective function is separable, so it can be com-

In the articles mentioned in secti@mostlyindirect puted separately on each interval by
methodsave been used, when optimal control was con-
sidered. These methods build on the necessary condi- " -
tions of optimality in function spac&ontryagin’s max- f L(t, x(t), ¢(t, w)) dt = Z Li(7isa) (19)
imum principle and apply an appropriate discretization to =0
to solve the resulting boundary value problem.

In contrast, ourfirst discretize, then optimizap-
proach transforms the control problem first to a nonlin- ¢
ear program (NLP), before this finite-dimensional op- with Lj(t) = f L(t', x(t"; 7i, ), ¢i(t', wi))dt”  (20)
timization problem is solved to optimality. We start Ti
with the discretization of the controls. The continu-  ande(t,w) := ¢;i(t.w;) fort € I;. (21)
ous controls are replaced Ipase functionsvith local
support, such as piecewise constant or piecewise linearThe continuous constraintg(t, x(t), u(t), p) > 0 are
functions. These functions can be described by finitely evaluated pointwise on the grid (for ease of nota-
many parameters. To do so, we select a time grid tion, we write X(tm; Tm, Sm) = X(Tm; Tm-1, Sm-1) and

dm(Tm, Wm) = dm-1(Tm, Wm-1) from now on):
to=to<T1<:--<Tm=t, mMmeN (15)

and withl; := [1i, 7i,1] Vi € {0,...,m— 1} set 9(ri. X(zi: 7i. 8). (7. Wi)) 2 0. Vi €{0.....m}. (22)

ut)| =it w), weRA, (16) Finally, transformed boundary conditions and initial
h values read
where thep; are the base functions. Now we have trans-
formed the infinite-dimensional contralinto a finite r(so, Sm) = 0, (23a)
vectorw = (Wp, ..., Wn_1). For notational convenience S = Xs. (23b)

we omit the parameter vectprin the following.

The states are discretized usinmultiple shooting
We have to choose a time grid again and fitcgency
and simplicity we choose the same grid as for the con-
trols. In theory, this is no limitation of generality, as we
could refine the grids such that they match and add some We have transformed the infinite-dimensional opti-
constraints. We introduge+ 1 new variablesy, . . ., Sy mal control problemX4) into a finite-dimensional NLP.

4.3. Solution of the NLP



By definingy := (o, Wo, - . -, Sn-1, Wm-1, Sm), We obtain

m-1

min - E(sr) + ZO Li(tisa) (24a)

st. 0=s:1—X(ti+1;7i,§) Vi€ {0,...,m-1},
(24b)
0 < o(ti, X(ti; 71, S), ¢i(7i, W) Vi € {0,...,m},
(24c)
0 = re(so, sm), (24d)
0 < ri(So, Sm)s (24e)
0= — X (24f)

This NLP is solved with a sequential quadratic pro-
gramming (SQP) method. This technique has been in-
troduced bywilson[31], Han, andPowell[32].

The NLP @4) can be written in the form

mxin f(x) (25a)
subjectto g(x) =0, (25b)
h(x) > 0, (25c)

with generally nonlineaf, g, andh. Instead of consid-
ering this problem, starting with some initial valu®,
we compute the iterated with a step sizé (0, 1],

X = XKtk AXK, (26)
by solving a related quadratic program (QP),
min %AXT H*AX + V(X)) TAx (27a)
X
subjectto g(x) + Vg(x)TAx = 0, (27b)
h(xX) + Vh(x)TAx > 0, (27¢)

whereHX is set, e.g., to the Hessian of the Lagrangian
of the problem or some approximation of this Hessian.
We compute the step size byiae search

This is equivalent to a Newton-type method. For
more information we refer to relevant literature, e.g., to
Nocedal and Wrighf33).

The Hessian resulting from the multiple shooting dis-
cretization features a special structure which can and
needs to be exploited in the SQP algorith@g]|[

5. Numerical Results

In this section, we present numerical results for the
control problems that have been introduced in Sec-
tions2 and3 obtained by applying Bock’s direct multi-
ple shooting algorithm from Sectioh This section is

5.1. d’Onofrio et al.

We tried to reproduce the results from the pap@r [
first. Optimal solutions for each scenario are depicted
in Figuresl left and3. One can conclude from the
plots that the results could be essentially reproduced
on the whole, especially the control structure is the
same. However, the end times in our resultedito
some extent (A3% or less) from those id’'Onofrio et
al. —e.g., 6653 vs. 6648 (Q08%) in scenario{1).

The diferences between the tumor volumes are much
smaller (in each case less tha@ 1), between vascu-
lature volumes a little higher (47% or less): 70129

vs. 701909 for tumors and 72948 vs. 736333 for
vasculature in scenari®() for example, which corre-
sponds to M03% respectively 87%. The diferences

in the other scenarios are in a similar range and might
be due to dierences in the discretization. All solutions
have been computed with 100 multiple shooting nodes
in our case.

A reasonable question one may ask is how much can
be gained by optimal control of chemotherapy treatment
schedules. For this purpose, we changed the objective
function to ©2), min—xo (t), and computed an optimal
control for (S1) with end time fixed td; = 6.653 and
the amount of drugs given over the total time fixed to the
bounds 300 respectively 2. This corresponds to a max-
imization of the tumor size at the end time. The result
is shown in Figurél together with a simulation without
any therapy. Tumor volume under maximization is at
797950, which is about 48% lower than the volume
without any treatment (134180) on the one hand, but
on the other hand 13% higher than the volume under
the optimal control (70129).

One observes afierent structure of the optimal con-
trol, which is almost of bang-bang type for both control
functions. Obviously, under a maximization of the tu-
mor volume it is optimal (in this model) to administer
a large amount of the drugs at the beginning of treat-
ment, because the fraction of cells killed is lower when
the tumor and vessel volumes are relatively small. As
angiogenic treatment has a delayed influence on the tu-
mor volume, the full-dose part at the end of the time
scale does not play a role for the development of tumor
volume.

In summary, we compared solutions for minimal and
maximal tumor value for the first time in this model.
The optimal chemotherapy controls that have been plot-
ted in Figurel can be intuitively understood on the basis
of the model, as they are related to the Gompertz-type

splitinto a subsection for each model and parameter setgrowth of the tumor. However, the observedtelience

we investigated.

of about 10% is, in particular when considering the high
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Figure 1: Optimization results fat'Onofrio et al. Upper row: tumor (dark) and vasculature (bright) volumewkr row: anti-angiogenic (bright,
Up) and chemotherapy (darlg; ) controls. All results for scenaric&s() for different objective functions. Left: minimization of tumor uate at end
time, objective Q1). Middle: maximization of tumor volume at end timé&)2). Right: no therapy (controls both at lower bound). The ealde

of the tumor population under maximization (with the samés about 10% higher than the minimized value, which is theimal difference due
to bad timing of drug admission.

uncertainty of model and parameters, not highly encour-  Fort; = 40 and the weighted sum objectiv@3) we
aging for practical improvements. This conclusion is fixed the total amount of drugs applied to the values of
supported by the results forftkrent objective functions  the optimal solution, changed the sign pf and ps.
which show that the reduction in tumor size is strongly This corresponds to a maximization of the tumor over
dependent on the amount of drugs, not so much on thethe whole time horizon and at the end time in the given
timing of its application. relative weighting under the constraint of a given total
amount of drugs. We also compare the minimization re-
sult to a “standard treatment” as applieddby Pillis et
al. in Figure5. The potential benefit of optimal control
In this section, we present optimal control results for is much higher in this scenario compared to the results
the mousq)arameter Set' which is one of three parame- in Section5.1 While the maximized tumor at the end
ter sets inde Pillis et al. (2006]3]. time is at about 2107 cells, the minimal value is only

For all three parameter sets we consider a fixed time about 10 cells. This corresponds ta3% of the maxi-
horizon of eitherty = 40 ort; = 120 days, as ind. mal va!ue. The tumor size fc_)rthe standard treatment is
In [21] also scenarios with free end time can be found. €ven higher than the maximized one, but again the total
As stated before, we did not considamor infiltrating amount of drugs given is significantly lower here.
lymphocytes (TIL)as more modeling work is necessary ~ Considering the high potential for correct timing of
to come up with realistic bounds here. For the mouse drug administration in this case, the question which ob-
model which contains nti_-2 therapy, this means we jective function should be used becomes more impor-
consider a classical cytostatic chemo-monotherapy. As tant. In Figure6 left and right one observes that under
in De Pillis et al. we chooseug™® = 1 for numerical the weighted sum objectived@) tumor cells are on a

5.2. “mouse”, de Pillis et al. (2006)

experiments. lower level in general whereas the end level is orders of
There are seven fierent initial value sets in3], see ~ magnitude lower with@5) (middle plot).

Table 1. Note that only T1) has been used for the Figure6 right shows an alternative local minimum to

“mouse” model. Figure6 left. While one solution applies chemotherapy

For the verification of the models’ implementationsin early, hence reducing the tumor volume to a low value
our optimization framework we ran several simulations. in the first half of the time horizon and letting it grow
The results of 3] for the mouseset could be reproduced, in the second half, the solution on the left allows for a

for chemotherapy as well as without any thera@] [ higher value in the first part to reduce it in the second.
Optimal control results of thenousemodel are shown  Both strategies are related to the Gompertz growth of
in Figuresb and6. the tumor — if the tumor volume is high, the growth rate
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Figure 3: Trajectories as in Figufie Optimization results fod’Onofrio et al, scenarios$2), (S3), (S4 from left to right, all with objective Q1),
minimization of tumor at end time. All solutions are struetily similar.

is considerably lower. Therefore a strategy distributing 5.0 - 10° with the corresponding equatio®ff. Even-
the chemotherapy over time would lead to a (nonopti- tually we decided to adopt@ respectively ® - 10° as
mal) higher average growth rate. upper bounds for the chemotherapeutic respectively im-
munotherapeutic control. For chemotherapy, the drug
amount applied in our solutions is notably higher than
in thestandardreatments investigated i8]} so it might
Thehuman 9model is the second parameter set from be reasonable to consider a smaller upper bound. Addi-
de Pillis et al. (2006) We picked out two scenarios to  tionally, note that thbumarnparameter sets are based on
verify our implementation, sel]. The maximal dose  mostlymurinedata. Some remarks on the immunother-
of chemotherapy has been changed .ty but there is apy level will follow below.
no reason given for the higher dose. The immunothera-
peutic pulses are said to be ad5L0° in one experiment First, we have a look at the comparison between max-
and at 50- 10° in another one. Maybe the latter is a typ- imized and minimized tumor populations, see Figire
ing error, as the upper bound of bdth2 concentration ~ The procedure was the same as in theuseSection.
plots is 50 - 10°, which makes sense for a dosage of We fixed the drug amount to the minimization value and

10

5.3. “human 9", de Pillis et al. (2006)
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Figure 4: Trajectories as in Figu® now with objective ©7) which includes impact of th&? norm. Althoughxo(t;) is of comparable size,
controls, end timéy, and trajectories dier considerably compared to the objective in FigBire

changed the sign of the corresponding objective param-With a full dose ofuy(t) = 5.0- 10° andy; = 10, xs(t)

eters, i.e.po = —1.0 for the objective with a penalty on

should be at about8- 10° close to a steady state. The

Up. The diference is even higher here with a maximal statexs itself only plays a role in equatior®¢), where

tumor of almost 1®and a minimum one with less than

1, which is less than.000001%.. Again the standard

treatment is worse than the maximization, however, the
drug amount for the maximization was about 250% of
the standard treatment.

Figure 8 contains representative optimization re-

X2=-- +

the corresponding terms are

(29)

with p; = 1.25- 107 andg, = 2- 10’. For ax, which is

sults for diferent initial values and objective functions.

While Figure8 center features a full dose chemotherapy,
in Figures8 left there is a full dose part at the beginning

followed by a short singular arc leading into a zero part.

A similar solution occurs in some more scenariofof

Pr X2 X5 N 10110°10° Ng ~102
g +x  100+10F 107

most of the time at a level of at least®1@ve have

(30)

and the influence of a 2Gterm on a 18 state indeed

man 9(data not shown) and a free end time scenario should be low. We conclude that additional work on the

(tr = 26) looks very similar, too. Figur8 right shows

the problem of a delayed therapy — if the objective is
to minimize tumor volume at the end time and the time 5.4. “human 107, de Pillis et al. (2006)

horizon is large, the result may be long time periods (65
days Figures right) with a high tumor volume before
therapy starts.

such a low levels (e.g., 10 with an upper bound of

modeling of immunotherapy influences is necessary.

Like human 9thehuman 1(parameter set shares the
equations with thenousemodel. Considering repro-

o duction of the results in thde Pillis et al. article, the
Except for one scenario, immunotherapy does not first two scenarios without any treatment could be ver-
play a significant role in the treatment. Often it is at ified. In other scenarios, we observed sonféedénces

or they could not be reproduced at all. Th&eliences

5. 1(P) that it might not be be considered therapeutic seem to arise from the influence kef2, compare 21]

at all. Note also that none of the objective functions for g detailed discussion.
contains a penalty on the immunotherapeutic contypl

In Figures9, 10, and11we show optimal controls for

so immunotherapy might dissappear completely with a gifferent initial values from Tablé, end timest;, and
penalty. However, there are also mathematical reasonsppjective functions.

for this low influence of immunotherapy. The contugl

enters only in equatiordf), which reads

5(5 = —M| X5 + Uj.

and astandardtreatment in Figur®.
A selection of optimal solutions is presented in Fig-

(28)
11

We again compare maximization and minimization

uresl0andl1l. Immunotherapy is again on a very low
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Figure 5: Optimization results fate Pillis et al. (2006)mouse scenario (T1). Upper row: tumor population. Lower row: rha¢herapy control
Up. Left: minimization of weighted objectived3). Middle: maximization of weighted objectivé®©d). Right: standard therapy (example fro8j)[
The end value of the tumor population under minimizationbisw two orders of magnitude below the maximized (worst). dhete that the given
drug amount in the standard treatment is significantly lpaethat the result is even worse than for maximization.

levels as expected. Many solutions for chemotherapy In order to estimate the potential for the correct tim-

show a singular arc (Figurg0 center and Figurd.l ing of chemotherapies we proposed to compare the re-
throughout). Note that these solutions have been com-sults of a minimization to the ones of a maximization
puted for the weighted sum objective. Orily right with the same total amount of drugs. The ratio between

contains a singular solution with minimization of the these two values is an indicator for the potential gain.

tumor at the and time with a penalty on chemotherapy. For the d’Onofrio model in Sectioh.1this potential is

Further results, including free end time scenarios and rather low. A comparison to a maximization of the tu-

the calculation ofparse controlscan be found inZ1]. mor at the end time with fixed drug amounts showed
that tumor size is only about 15% larger in the worst
treatment scenario, which can nevertheless be clinically

6. Conclusion and Outlook significant. The optimal treatment yields a tumor 40%
smaller than in the case without any treatment.

We presented optimal control results for foufelient For the control problems based on tePillismodel,
cancer chemotherapy models based on two sets of ordi-S€ctionss.2, 5.3, and5.4, the diference between min-
nary diferential equations. Not all of the previous sim- imimal and maximal objective is several orders of mag-

ulation results in the literature could be verified, edg, ~ Nitude, indicating a high potential for optimal timing.

Pillis et al. 2008 [9], see P1] for a detailed discussion. In this context the question of how to define the ob-
As the general purpose software package MUSCOD- jective function naturally becomes more important. We
Il has been successfully applied to hundreds dfedi considered dferent terms in a weighted sum objective

ent applications, and we cross-checked our problem- function: tumor population at the end time and inte-
dependentimplementation of the equations, we suspectgrated over the whole time horizon, as well as possible
inconsistencies in the published model, in particular in penalizations of the controls. A high dependency of the
some parameter values. results on the weights could be shown. For certain sce-
Our optimal control solutions of thdOnofrio model narios a control strategy leads to a complete removal of
nearly quantitatively match the ones in their articlg [ the tumor at the end time at the price of a higher av-
But we also study additional optimization scenarios. erage value, whereas an optimal control taking lthe

The three diterent models based oue Pillis et al. norm into account generally does not lead to a removal.
(2006)have been solved to optimality for the first time From the point of view of potential clinical applications,
to the best of our knowledge. a traded between minimal end size of the tumor and

12
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Figure 9: Optimization results fate Pillis et al. (2006)human 10scenario (T5). Upper row: tumor population. Lower row: rcimeherapy control

Up. Left: minimization of weighted sumd3). Middle: maximization, objective@4). Right: standard therapy (example fro8})[ Immunotherapy

is (almost) zero in all cases. Minimization is even a littigher than maximization at the end time, but the objectivet@ios the minimization of
the tumor over the whole time here, where the minimizaticgigsificantly better. Standard treatment is about 3 ordensagnitude worse due to
a significantly lower total amount of drugs.
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Figure 10:de Pillis et al. (2006)human 10 Left: Optimal control result for scenario (T7) with end & = 40 days under minimization of tumor
at the end time@1). Center: optimal control result for scenario (T5) with eimde t; = 120 days under the weighted sum objecti@3). Right:
Simulation of scenario (T6) with standard therapy inclgdimmunotherapy and TIL — the results froid] could not be reproduced.
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Figure 11:de Pillis et al. (2006)human 1Qdifferent optimal control results for scenario (T2). Upper révovgs states, lower row controls. Left:
Weighted sum objectived3) with end timet; = 40 days. Center: same objectiv@3) with end timet; = 120 days. Right: minimization of tumor
at end time with penalty on chemotheraf®5j, end time at 120 days. In contrast to Figdf@left, all solutions are dominated by singular arcs.
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