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Abstract

Assisted and autonomous driving is of current interest and offers great possibilities
to improve traffic in terms of different parameters via automatization and cooper-
ation. This thesis aims to investigate multiple methods of optimizing or simply
enhancing traffic flow at traffic-light controlled intersections in an urban setting.
The developed methods differ in their focus of optimization, say, whether each
car is considered individually, or the global traffic is to be optimized. Therefore,
different methods for reducing solving times of optimization algorithms, e. g.,
cutting-plane algorithms, column generation, and branch-and-bound methods,
are reviewed, adapted for the particular optimization problems, and evaluated
numerically.

A major result of this thesis is that an individual optimization of the cars yields a
traffic flow which is just slightly worse than the optimal traffic flow obtained by an
optimization of the system from a global point of view. The results that provide this
outcome are obtained by extensive traffic simulations where the different methods
are implemented and rated in terms of comparable parameters. In parallel, the
solving times reveal a great advantage of the individual optimization compared to
optimizing traffic flow globally.

The second major purpose of this thesis are proposals for implementations of the
presented methods in real-world systems considering, e. g., technical requirements
and security issues. It is observed that globally optimal traffic flow is difficult to
achieve with reasonable effort. Nonetheless, the obtained solutions can serve as
benchmarks for other methods and algorithms, which aim to improve traffic flow.

In addition to calculating optimal solutions, a novel driver-assistance system is
presented improving the behavior of an individual car concerning traffic flow. It is
already working and has successfully been tested in real-world traffic. With the
aid of this system, the car is able to calculate and perform acceleration-trajectories
automatically when approaching and passing a traffic-light controlled intersection.
A key issue is the wireless communication with the traffic-light. Apart from the
individual gain for the particular car, an introduction of the system would lead to
better overall traffic flow – even for small equipment rates.
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Zusammenfassung

Assistiertes und autonomes Fahren sind hochaktuelle Themen, die großes Poten-
tial bieten, Verkehr bezüglich verschiedener Parameter mittels Automatisierung
und Kooperation der Fahrzeuge zu verbessern. Die vorliegende Arbeit unter-
sucht verschiedene Methoden der mathematischen Optimierung mit dem Ziel
den Verkehrsfluss an innerstädtischen Ampelkreuzungen zu optimieren bzw. zu
verbessern. Diese unterscheiden sich unter anderem in ihrem jeweiligen Optimie-
rungsziel. Genauer gesagt darin, ob jedes Auto als einzelnes betrachtet wird oder
der globale Verkehrsfluss Ziel der Optimierung ist. Dafür werden verschiedene
Methoden zur Beschleunigung des Lösungsprozesses aufgezeigt, auf die entspre-
chenden Problemstellungen angepasst und numerisch untersucht. Beispielhaft
dafür sind Schnittebenenverfahren, column generation, und Branch-and-Bound
Methoden.

Ein Hauptergebnis der Arbeit ist, dass eine individuelle Optimierung des
Fahrzeugsverhaltens einen nur leicht schlechteren Verkehrsfluss erzeugt als die
Optimierung des Systems von einem globalen Betrachtungspunkt aus. Die entspre-
chenden Ergebnisse werden mittels intensiver Verkehrssimulationen erzielt, worin
die jeweiligen Methoden implementiert und bezüglich vergleichbarer Parameter
untersucht werden. Parallel dazu zeigen Laufzeitanalysen einen deutlichen Vorteil
der individuellen Optimierung des Fahrzeugverhaltens gegenüber der globalen
Optimierung des Verkehrsflusses.

Das zweite Hauptanliegen dieser Arbeit ist es, die praktische Umsetzung
der vorgestellten Methoden und Algorithmen zu untersuchen, u. a. im Hinblick
auf technische Voraussetzungen und Sicherheitskriterien. Dabei wird festgestellt,
dass global optimaler Verkehrsfluss nur sehr schwer mit adäquatem Aufwand
zu erzielen ist. Dennoch dienen die berechneten Lösungen als Referenz für
andere Methoden und Algorithmen, die den Verkehrsfluss an Ampelkreuzungen
verbessern sollen.

Neben der Berechnung von optimalen Lösungen wird ein neuartiges Fahreras-
sistenzsystem vorgestellt, welches das individuelle Verhalten eines Fahrzeugs
im Hinblick auf die Verkehrseffizienz verbessert. Es wurde bereits erfolgreich
implementiert und im Straßenverkehr getestet. Das Assistenzsystem ermöglicht
die automatische Berechnung und Umsetzung von Beschleunigungs-Trajektorien,
mit deren Hilfe eine Ampelkreuzung überquert werden kann. Zentral ist da-
bei eine drahtlose Kommunikation mit der Infrastruktureinheit. Zusätzlich zum
individuellen Nutzen für das einzelne Fahrzeug würde eine Einführung des
Systems zur Verbesserung des Gesamtverkehrsflusses führen – sogar bei niedrigen
Ausstattungsraten.
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š, ŝ Lower bound and upper bound on admissible values for s

t̄c Arrival time of car c

Sstart
tl ,Send

tl Start-position and end-position of trigger zone of traffic-light tl

T Discretized time horizon

TL Set of traffic-lights

TZ Set of trigger zones

TN End of the MILPs time-horizon

v̄c Velocity of car c when entering the network

a(·) Trajectory of acceleration

j(·) Trajectory of jerk

s(·) Trajectory of traveled distance

v(·) Trajectory of velocity



xiii

Contents

1 Introduction 1

2 Selected Methods in Optimization 5
2.1 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Solution Methods for Optimal Control Problems . . . . . . . 6
2.1.2 Model Predictive Control . . . . . . . . . . . . . . . . . . . . 11

2.2 Mixed Integer Programming . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Cutting Planes . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Column Generation . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Modeling Logical Implications . . . . . . . . . . . . . . . . . 19

3 Developing a Cruise Control System 21
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Concept of an Assistance System . . . . . . . . . . . . . . . . . . . . 22
3.3 Controller Implementation . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Technical Requirements and Implementation . . . . . . . . . . . . . 29

3.4.1 C2X-Technology . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Cooperative Traffic-Light . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Adaptions for the Car . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 Human-Machine Interface . . . . . . . . . . . . . . . . . . . . 32
3.4.5 Test Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.6 Acceptance of the System . . . . . . . . . . . . . . . . . . . . 35

3.5 Developing an Information System . . . . . . . . . . . . . . . . . . . 36

4 Optimizing Traffic Flow 39
4.1 Motivation and Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Macroscopic Traffic Models . . . . . . . . . . . . . . . . . . . 40
4.1.2 Microscopic Traffic Models . . . . . . . . . . . . . . . . . . . 40

4.2 Developing a Mixed Integer Linear Program . . . . . . . . . . . . . 41
4.2.1 Cars and Motion Model . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Traffic-Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.5 Additional Traffic-Light Regulations . . . . . . . . . . . . . . 52

4.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Digression in Modeling Traffic-Lights . . . . . . . . . . . . . . . . . 59
4.5 Solving Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Iterative Solving Algorithm . . . . . . . . . . . . . . . . . . . 62
4.5.2 A Tailored Branch-and-Bound algorithm . . . . . . . . . . . 65

5 An Individual Approach to Optimizing Traffic Flow 73
5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Extensions and Adaptions . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 A Real-World System for Optimized Traffic Flow . . . . . . 78
5.2.2 Additional Traffic-Light Regulations . . . . . . . . . . . . . . 79



xiv

6 Numerical Results 81
6.1 Traffic Simulation Software . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Network and Experimental Setting . . . . . . . . . . . . . . . . . . . 82
6.3 Real-World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Numerical Results for the RACC . . . . . . . . . . . . . . . . . . . . 87

6.4.1 Quality of Performed Trajectories . . . . . . . . . . . . . . . . 88
6.4.2 Visualization in SUMO . . . . . . . . . . . . . . . . . . . . . . 90
6.4.3 Effects on Traffic Flow . . . . . . . . . . . . . . . . . . . . . . 91
6.4.4 Effects on Cities . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Numerical Results for the global-MILP . . . . . . . . . . . . . . . . . 99
6.5.1 Effects on Traffic Flow . . . . . . . . . . . . . . . . . . . . . . 99
6.5.2 Iterative Solving Algorithm . . . . . . . . . . . . . . . . . . . 101
6.5.3 Tailored Branch-and-Bound Process . . . . . . . . . . . . . . 105

6.6 Numerical Results for the Greedy-Algorithm . . . . . . . . . . . . . 107
6.6.1 Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6.2 Effects on Traffic Flow . . . . . . . . . . . . . . . . . . . . . . 108

6.7 Comparison of Different Approaches and Future Research . . . . . 110

Bibliography 113



1

1 Introduction

In the field of automotive systems, keywords such as cooperation, connectivity,
assistance and even autonomous/automated driving have become more and more
visible and frequent in research as well as in public awareness and discussions.
In fact, many car manufacturers, research institutes, and related industries have
been running a manifold of projects, e. g., [30, 83, 92, 93, 104], and making efforts
to develop and evaluate the impact of systems in the context of these keywords.
We want to highlight two of them: Autonomous driving and cooperation. At first
glance, both of them are related to each other in a sense of smart mobility, which
is another of these – often rather fuzzily defined – keywords. Going a little bit
deeper into detail, we can easily distinguish the main properties. Autonomous
driving, which is the ultimate consequence of assisted driving, simply considers
the movement of the individual car. Simply put, an autonomously driving car
mainly cares about moving to its destination while respecting legal regulations
and hopefully not being involved in any accidents. Qualifying quantities such
as traffic flow are of minor interest and therefore barely or not considered at all in
current implementations. On the other hand, there are cooperative systems. In
the course of this thesis, we will also refer to any implementation of algorithms
in a car as application. These cooperative applications are in general independent
from assisted or even autonomous driving and aim to generate benefit for the
involved cars, or even infrastructural devices, by exchanging information. A very
simple example for a cooperative system following this definition are blinkers for
indicating the intention of a turning maneuver.

The growing field of technology and devices for wireless communication
promises to facilitate the process of exchanging information between traffic par-
ticipants. Among other technologies, wireless LAN, which is in the automotive
context often referred to as Car-to-Car (C2C) and Car-to-X (C2X), is of current
interest. It offers sufficiently wide ranges, short delays, and direct communication
between agents. Often these technologies are also referred to as Vehicle-to-Vehicle
(V2V) and Vehicle-to-X (V2X). Putting these two major concepts together seems to
be beneficial for both of them: cooperative systems promise to be more efficient and
consistent if the intended maneuvers or strategies are performed automatically. On
the other hand, autonomous driving will be certainly much more comfortable, safe,
and efficient in terms of traffic flow if an automatically driving car permanently
receives information about other cars’ statuses and intentions. One can imagine a
manifold of situations these considerations might apply for.

Talking about traffic flow, bottlenecks often arise whenever the infrastructure
is either not capable of the sheer amount of cars, e. g., if the amount of lanes
is not sufficiently large, or static obstructions hinder the movement of cars.
One kind of these obstructions are intersections. A high potential considering
an improvement of traffic flow lies in the individual behavior of each driver.
Maneuvers of deceleration and acceleration, stopping and starting, and delays due
to reaction time are often rather inefficient in nowadays traffic. It seems promising
to support the driver by providing information beyond his or her perception,
or to let the car perform certain maneuvers automatically. Here, cooperation
certainly comes into play. The consequence of this consideration are algorithms
for autonomously driving cars to pass an intersection, including the objective
to improve the overall traffic flow. Due to a considerable amount of technology,
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which is needed for exchanging information and other purposes, traffic-light
controlled intersections provide at least an infrastructure that can be extended and
are therefore a considerable setting for first applications.

Problem Setting and Contribution

Consider the situation of a car approaching a traffic-light controlled intersection.
As soon as the lights are visible, the driver performs certain maneuvers based on
the current signal state. We can distinct two major situations: the traffic-light is
currently green, and the traffic-light is currently red. In the first case, the driver will
keep his or her desired velocity and aim to pass the intersection. In the latter case,
the driver performs a stopping-maneuver in front of the traffic-light’s stopping
line and accelerates as soon as the light switches to green. (Of course, in practice
other influences, e. g., preceding cars or the duration of the current light phase are
also considered. We will incorporate them in the course of this thesis.) Briefly
speaking, the driver aims to pass the stopping line as soon as possible and as
fast as possible while respecting legal regulations such as red lights and speed
limits. Information about upcoming switches of the traffic-light’s state would be
beneficial for this. Simple visual systems, which display the remaining time of
the current phase and can be considered to be cooperative, are employed in some
parts of the world.

In this thesis, we present a novel driver-assistance system, which aims to
automatically perform maneuvers in a car, reducing the time between the traffic-
light’s switch to green and the passage of the car. Simultaneously, the performed
velocity when passing the stopping line is maximized without violating legal
regulations. The core of this application are online calculations of acceleration-
trajectories that are performed automatically. To this end, we make use of
optimal control problems and suitable solving methods. A crucial part is wireless
communication between the car and the traffic-light which shares necessary
information about the intersection area as well as current and future signal
states. More specifically, the car does not influence the traffic-light’s behavior.
Communication between these two agents is restricted to one direction. Beyond
the pure design of the application, it is already running in a car and has been
successfully tested on a test field and in real-world traffic. As it is a priori not clear
how drivers react to a novel assistance system that controls the car’s acceleration
rather dynamically, we provide references to studies concerning the acceptance of
the strategies performed by our application. Moreover, we present another novel
assistance system which is purely for information purposes. According to the
discussion above, both assistance systems are considered to be cooperative and
based on an individual point of view.

Besides this approach, we are also interested in considering traffic from a
global point of view. We are given a network of roads and a set of cars with their
respective route they take through the network. Moreover, the point in time each
car enters the network is given as well as the velocity at this point in time. We
want to determine the behavior of all cars and traffic-lights in the network of roads
in such a manner as to induce a best possible traffic flow. To this end, we consider
mixed integer linear programs (MILPs) and elaborated methods for solving them. As
the derived model turns out to be of rather high complexity, we introduce different
methods to facilitate the solving process, including a cutting plane method, column
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generation, and a tailored branch-and-bound algorithm. For a resulting iterative
solving method, results on the maximum number of iterations are provided. After
all, the calculation of the optimal behavior of all cars and traffic-lights turns out
to be time-consuming and is hence not suitable for real-world applications. In
consequence, we design and implement an algorithm that manages the passages
of cars over an intersection while considering realistic driving maneuvers. In
contrast to the optimization of the global traffic flow, each car aims to optimize
its passage individually. The algorithm is also proposed to be implemented in a
real-world application based on cooperation between the cars and the traffic-light.
A major advantage is that also usual cars, which do not run this application, can
be considered. Again, the method is also regarded in terms of a bound on the
maximum number of optimization problems to be solved.

Finally, we investigate the different approaches in terms of their respective
influence on nowadays real-world traffic with the aid of systematic numerical
test series. To this end, a microscopic traffic simulation software is used, where the
different algorithms are implemented and the resulting simulated traffic flow is
evaluated. Therefore, an elaborated car-following model is parameterized with the
aid of detailed visual recordings in a way that it mirrors the behavior of real-world
cars near an intersection in a satisfying manner. The discussion includes the
comparison of globally optimized traffic flow and individually optimized behavior
of single cars. Besides traffic flow and emissions, the performances of the different
solving methods are also evaluated. The main result is that all methods achieve
enhancements in traffic flow. It is worth mentioning at this point that traffic flow
induced by the individual MILP-based optimization algorithm is just slightly
worse than traffic flow induced by global optimization. Whereas the solving times
for global optimization are much higher. Compared to nowadays real-world traffic,
reductions in waiting time of up to 28 % are achieved by the driver-assistance
system, which is already running in a car. Both MILP-based approaches induce
reductions of up to 99 %. In parallel, savings in fuel consumption of up to 19 %
for the driver-assistance system and 54 % for both MILP-based approaches are
obtained. Besides its influence on traffic flow, the presented assistance system
is also regarded in terms of the deviation of calculated trajectories and actually
performed ones by the car during test drives.

Outline of the Thesis

Before we introduce and discuss different methods of optimizing traffic at traffic-
light controlled intersections, we provide an overview of theory and methods in
the field of mathematical optimization in Section 2, which are employed in the
course of this thesis. The first part of this section considers optimal control providing
concepts and methods to solve dynamic optimization problems which arise in
many practical problem settings. Direct shooting methods and model predictive
control are of special interest. The second part of Section 2 deals with finite-
dimensional optimization problems, considering those, which contain integer
variables. We revisit different methods for solving mixed integer programs or
complex optimization problems in general, e. g., cutting plane methods, column
generation, branch-and-bound algorithm, and common methods to model logical
implications.
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In Section 3, we present the two novel driver-assistance systems based on wireless
communication between traffic-light and cars. To this end, we make use of the
definitions and solving methods stated in the previous section. Besides the pure
concept, also technical issues and requirements are discussed.

In Section 4, we investigate optimized traffic flow from a global point of view,
which considers not only the motion of all cars in the network but also the traffic-
light’s signal states. Therefore, a novel mixed integer optimization problem is
formulated, whose solutions can be calculated offline and afterwards be performed
automatically by the cars and traffic-lights. Besides a possible, but as of now hard to
achieve, practical implementation, the obtained solutions can serve as benchmarks
for other methods or algorithms which improve or somehow influence traffic flow.
This includes the application developed in Section 3. In addition to deriving the
model and discussing further possibilities to represent the problem, we investigate
the model’s complexity by using concepts of scheduling theory. Finally, we present
different solving methods which exploit the problem’s structure, e. g., by adding
cutting planes and performing a column-generation approach. For the resulting
iterative solving method results proving a termination in finitely many steps and
providing the maximum number of iterations are derived. Additionally, a tailored
branch-and-bound algorithm is introduced. Heuristics which can be applied
optionally are also discussed.

For a real-world application fast feedback times and recalculations due to
unforeseen events are crucial. Additionally, traffic participants that do not run
the respective system must be taken into account. Thus, we present in Section 5 a
novel algorithm and propose a cooperative assistance system which does not only
schedule a car’s passage over an intersection by calculating acceleration-trajectories,
but also negotiates the exact time of passing the intersection with the traffic-light.
Thus – in contrast to the application of Section 3 – the communication between
these two agents has to be bidirectional. Besides the design of the algorithm and a
discussion on a possible real-world system, theoretical results on the maximum
number of performed iterations are provided.

Section 6 deals with numerical investigations of real-world traffic and traffic
induced by the different methods developed in the course of this thesis. To this end,
efficient realizations of the solving methods for the MILP developed in Section 4 are
implemented. This includes the cutting plane and column generation algorithms,
as well as the branch-and-bound algorithm. Also, the driver-assistance system
which is already running in a car, and the proposed application of Section 5 are
implemented and investigated numerically. Besides the effects on traffic flow,
solving times and other issues concerning the solving process of the MILP-based
approaches are considered.
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2 Selected Methods in Optimization

In this section, we discuss the theoretical background of the methods and algorithms
that are presented in the following sections and serve for improving or optimizing
traffic flow. First, in Section 3, we discuss a driver-assistance system, which has
been implemented and successfully tested in a car. In this discussion, we use
concepts and solution methods in the context of optimal control, cf. Section 2.1. In
Section 4, we develop and implement a mixed integer linear program that models
optimal traffic flow at traffic-light controlled intersections from a central point of
view. This way, we obtain solutions for the movements of all cars and the behavior
of the traffic-lights which provide a best possible traffic flow for the whole system.
Furthermore, an MILP-based algorithm is presented in Section 5 which regards
each car individually. Both concepts make use of methods discussed in Section 2.2.

For the purpose of this discussion, we distinguish between infinite-dimensional
and finite-dimensional optimization problems. For both types, solving methods
are presented and in the course of this thesis adapted for our purposes.

First, we define a classical optimization problem, which asks for finding an
optimum object in a set of objects. This set of objects contains all feasible solutions
and is therefore called feasible set. The term optimum object refers to a given objective
function whose domain is a superset of the feasible set and which is to be minimized
or maximized. A generic optimization problem can be written as

min / max f (x)
subject to: x ∈X ,

where f : X → R is the objective function which is to be minimized or maximized
andX denotes the feasible set. In this thesis, we make a major distinction between
optimization problems whose feasible set is a subset of an infinite-dimensional set
and those whose feasible set is a subset of a finite-dimensional set.

2.1 Optimal Control
In many practical applications, processes arise which can be tracked over a
continuous time horizon T := [t0, t f ] ⊆ R. A common way to represent the process
is through its time dependent differential state x ∈ X := {x : T → Rnx}. Additionally,
we assume the process to be influenced by measurable and bounded control
functions u ∈ U := {u : T → Rnu | umeasurable and bounded}. The dynamics of
the process over time are commonly represented as a system of ordinary differential
equations (ODEs):

ẋ(t) = f (t,x(t),u(t)) ∀t ∈ T ,

with f : T ×Rnx ×Rnu → Rnx . Considerations about finding a state trajectory x(·)
and control trajectory u(·) which satisfy specific conditions and are optimal in a
certain sense lead to the definition of an optimal control problem. In the remainder
of this section, we follow presentations of problem formulations and solution
methods similar to those found in [29, 51, 56, 89].
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Definition 2.1 (Optimal Control Problem (OCP)). An optimal control problem is an
infinite-dimensional constrained optimization problem of the form:

min
x(·),u(·)

ϕ(x(·),u(·)) (2.1)

subject to: ẋ(t) = f (t,x(t),u(t)) ∀t ∈ T , (2.2)
0 ≤ p(t,x(t),u(t)) ∀t ∈ T , (2.3)
0 ≤ r(tk,x(tk)) ∀{tk}k∈I ⊆ T . (2.4)

The aim is to determine state and control trajectories x(·) and u(·) for the process dynamics
(2.2) minimizing the objective function ϕ : X ×U → R. Additionally, these trajectories
have to respect path constraints p : T × Rnx × Rnu → Rnp and point constraints
r : T ×Rnx → Rnr at discrete time points tk ∈ T with a finite index set I = {1, . . . ,nI}.

In order to ensure existence and uniqueness of the ODE’s solution, we assume
f : T × Rnx × Rnu → Rnx to be piecewise Lipschitz continuous in Definition
2.1. Therefore, we refer to the well-known Picard-Lindelöf theorem. The path
constraints (2.3) may contain restrictions on admissible values of the state and
control trajectories and boundaries for the trajectories. The point constraints (2.4)
allow to model constraints on the states on a finite set of points {tk}k∈I ⊆ T . Here,
intial states, which are crucial for the existence and uniqueness of the solution, as
well as terminal states may be invoked. The OCP is clearly infinite-dimensional as
the control trajectory u(·) and state trajectory x(·) are the unknowns which are to
be determined. Regarding the objective function, we present two variants:

Objective Functions The OCP’s objective function ϕ(x(·),u(·)) is a general func-
tion that usually consists of a Lagrange type, which is an integral contribution, and
a Mayer type, which is a contribution in the horizon’s end-point. If the objective
consists of both types, it is of Bolza type:

ϕ(x(·),u(·)) =

∫ t f

t0

l(t,x(t),u(t)) dt +m(t f ,x(t f )).

Problems where the deviation of the states and controls from a desired trajectory
is to be minimized, e. g., the application presented in Section 3, often require a
least-squares objective, which is of the general form:

ϕ(x(·),u(·)) =

∫ t f

t0

‖l(t,x(t),u(t))‖22 dt + ‖m(t f ,x(t f ))‖22.

2.1.1 Solution Methods for Optimal Control Problems

In this section, we give an overview of different solution methods for optimal control
problems. These differ in the type of discretization, the precision of the obtained
solutions, and suitability for implementations. Furthermore, indirect methods and
direct methods are distinguished. While for indirect methods the optimization
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is performed in an infinite-dimensional function space, direct methods apply a
transformation to a finite-dimensional space before the optimization. We will
present a brief outline of both types. As the application presented in Section 3 is
solved via direct multiple shooting, which is a direct method, we will mainly focus
on this type. Indirect methods are briefly discussed for the sake of completeness.

2.1.1.1 Indirect Methods Indirect methods go back to the work of Pontryagin,
cf. [82], and are based on the so-called first-optimize-then-discretize scheme. The
optimization takes place in an infinite-dimensional function space and the necessary
conditions of optimality are used to transform the OCP into a so-called multi-point
boundary value problem (MPBVP) using the maximum principle. The MPBVP is then
solved numerically by appropriate numerical methods, cf. [80].

The main advantage of indirect methods is a high accuracy regarding the
optimal solution, as the problem itself is solved analytically. However, this is
also the major disadvantage. For formulating the optimality conditions for each
problem mathematical insight is required. For large scale problems, which often
arise in practical applications, the derivation can be very difficult. Moreover, even
slight changes in initial states or the model itself, e. g., introducing an additional
constraint, can make a repetition of these steps necessary. Therefore, indirect
methods have not become a suitable tool for fast numerical solutions of optimal
control problems.

2.1.1.2 Direct Single Shooting In contrast to indirect methods, direct solution
methods are based on the so-called first-discretize-then-optimize scheme. In the first
step, the OCP is discretized leading to a finite-dimensional optimization problem
which can be solved by nonlinear programming techniques. In both direct single
shooting and direct multiple shooting, the control functions u(·) are discretized.
Therefore, we choose N + 1 fixed discretization points

t0 < t1 < . . . < tN := t f

defining a not necessarily equidistant time grid onT , which we call the shooting grid.
For simplicity, we assume the shooting grid to coincide with the constraint grid of
the point constraints used in Definition 2.1. However, the following argumentation
can be extended to differing grids for the controls and point constraints. On each
of the resulting intervals [tk, tk+1], 0 ≤ k ≤ N − 1, the control functions u ∈ U are
piecewise approximated using finitely many control parameters q = (q0, . . . , qN):

u(t) ≈ νk(t, qk), ∀t ∈ [tk, tk+1], k ∈ {0, . . . ,N − 1}.

Typically, the functions νk are of linear or constant type, cf. [56, 89]. In the constant
case and assuming nu = nq, this leads to an approximation of the controls via

u(t) ≈ qk, ∀t ∈ [tk, tk+1], k ∈ {0, . . . ,N − 1}.
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x(·)
x0

tNt0 tN−1t1 t2 t3

u(·)q1
q0

q2
qN−1

Figure 2.1: Visualization of the direct single shooting method with discretized
controls and state trajectory, which is obtained by integration.

For completeness, the control at the final step is set as

qN := qN−1.

The statesx(·) are regarded as dependent variables on [t0, t f ]. Numerical integration
is used to obtain the state as functionx (t; q) of the finitely many control parameters.
In each iteration of the solving process, an ODE has to be solved. The OCP can
then be viewed as an NLP in the nx + Nnq unknowns x0 and q which can be
solved to local optimality using a finite-dimensional NLP-solver, e. g., by using
sequential quadratic programming (SQP), cf. [56, 89]. Path constraints are commonly
discretized and enforced on the discretization grid only. Note that the point
constraints are already present in a discrete version. It might happen that the
discretized path constraints are violated in the interior of the grid intervals. If
this effect is not neglectable, which is the case in most practical applications, one
could enforce the constraints on a even finer subgrid. Figure 2.1 illustrates the
discretization scheme of the direct single shooting method.

An advantage of the approach is that it can be implemented rather straightfor-
wardly if suitable solvers are available. Additionally, the number of unknowns
in the resulting NLP is relatively small. However, direct single shooting comes
with two drawbacks. While knowledge about the controls can be brought in,
no knowledge about the process itself, i. e., x(·) except the initial values, can be
used. Moreover, if the initial guess for the initial state x0 is too far away from the
optimal solution, a singularity may exist and no solution of the IVP is available. In
practice, a close enough initial guess to prevent this may be hard to obtain. Even if
a solution exists, it may not be computed numerically due to propagation of errors
over the course of the integration. Depending strongly on the non-linearity of the
process, the error propagation may lead to a singularity even if the initial values
were quite good.
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2.1.1.3 Direct Multiple Shooting Direct multiple shooting originates in ideas
of Bock and Plitt, cf. [10], and is also a direct method. In contrast to direct single
shooting, the states are not regarded as dependent variables, but also discretized on
the shooting grid {tk} using new variable vectors sk ∈ Rnx . These shooting variables
serve as initial values on the resulting N independent IVPs on the intervals [tk, tk+1]:

ẋ(t) = f (t,x(t), qk) ∀t ∈ [tk, tk+1], k ∈ {0, . . . ,N − 1}
x(tk) = sk.

(2.5)

Note that sN is not an initial value for an IVP, but used to check terminal costs and
constraints. Again, the path constraints are discretized and treated as in direct
single shooting leading to

0 ≤ p(tk, sk, qk) ∀k ∈ {0, . . . ,N}

instead of (2.3). At this point, the systems (2.5) are not necessarily continuous in
the grid points. Hence, we introduce additional matching constraints

sk+1 = xk(tk+1; sk, qk) ∀k ∈ {0, . . . ,N − 1}.

Here, the notation xk(tk+1; sk, qk) denotes the value x(tk+1) which is obtained as the
solution of (2.5) on the interval [tk, tk+1] with initial values x(tk) = sk and applying
the controls u(t) = qk on [tk, tk+1]. The resulting NLP in (N + 1)nx + Nnq unknowns
finally reads as

min
s,q

∑
k∈{0,...,N}

l(tk, sk, qk) (2.6)

subject to: sk+1 = xk(tk+1; sk, qk) ∀k ∈ {0, . . . ,N − 1}, (2.7)
0 ≤ p(tk, sk, qk) ∀k ∈ {0, . . . ,N}, (2.8)
0 ≤ r(tk, sk) ∀k ∈ {0, . . . ,N}. (2.9)

Note that we assumed I ⊆ {0, . . . ,N} for notational simplicity leading to a different
notation of the originally discrete point constraints in (2.9). Also, the matching
constraints (2.7) might not be satisfied during the iterations of the nonlinear
programming algorithm used to solve the NLP, but are satisfied when convergence
has been achieved. The NLP can be solved to local optimality with tailored iterative
methods, e. g., the aforementioned SQP-methods. The objective (2.6) is formulated
here in a discretized form l : Rnx ×Rnu → R. Figure 2.2 visualizes the concept of
the direct single shooting method.

An advantage of the direct multiple shooting in contrast to the single shooting
is that a priori knowledge about the states can be brought in via the initial values
sk, leading to a faster convergence of the system. Additionally, this method
shows a higher stability, as the time horizons the IVPs are solved on are much



2 Selected Methods in Optimization 10

tNt0 tN−1t1 t2 t3

x(·)

u(·)

q1q0 q2

qN−1

s0

tNt0 tN−1t1 t2 t3

x(·)

u(·)q1
q0

q2
qN−1

s1 s2
sN−1

sNs0 s1 s2 sN−1 sN

Figure 2.2: Visualization of the direct multiple shooting method with discretized
controls and state trajectories, which are obtained by piecewise integration. On
the left, a non-converged state is depicted with violated matching constraints. On
the right-hand-side, the matching constraints are fulfilled and the solution is a
solution of the original problem.

smaller as in the single shooting. System architecture permitting, the different
IVPs may be solved simultaneously using state-of-the-art solvers. On the other
hand, the resulting NLP is larger as more variables, namely sk, enter the problem
compared to single shooting. With the aid of the so-called condensing step many of
these variables can be eliminated. We kindly refer the reader to [10] for detailed
information about this dimension reduction technique, which can be improved for
sparse systems according to [29, 68].

As the direct multiple shooting approach offers the aforementioned beneficial
criteria and is available through efficient implementations, it is the method of
choice for many practical applications.

2.1.1.4 Direct Collocation Collocation methods go back to [100] and have been
refined, e. g., in [9, 47, 88, 102]. Again, both controls and states are discretized on
a time grid with N intervals. As we have seen in the direct multiple shooting,
the discretized states on the grid points read as x(tk) = sk. One-step or multi-step
integration methods, called collocation scheme, are applied in the intervals [tk, tk+1]
to connect the states on the grid. Thus, the ODE system

ẋ(t) = f (t,x(t),u(t)), ∀t ∈ T

is replaced by finitely many equality constraints, e. g., by the explicit Euler
approximation

sk+1 − sk

tk+1 − tk
= f (tk, sk, qk) ∀k ∈ {0, . . . ,N − 1}.

Point constraints and path constraints are included in a similar way as in the
shooting methods. The resulting NLP consists of (Nm + 1)nx + Nmnu unknowns,
where m denotes the number of vectors of the collocation scheme in a single interval
[tk, tk+1]. In the presented Euler case, it simply holds that m = 1. The Lagrange
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term of the objective is replaced by a summation term on the grid points. The NLP
can be solved with state-of-the-art NLP-solvers, e. g., interior point methods.

As in direct multiple shooting, collocation also allows us to use knowledge
about the process behavior in the initialization of the optimization problem. More-
over, perturbations do not spread over the whole time horizon, as small violations
of the matching constraints over the course of the NLP dampen them out. Although
the problem can get very large, depending on the specific collocation scheme,
it is rather sparse and efficient solution methods exist, e. g., [108]. However, a
drawback of collocation is the difficulty to include adaptivity of the ODE solution
process. This means that highly nonlinear or stiff systems require a very fine
collocation scheme in regions we are not aware of beforehand. Introducing such a
very fine grid on the whole horizon leads to a very large NLP in the number of
variables. There are methods which try to overcome this issue by starting with a
coarse grid and refining it during the solution process, cf. [8].

In the current setup, we can solve NLPs on a fixed time horizon. In many practical
applications, e. g., an acceleration controller in a car, the observable system states
can change very rapidly. For instance, because of unpredictable changes in the
road surface or other cars which might suddenly appear. Moreover, it is very
difficult to realize the calculated controls in practice in a sufficiently exact way. This
usually leads to big differences in the calculated system states and the performed
ones in the real world. Normally, the effect grows the further we move on in the
time horizon. We therefore discuss model predictive control (MPC) as an iterative
method to face these issues in the next section.

2.1.2 Model Predictive Control

In practice, one often wants to control a process over a relatively long time horizon.
Many applications aim to induce system states which should be as close as possible
to desired reference states. Therefore, the objective of the OCP which has to be
solved is of a least squares type:

min
x(·),u(·)

∫ t f

t0

‖x(t) − x̄(t)‖2W + ‖u(t) − ū(t)‖2Q dt + ‖x(t f ) − x̄(t f )‖2P

Here, x̄(·) and ū(·) denote the reference values of the states and controls. The
expression ‖a‖A :=

√

aTAa denotes the norm induced by symmetric weighting
matricesW ∈ Rnx×nx ,Q ∈ Rnu×nu , and P ∈ Rnx×nx . These are chosen to be positive
semidefinite and allow to realize a prioritization of particular states and controls in
terms of achieved distance between actual and desired values. Often, the reference
trajectories are chosen to be equilibria of the system, but it is also possible to
consider dynamic trajectories.

As already mentioned above, it is often necessary in practical applications to
be able to handle unforeseen changes in the system’s environment and to react to
imprecise realizations of the calculated controls. Moreover, the measured system
states which were used to initialize the OCP can be fraught with inaccuracies.
Another reason that makes it necessary to update the calculated controls and states
is the ODE model itself. As in applications, natural or very complex technical
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Figure 2.3: Visualization of the MPC-scheme. At discrete time points t0, . . . , ti, . . . ,
which do not need to coincide with the discretization points of the controls, an
OCP is solved, e. g., by one of the methods described above. The values for the
initial states x0 and current values of the controls u0 for each OCP are obtained by
measurements. Here, the controls are piecewise approximated by constant values.

systems are regarded, the underlying ODE of the OCP is a more or less good
theoretical description of the process. Thus, even with a highly accurate realization
of the calculated controls and unbiased measurement of the initial states, the actual
system states may differ from the calculated ones.

This leads us to the idea of solving not only a single instance of the OCP, but
rather a series of OCPs on a moving time horizon. More specifically, at every time
instant t, an optimal control problem with initial value x0(t) is solved, e. g., with
one of the direct methods mentioned above. The obtained control u(t) is fed back
into the system. In practice, these steps of measuring the system states, solving
the OCP for the particular time step, and feeding the control into the system is
performed at discrete sampling times t0, t1, . . . . This is mainly due to the fact that
the computation of the optimal controls and feeding them into the system cannot
be done instantaneously. Also, measuring the actual system states, which serve
as initial values of the actual problem, takes a certain amount of time. Figure
2.3 illustrates the concept of the MPC algorithm as iterative process on the time
horizon.

When applying an MPC-based algorithm in practice, usually many deviations
from this idealized description occur. First, not the exact optimal control problem
is solved, but rather an approximation, e. g., by one of the methods presented in
Section 2.1. Beyond this, a high delay between measuring the system states and
applying the controls, e. g., due to high solving times, may result in unacceptable
deviations between the desired and actual system states. Also, it may not always
be possible to measure all required states at every sampling time. Additionally,
these measurements may not be sufficiently exact. In the literature, a variety of
methods exists which deal with these issues. As it is not the purpose of this thesis
to develop solution methods for the MPC-scheme, we kindly refer the reader to
[18, 56] for further information on real-time iterations, and to [29, 85] for an insight
in moving-horizon estimation. In Section 3, we present a driver-assistance system,
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which is already working in a car and making use of MPC and direct multiple
shooting for solving the OCPs.

2.2 Mixed Integer Programming

In contrast to the problems in the last section, we now consider optimization
problems which are finite-dimensional. First, we define the problem class of mixed
integer nonlinear programs.

Definition 2.2 (Mixed Integer Nonlinear Program (MINLP)). A mixed integer
nonlinear program is a finite-dimensional optimization problem in the unknowns x ∈ Rnx

and y ∈ Rny with an additional requirement for y to be integral,

max
x,y

f (x,y) (2.10)

subject to: g(x,y) ≤ 0,
x ∈ Rnx ,

y ∈ Zny ,

with an objective function f : Rnx × Rny → R and a function g : Rnx × Rny → Rng

that implies constraints on the set of permissible solutions. Both are considered to be
twice continuously differentiable. In case that no integral vector y is present, we call it a
nonlinear program (NLP).

Note that the objective function in the definition above is to be maximized as this
will be the case in the mixed integer models we are discussing in the course of
this thesis. Transformations between maximizing and minimzing an objective
function are simply realized via multiplication with -1. MINLPs are known to be
NP-hard, cf. [32]. This means, ifNP , P, then there exist instances of problem
(2.10), which cannot be solved in polynomial time with respect to the size of the
problem formulation. Of particular interest in this thesis are problems where f
and g are of linear type. The optimization problem (2.10) is then called Mixed
Integer Linear Program. We give a formal definition as follows.

Definition 2.3 (Mixed Integer Linear Program (MILP)). A mixed integer linear
program is an optimization problem in the unknowns x ∈ Rnx and y ∈ Rny with an
additional requirement for y to be integer,

max
x,y

cTx + dTy (2.11)

subject to: Ax +Dy ≤ b,

x ∈ Rnx ,

y ∈ Zny .

The matricesA ∈ Rm1 ×Rnx andD ∈ Rm2 ×Rny as well as the vector b ∈ Rm1+m2 , with
m1,m2 ∈N, define linear constraints on the set of permissible solutions. Additionally, the
linear objective function can be expressed via vectors c ∈ Rnx and d ∈ Rny . In case that no
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Algorithm 2.1: Pseudocode of cutting plane algorithms. A solution of the
original problem is determined by solving a series of relaxed problems.

initialize with a relaxation of the original problem, i. e., by omitting certain
constraints;

repeat
solve current relaxation;
if relaxation is infeasible then

return infeasible;
else

obtain optimal solution of relaxed problem x∗;
determine one (or more) constraints separating x∗ from the original
problem’s feasible set and add them to current problem;

end
until x∗ is valid for original problem;
return x∗ as optimal solution of the original problem;

integral vector y is present in the definition of the optimization problem, we call it a linear
program (LP).

A straightforward approach to solving an OCP is to apply a discretization method,
e. g., direct collocation, leading to an NLP. In case that a piecewise constant
discretization method is used and the objective function is also linear, a linear
program is obtained. In both cases, adding further integer variables and constraints
on these variables results in a mixed integer program.

While enormous progress has been made in the field of mixed integer linear
programming, cf. [43, 111], it remains challenging to bring together concepts from
linear integer programming and nonlinear optimization. For an overview of the
topic and further references, we kindly refer the reader to, e. g., [7, 14, 67]. In the
remainder of this section, we will give an overview of solution methods for mixed
integer programming.

2.2.1 Cutting Planes

The concept of cutting plane algorithms relies on the premise that the optimal
solution of an optimization problem lies on the boundary of the feasible set.
While this is always the case for linear programs, in the nonlinear case this holds
only if the feasible set and the objective function are both convex. Nevertheless,
there are approaches to deal with nonlinearity, e. g., by constructing linear outer
approximations, cf. [78]. A generic cutting plane algorithm starts with a relaxation
of the original problem. This means that certain constraints on the feasible set –
including demands on integrality of variables – are omitted. The feasible set is
iteratively solved to optimality with respect to the objective function. The task
is to determine constraints, which are valid for all points in the original feasible
set but are violated by the optimal solution of the current relaxation. Afterwards,
the constraints are added to the relaxation. This procedure, which is depicted in
Algorithm 2.1, is performed until the feasible set in the neighborhood of the optimal
solution is described well enough. The solving step itself is usually performed by a
state-of-the-art MI(N)LP solver. Especially for feasible sets, which are described by
many inequalities, the advantage of a cutting plane algorithm is that the feasible
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sets of the relaxed problems, which are iteratively solved, are of much lesser
complexity than the original one. This hopefully results in lower solution times
for solving a series of less complex optimization problems compared to the time it
takes to solve a single, more complex one. Obviously, the overall runtime of the
cutting plane algorithm strongly depends on the time for computing valid cutting
planes. Figure 2.4 illustrates this concept for a linear program.

An important application for cutting plane methods are integer programs.
Here, a continuous relaxation in the integral variables is solved iteratively in
order to obtain a valid integral solution. Much effort has been spent to efficiently
determine strong cuts that cut off as much as possible from the relaxed feasible
region. According to [44], the problem to determine a constraint which is valid for
all integral points in the feasible region of the original problem but violated by a
given point in the relaxed set is called separation problem. For an LP, a rather simple
approach to derive such inequalities is as follows. Given a valid inequality

ny∑
j=1

a jy j ≤ b,

where y j ≥ 0 are integer variables, we introduce a so-called Gomory-Chvátal cut

ny∑
j=1

ba jcy j ≤ bbc.

This concept goes back to the works of Gomory [40] and Chvátal [15] and can be
extended to include continuous variables as well.

A further example for cutting plane methods are disjunctive cuts, which were
first described by Balas in [5] and are commonly used in state-of-the-art MILP-
solvers. Disjunctive cuts are based on a disjunction in the feasible set imposed by
integer variables. In case of a single disjunction, they are also referred to as split
cuts, cf. [16]. Basically, a split cut for a single integer variable is a valid inequality
for all points in the relaxations (of this variable) of the two disjunctive sets. It relies
on the fact that the convex hull of these disjunctive relaxations includes all integer
points of the feasible set. Of course, one is interested in finding strong cuts for
the convex hull. This concept can also be extended to any kind of disjunction in
feasible sets. For recent developments concerning disjunctive cuts and further
references, we kindly refer the reader to [24]. Information on perspective cuts which
rely on replacing an original convex function in the considered MINLP with its
so-called perspective function can be found in [27, 39, 51]. There are still further
kinds of cuts, some of which are implemented in state-of-the-art (MI)LP-solvers.

2.2.2 Column Generation

Another important approach for handling large-scale optimization problems
is column generation. As it might be computationally demanding to solve the
considered optimization problem as a whole and many variables are equal to
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(a) Feasible set of the original problem
and objective function.

(b) Feasible set of a relaxation of the
original problem. The optimal solution
with respect to the objective function is
determined.

(c) Current optimal solution is not valid
for original problem. Thus, a separating
constraint is added to the relaxation.
An optimal solution for the resulting
relaxation is determined.

(d) Current optimal solution is again
not valid for original problem. Another
separating constraint is added to the
relaxation. The optimal solution for the
resulting relaxation is determined. As
no constraints of the original problem
are violated, the solution is also optimal
for the original problem.

Figure 2.4: Visualization of the cutting plane method for a two-dimensional linear
program. Solutions of a a series of relaxations of the original problem are calculated
until no constraints of the original problem are violated by the current solution.
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zero in the optimal solution anyway, one starts with a small subset of variables of
the original problem. This results in the restricted master problem (RMP). Further
variables are iteratively added to the RMP. One possibility to identify the variables
which are to be added is to solve the so-called pricing problem. It is basically
a separation problem for the dual RMP, which identifies the most promising
variables to be included in the next iteration by calculating maximal reduced costs
(in case that the objective function is to be maximized). More specifically, the
variables with the highest, strictly positive reduced costs enter the primal RMP. If
no solution with strictly positive reduced costs exists, the current solution of the
primal RMP is also optimal for the original problem. For detailed information on
column generation, cf. [64, 65].

2.2.3 Branch-and-Bound

The branch-and-bound method originates for the MILP-case in [17, 60], but has
later been extended to the nonlinear case, e. g., in [12, 70, 71]. A comprehensive
overview of the branch-and-bound framework and different applications in the
linear and nonlinear case can be found in [62]. We explain the algorithm for
MI(N)LPs and the special case of the integer vector y being restricted to binary
values, i. e., y ∈ {0, 1}ny . Basically, a series of problems is solved following a tree
structure. The root node consists of the original problem with all binary variables
relaxed. Every node of the tree represents an LP or NLP. In each node of the tree,
more binary variables are fixed than in its parent node. Thus, a valid upper bound
on the objective value for all nodes in the whole subtree is given in each node by
the objective value of the optimal solution. Finally, the leave nodes of the tree
provide an enumeration in the integer variables. Certainly, one does not want to
solve all possible optimization problems of the tree. To this end, the upper bounds
in each node are used to cut off whole subtrees.

Considering a binary problem, the relaxed problem with y ∈ [0, 1]ny is solved
first. Then, it is decided which variable is to be fixed to either bound, e. g., yi. This
step is called the branching step. The two resulting subproblems with yi = 0 and
yi = 1, respectively, are added to the list of active problems. This step is repeated
until the list of active problems is empty. Each node provides an upper bound on
the objective value of all nodes in its subtree via its own objective value. Updating
this bound after the optimization problem in a node has been solved is called the
bounding step. Additionally, the best known objective value of an integer solution
defines a global lower bound on the original problem’s objective. The process of
introducing two child nodes for a node is only skipped if:

• The problem of the current node is infeasible. As all subproblems will also
be infeasible, the whole subtree can be pruned.

• The solution of the current node is integral in y. In this case, the global lower
bound can be compared with the objective and possibly provide an update.

• The objective value of the current node is lower than the current global lower
bound. As it is a valid upper bound on the objective values in the subtree,
the subtree can be pruned.

The method’s main principle is illustrated in Figure 2.5. In fact, most MILP
and MINLP solvers contain a branch-and-bound framework. However, the
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yi = 0 yi = 1

y j = 0 y j = 1

yk = 0

yl = 1yl = 0

ym = 0

Figure 2.5: Visualization of a branch-and-bound tree. Each node depicts a single
(N)LP. The solution of the blue nodes is fractional in at least one integral variable.
The red nodes are pruned due to infeasibility or an objective value which is lower
than the global lower bound. The green node indicates a valid solution for the
(N)LP which provides a global lower bound. The lines between the nodes mark
the branching step for a certain variable.

performance strongly depends on the actual implementation of the algorithm.
We briefly outline different concepts and choices that have to be made. An
important issue is the strategy of deciding in which order the nodes are to be
processed. General methods are best-first-search and depth-first-search. While in the
former in each iteration the node providing the currently highest upper bound
is solved, in the latter the aim is to find a feasible solution as quickly as possible.
Best-first-search often results in large trees, as many fractional solutions arise. A
frequently used strategy combines both methods and is called diving-method. Here,
depth-first-search is applied until an integral solution is found. Afterwards, the
best open subproblem is determined and a new depth-first-search is started on
this subproblem.

Furthermore, it is important to have good strategies for choosing the particular
variable which is to be branched on in the current step. Usually, multiple different
variables are fractional in the current relaxed solution. One possibility is to select
the particular variable for branching with the maximum distance from an integral
value. In contrast to this so-called maximum fractional branching, another strategy is
the strong branching. Here, it is the idea to test which of the fractional candidates
provides the best bound before actually branching on any of them, cf. [1]. A
comprehensive overview of different branching-rules and further discussions on
this topic can be found in [61, 74].

Finally, much effort is usually made to determine the upper bound in the
different nodes heuristically. The purpose is to reduce the size of the tree by
pruning nodes, which lead to either infeasible or non-optimal solutions, as early
as possible. Insight in the special structure of the problem under investigation is
often crucial here in order to obtain upper bounds which are as low as possible.
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Cutting planes, cf. Section 2.2.1, can easily be incorporated in a branch-and-
bound method leading to a branch-and-cut algorithm. To this end, in each node,
the relaxed solution can be cut off by a cutting plane approach until a certain
threshold is reached, before the branching step on the remaining problem is applied.
In fact many state-of-the-art solvers implement a branch-and-cut mechanism.
Additionally, also column generation methods, cf. 2.2.2, can be applied to a
branch-and-bound algorithm, either as branch-and-price method or together with a
cutting plane approach leading to a branch-cut-and-price method. Analogously to
the branch-and-cut method, a column generation algorithm can be performed in
each node before branching.

2.2.4 Modeling Logical Implications

In many practical problem settings, situations arise where constraints can be either
enabled or disabled depending on certain logical conditions. Thus, we discuss
possibilities to model optimization problems dealing with logical implications.
First, we define the problem structure for the purpose of our considerations as:

max
x,z

f (x, z) (2.12)

subject to: g(x, z) ≤ 0,
[zk = 1]⇒ [x ∈ Sk] ∀k ∈ {1, . . . ,nz}, (2.13)

x ∈ Rnx ,

z ∈ {0, 1}nz ,

with

Sk = {x ∈ Rnx | hk(x) ≤ 0}

In addition to the objective function f : Rnx ×Rny → R and constraints expressed
by g : Rnx ×Rnz → Rng , there are nk logical constraints. Each of them involves a
binary indicator variable zk. The value this variable attains indicates whether x has
to belong to the set Sk or not. In other words, if zk is equal to 1 then the constraints
hk(x) ≤ 0 defining set Sk are active, cf. [11].

There are many examples of problem classes containing such logical implica-
tions. For example in flow shop problems, which belong to the class of scheduling
problems, statements such as “if job A is scheduled before B, then condition C
holds” arise. In the context of the discussions in this thesis, another example would
be: “if car A is on the intersection area in time step t, then car B is not allowed to
be on the intersection area in time step t.”.

A well-known approach for expressing logical implications is the big-M method.
Let the binary variable zk indicate whether the constraint hk ≤ 0 is active or not.
Then we can introduce the constraint

hk(x) ≤Mk(1 − zk), (2.14)
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where Mk denotes a large positive constant. One can easily see that if zk = 1 holds,
the constraint hk(x) ≤ 0 is imposed, whereas, if zk = 0 is valid, the constraint (2.14)
becomes redundant as hk(x) ≤ Mk holds for all x. This argument is valid under
the premise that Mk ≥ supx∈F , where F is the feasible set for x. A major difficulty
of the big-M method is that the values Mk might be hard to be determined. In case
that F itself is unbounded, it is even impossible to calculate a valid big-M. Even if
an Mk exists that fulfills the requirements, one should bear in mind that numerical
issues might appear when choosing a big-M which is close to certain bounds used
by the solver software, e. g., feasibility bounds or integrality bounds. Also, the
solving process itself strongly depends on the particular choice of the value for
Mk. More precisely, in the continuous relaxation of (2.14), which is used by current
MI(N)LP solvers, a value of zk close to 0 leads to a deactivation of the constraint
hk(x) ≤ 0. If the value of Mk is chosen to be very large, the relaxation gets weaker.
On the other hand, big-M formulations are rather straightforward to implement,
do not increase the problem size, and do not destroy linear, or convex properties
of the original problem. Under the premise that we are able to determine rather
tight values for Mk, big-M formulations can be the method of choice.

Another elaborate possibility to model logical implications in optimization is
disjunctive programming and goes back to the work of Balas [5]. A generalization
is the so-called generalized disjunctive programming (GDP) paradigm. The GDP
formulation involves boolean and continuous variables that are specified in alge-
braic constraints, disjunctions, and logic propositions. For a detailed overview
and illustrative examples of GDP, we kindly refer the reader to [41, 42, 84]. An
application of GDP for mixed integer optimal control problems can be found in
[51]. However, in this thesis, we will make use of big-M formulations as they are
suitable for our purposes and implemented straightforwardly.
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3 Developing a Cruise Control System

A major goal of this thesis is to establish, implement, and evaluate a novel
driver-assistance system. Parts of this section concerning the concept of the
system, implementation of the acceleration controller, discussions on technical
requirements, the included HMI, and a brief report on test drives have already
been published in [96]. The aim of this assistance system is to cross a traffic-light
controlled intersection autonomously in an urban area. The developed application
controls a vehicle’s acceleration while respecting right of way regulations given
by the traffic-light in the first place. A crucial part is the wireless exchange
of information with the traffic-light. Thus, the application is considered to be
cooperative while regarding each car individually.

In this section, we give an insight in the system’s functionality. As the
implementation of the assistance system is not only realized in a traffic-simulation
software but also in a car, we will have a more detailed insight in technical
requirements and challenges for an implementation in a car. Impact on traffic flow,
which is measured by using a microscopic traffic simulation software, is evaluated
later on in Section 6.4. We highlight an additional application providing a visual
overview of information of the traffic-light and other traffic participants in the
area of a traffic-light controlled intersection.

3.1 Overview

Traffic-light controlled intersections are bottlenecks for urban traffic flow. Unfor-
tunately, there are limited possibilities for increasing a traffic-light’s capacity, or,
in other words, increasing the amount of vehicles which can pass over a certain
time horizon. One could think of extending the junction area physically, e. g., by
building more lanes.

Another strategy is the improvement of a traffic-light’s logical rules, i. e., in
which particular way it allows vehicles, which are driving on the different lanes,
to pass the junction area. In fact, a lot of research exists that tries to cope with
this problem of improving the distribution of red and green phases. There are
algorithms, which treat the problem as a multi-agent problem, that take the
traffic-light and oncoming cars into account. Frequently, the traffic-lights are called
self-organizing in this case, cf. [35, 75]. In [49] and [98] fuzzy logic is applied to
improve the performance of an isolated traffic-light. Multiple research approaches
are based on evolutionary or genetic algorithms, e. g., [90, 105]. Finally, there
are publications which make use of mathematical programming to achieve an
increase in traffic flow at intersections by controlling the behavior of traffic-lights,
cf. [94, 95].

A third possible way to improve traffic flow at intersections is to adapt the
individual behavior of each vehicle (or a certain amount of vehicles). In fact,
a high potential lies in controlling not only the moment when a car enters an
intersection (or more precisely, when it passes the stopping line) but also the way
the car accelerates and decelerates when approaching it. The time for passing
an intersection for a car is minimal if the stopping line is passed with maximum
velocity at the time the light switches to green. Note that for simplicity, we only
distinguish between the signal states green and red. The former one also includes
the amber phase as cars are still allowed to pass the intersection. The latter one
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additionally contains the red-amber phase. In contrast to the work in this thesis,
there are approaches which only aim to minimize the time gap between the switch
from red to green and the transit of the intersection. For example, in [23] and [52],
systems for a green-light-optimized speed-advisory (GLOSA) are presented. The
authors introduce algorithms whose outcome is a static velocity which is suitable
for passing the intersection without having to stop because of a red light. Apart
from the fact that only static velocities are calculated, these methods do not consider
preceding vehicles. Moreover, we do not only develop a system which provides
the driver with information about a proposed velocity, as in [30]. We additionally
develop an acceleration controller which autonomously performs the calculated
accelerations. Another related algorithm is presented in [3], called predictive
cruise control. Here, methods of model predictive control are used to calculate
trajectories for single and multiple cars in order to pass a traffic-light controlled
intersection automatically. Although it is included in the objective to drive near the
driver’s preferred velocity, the presented results reveal that the cars drive with less
than the preferred velocity when passing the intersection. As explained above, a
highest possible velocity is crucial for a better outcome in terms of minimizing the
time it takes to pass the intersection area. Also, an analysis of solutions obtained in
Section 4, which mirror an overall optimized traffic flow, supports this statement.
Finally, the authors in [79] introduce an algorithm, including an optimal control
problem, in order to determine speed-trajectories for a car which is approaching
a traffic-light while the light’s signal-states are fixed. In this publication and the
provided simulations therein, only a single car is considered, although the authors
briefly propose an extension of the algorithm to multi-vehicle scenarios.

3.2 Concept of an Assistance System
In the BMWi-funded project UR:BAN, cf. [58], partners from industry, research
institutes, and municipal authorities developed driver-assistance systems as well
as traffic management systems for traffic in an urban setting. The project involved
systems for enhancing perception of situations that occur in traffic and research
fields which take the interaction between a human user and a machine into account.
Besides these and many more areas, a central research topic was the investigation
of wireless communication technologies and their applications in traffic-related
systems.

As explained above, situations concerning an intersection are of particular
interest. When passing an intersection, many different traffic participants have to
be taken into account. This is why encouraging communication and cooperation
between those appears to unlock some potential and hence was studied in the
UR:BAN-project. It seems easier for an artificial system to recognize an intersection
area, for example visually, when a traffic-light is located in front of the intersection.
Additionally, the occurring regulations of right of way do not directly depend
on other traffic participants since the traffic-light, as a central regulation unit,
governs which cars are allowed to pass. These relatively simple rules are easier to
implement in a system than those rules that depend on the presence of another
car in a certain position. Finally, another advantage of focusing on traffic-light
intersections arises: there is already some computational infrastructure available,
which can be used for implementing algorithms and communication devices. All
the aforementioned arguments are reasons why we develop a driver-assistance
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system which controls a car’s acceleration and deceleration when approaching a
traffic-light regulated intersection.

The basic concept of the system is as follows: when approaching a traffic-light,
a communication between the car and the traffic-light is established. In general,
different types of wireless communication are possible here. We make use of
the C2X-technology, which is practically a wireless LAN using a communication
protocol that can exclusively be used for automotive applications. The relevant
communication technology will be looked at more closely in Section 3.4.1. Once
the communication has been established, the traffic-light provides the car with
some information. In particular, it shares its position and the geometry of the
intersection area including number and location of lanes and stopping lines using
the global positioning system (GPS). The traffic-light also submits data about its
current light statuses for each lane as well as a corresponding prediction. More
specifically, it provides information for each lane about the time to the next change
of its light status and the time to the second-next change. For more information
about the traffic-light and its behavior in communication, cf. Section 3.4.2. The
two types of location data (location of intersection and geometry of intersection
area) can now be used by the assistance system in the car to locate itself relatively
to the traffic-light. This requires the car to have a positioning system itself, cf.
Section 3.4.3. We now know how far the car is away from the traffic-light, or,
more precisely from the stopping line, and which lane it is driving on. The latter
information is used for retrieving the current status of the traffic-light. Note that
there is no visual recognition at all. However, we could think of combining the
identification of the traffic-light’s current status via wireless communication and
visual recognition. In this case, the visual system could serve as security fallback if
the wireless communication was interrupted or defective.

Up to this point, we do not benefit from the communication between the
traffic-light and the car. Data about positions and traffic-light status could also
be retrieved via up-to-date maps and visual recognition, respectively. The major
advantage of a direct exchange of information with the traffic-light is the provided
prediction of the signal status. We can make use of this information and determine
a certain strategy, which we plan to perform during a fixed time horizon (called
planning horizon). We will refer to such a strategy as regime. A regime could for
example be the intention to stop in front of the traffic-light or to pass it without
any adaption of speed. We will have a look at all the regimes later. The point is
that only the prediction of the traffic-light’s upcoming signal changes makes us
capable of planning ahead for several seconds. After gathering all the information
mentioned above and determining a regime, we calculate trajectories for the car’s
acceleration in the planning horizon. Finally, we pass the calculated acceleration
for the next time step to the engine via a control unit, which is called Autobox.

Remember that our ultimate goal is to improve traffic flow and to increase the
number of cars which pass the traffic-light during a green phase. To this end, we
minimize the time gap between the traffic-light’s switch from red to green and
the automated crossing of the stopping line. Additionally, we want the car to be
as close as possible to its maximum velocity on the stopping line. Both concepts
lead to a minimization of the time it takes the car to pass the intersection (also
called passing time). It is easy to understand that an individual minimization of the
passing time leads to a maximization of the number of vehicles which can pass the
intersection during a fixed green phase. The idea is that also non-equipped cars
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benefit from the system, as one of their preceding cars needs less time to pass the
intersection. For a detailed evaluation of the effects on traffic flow, cf. Section 6.

The developed system is technically embedded in the car’s adaptive cruise-
control (ACC). The ACC is a state-of-the-art technology extending the car’s cruise
control, that allows the driver to set a preferred velocity which the car performs
automatically. The ACC integrates data of preceding vehicles or obstacles, which
are recognized via radar sensors or laser sensors. Afterwards, the system adapts
the car’s velocity so that a defined time gap or distance to the preceding car or
obstacle is satisfied. For further information, cf. [87]. This setup allows us to
retrieve the driver’s preferred velocity and provides technical infrastructure and
fallbacks. We will discuss these issues shortly.

Before the calculation of a desired acceleration starts, a central module, called
regime-controller, exclusively enables a single regime based on the gathered informa-
tion about the environment and provides the necessary data. This information has
to be available in the car as soon as a fixed distance to the traffic-light is undershot.
The so-called starting-distance is currently set to 200 m, and we consecutively
demand the communication range to be at least 200 m. Due to the regime-based
design of the assistance system, we will from now on refer to it as regime-ACC
(RACC). The authors of [38] present a similar approach for traffic on a highway
based on different maneuvers.

Free-Transit-Regime In case that the regime-controller asserts that the traffic-
light’s stopping-line will be reached during a green phase if the car continues at
its current velocity, the free-transit regime is enabled. Here, the system simply
performs the driver’s preferred velocity.

Deferred-Transit-Regime In case of a predicted arrival at the stopping line
during a red phase, the regime-controller activates the deferred-transit-regime.
Core of this regime is an MPC-controller, cf. Section 2.1.2, which calculates
trajectories on the planning horizon, cf. Section 3.3. Basically, we want the car
to pass the stopping line with the driver’s preferred velocity as soon as the light
changes to green. More specifically, we aim for the minimum of the preferred
velocity and 40 km/h. That is because of the legal regulations stated in [26], where
regulations concerning traffic-lights are arranged. Additionally, it is possible to
incorporate a certain security threshold between the changing time from red (in
Germany red-yellow) to green and the automated passage. During the deferred-
transit, a defined minimal velocity (vmin > 0) is not undershot. This avoids a
disturbance of succeeding cars, and also a stop of our vehicle. In this regime the
concept of minimizing the passing time, as explained above, is fulfilled. The car’s
velocity when passing the stopping line is maximized, and the time gap between
the switch from red to green and the passage is minimized.

Pole-Stop-Regime If again the regime-controller predicts an arrival during a red
phase and additionally the velocity would drop below vmin, the pole-stop-regime
is enabled. The word pole indicates that this regime is only active if there is
no preceding vehicle detected. Otherwise, the car-following-regime is activated.
During the pole-stop-regime, the car performs a stopping maneuver in front of
the traffic-light’s stopping-line, while respecting a defined distance of several
meters, e. g., 10 m. This so-called stopping gap can be parametrized statically, or
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could also be dependent on the geometry of the intersection the car is approaching.
This adaption allows us to avoid blocking other lanes, which can be rather short.
The information about a junction’s geometry is submitted by the traffic-light, cf.
Section 3.4.1; it is, however, currently not evaluated for adapting the stopping gap.

Pole-Start-Regime After having performed a pole-stop, the car starts automati-
cally during the pole-start-regime. To this end, trajectories are calculated, again by
model predictive control, which lead to an acceleration of the car and a transit of
the stopping line after the traffic-light switched to green. As the car has stopped
several meters in front of the stopping line, it can be accelerated already during
the red phase. Remember that we have a prediction of the changing time to green.
This leads to a higher velocity the car passes the stopping line with, in contrast
to a stop directly in front of the stopping line. This effect obviously grows with a
growing stopping gap until the minimum of the driver’s preferred velocity and
the legal passing velocity of 40 km/h can be reached. As discussed in Section
3.4.6, we have to find a tradeoff between an augmentation of the vehicle’s passing
velocity and the acceptance of the system by other traffic participants. Again, in
this regime, we reduce the vehicle’s passing time.

Car-Following-Regime If a preceding car is detected, and because of its current
position, velocity, and acceleration it is predicted that the distance between our
car and the preceding one would fall below a determined security distance while
performing one of the regimes above, the car-following-regime is enabled. During
this regime, the system follows the preceding car using the ACC-system.

Changes in the traffic situation, e. g., another car is switching to our lane in front of
us, or a trajectory which is not performed well enough, will lead to the necessity
of recalculating the trajectory. Additionally, the provided times of changes are
fraught with inaccuracies. That is why we design our assistance system in a
way that it allows us to do both plan ahead for a certain time horizon and be
dynamic enough to deal with inaccuracies and changes of the traffic situation.
To achieve this, our assistance system is based on a cyclic method. In fact, we
repeatedly gain information about the traffic situation, including the traffic-light’s
statuses and predictions. Additionally, we get information about preceding cars
by measurement via built-in radar sensors, cf. Section 3.4.3. We also incorporate
data about our own car (current position, velocity and acceleration) to get all the
data we need to determine a regime which we exclusively want to perform from
now on. As mentioned above, the regime-controller decides which regime we are
about to perform. In the next step of the algorithm, the controller of the exclusively
activated regime calculates trajectories on the planning horizon, cf. Section 3.3.
The determined acceleration is passed to the engine afterwards. This cyclic method
is performed with a frequency of 10 Hz and visualized schematically in Figure 3.1.

Security Fallbacks Remember that we develop a pure assistance system. This
means, the driver is in charge of driving the car and of supervising its behavior.
Nevertheless, we incorporate some security fallbacks. First of all, the system is
technically an extension of the car’s ACC. So applying the brake pedal deactivates
the ACC and simultaneously also our assistance system.
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Figure 3.1: Schematic visualization of the cyclic process the assistance system is
based on. The main steps are: gathering environmental information, determining
a regime exclusively, calculating trajectories in a regime, and passing the calculated
acceleration to the engine. This process is performed with a frequency of 10 Hz.

We also compare the acceleration a regime wants to perform with the desired
acceleration of the ACC in every time step. The minimum of both values is sent to
the engine afterwards. This way, we want to avoid collisions with preceding cars,
for example if we mistakenly did not choose the car-following-regime despite a
small gap between our car and a preceding car.

A few seconds before the pole-start-regime is activated, the driver has to
confirm that it is safe to accelerate the car and to enter the intersection. This is
necessary, as pedestrians or cyclists can still be on the junction area, while the
radar sensor is not able to detect them.

Furthermore, the assistance system is only activated on lanes which allow
either a straight transit, or on turning lanes where no right of way rules concerning
oncoming traffic are present.

3.3 Controller Implementation
We now discuss the implementation of those regimes more specifically which
include a calculation of trajectories for the whole planning horizon. Note that in
the free-transit, car-following, and pole-stop-regime technically the car’s ACC
is used. Nothing special has to be implemented for the first two regimes. We
simply activate the vehicle’s ACC. For the latter one we introduce an artificial
object, which is standing in front of the stopping line and manipulate the ACC,
with the result of stopping the car within the distance of the stopping gap.

During the deferred-transit and pole-start-regime, an acceleration trajectory on
the planning horizon T := [t0, t f ] is calculated. First, we introduce the following
ODE which models the longitudinal motion of the car:
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Table 3.1: Physical quantities used for modeling resistances

Symbol Unit Value Description

Cw - 0.32 drag coefficient
S m2 2 size of the car’s frontal area
ρ kg/m3 1.2 density of air
m kg 1500 car’s mass
µ - 0.015 rolling resistance coefficient
g m/s2 9.81 gravitational acceleration

ṡ(t) = v(t) ∀t ∈ T , (3.1)

v̇(t) = a(t) −
CwSρ

2m
v(t)2

− µg ∀t ∈ T , (3.2)

ȧ(t) = j(t) ∀t ∈ T . (3.3)

Here, the function v(t) reflects the car’s velocity, a(t) its acceleration, and j(t) its
jerk. Additionally, there are some physical quantities in Equation (3.2) modeling
air resistance and rolling resistance according to [55], cf. Table 3.1. We set up an
OCP, cf. Section 2.1, of the form:

min
x(·),u(·)

∫ t f

t0

‖x(t) − x̄(t)‖2W + ‖u(t) − ū(t)‖2Q dt (3.4)

subject to: ẋ(t) = f (t,x(t),u(t)) ∀t ∈ T , (3.5)
0 ≤ p(t,x(t),u(t)) ∀t ∈ T , (3.6)
0 ≤ r(x(tk)) {tk}k∈I ⊆ T . (3.7)

The objective (3.4) minimizes a least-squares term on the planning horizon.
Quadratic matrices W ∈ Rnx×nx and Q ∈ Rnu×nu are introduced for weighting
the deviation between the desired values x̄(t) and ū(t) and values of x(t) and u(t)
in the solution, cf. Section 2.1.2. The motion according to Equations (3.1)–(3.3) is
included in (3.5), where the jerk j(t) is the system’s control unit. We also introduce
path constraints p(t,x(t),u(t)) in (3.6). These are used to model bounds on the
states and controls for physical and comfort reasons. Point constraints (3.7) provide
the possibility to restrict values of the states on discrete time points tk with discrete
index set I. Typical constraints of both types are:

vmin
≤ v(t) ≤ vmax

∀t ∈ T , (3.8)

amin
≤ a(t) ≤ amax

∀t ∈ T , (3.9)

jmin
≤ j(t) ≤ jmax

∀t ∈ T , (3.10)
s(0) = 0, (3.11)
v(tc) ≤ min(vpre f , 11.11). (3.12)
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(a) The velocities during the five phases of the
deferred-transit-regime’s trajectory.

(b) The velocities during the three phases of
the pole-start-regime’s trajectory.

Figure 3.2: Schematic illustration of the different phases during the trajectory-
based regimes. The diagrams show time on the horizontal axis and velocity on the
vertical axis.

The value of vmax is the present speed limit (usually 13.89 m/s in German cities).
If the changing time to green tc is within the planning horizon, the Constraint
(3.12) is added to the system. As explained above, the velocity is then limited to
the minimum of the driver’s preferred velocity vpre f and the legal speed limit of
11.11 m/s. The two regimes deferred-transit and pole-start differ in the desired
values x̄(t) and ū(t), as well as in the values of the weighting matrices W and
Q. Both of them can be further adapted in order to realize different profiles, e. g.,
economic or rather dynamic trajectories. We also make use of them to split the
resulting trajectory for the deferred-transit roughly into five phases:

(i) maintain-velocity-phase,

(ii) deceleration-phase,

(iii) constant-slow-phase,

(iv) acceleration-phase,

(v) end-velocity-phase.

After maintaining the velocity for a certain amount of time, we decelerate the car
until a slower velocity is reached and constantly performed during the second
phase. Subsequently, the vehicle is accelerated until the desired velocity for transit
is reached and further accelerated if vpre f > 11.11 m/s. At the end of the trajectory,
the car should maintain the driver’s preferred velocity. The trajectory performed
during the pole-start-regime can analogously be split into three phases:

(i) idleness-phase,

(ii) acceleration-phase,

(iii) end-velocity-phase.

Figure 3.2 schematically shows the different phases of the trajectories during the
deferred-transit and pole-start-regime.
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For the implementation of the presented assistance system, we use the ACADO-
toolkit, cf. [50]. ACADO is an open source software for modeling, simulation, and
control of dynamic processes. The included code-generation tool makes it possible
to generate tailored algorithms that realize an MPC-scheme using a direct solution
method, cf. Section 2.1. The generated code allows us to adapt the weighting
matricesW andQ as well as the finitely many desired values x̄(tk) and ū(tk) for
{tk}k∈IN in order to define the objective function appropriately.

3.4 Technical Requirements and Implementation
To implement the RACC in a car, some adjustments and extensions in hardware
and software of the car have to be made. Besides these extensions, we only use
technology which is installed in current cars. Furthermore, the traffic-light has
to be capable of communicating and running necessary calculations. We give an
insight in what the challenges and practicable solutions for getting the application
to work properly are.

3.4.1 C2X-Technology

As mentioned above, communication with the traffic-light is crucial for planning
trajectories. There are different possibilities to do so. First, one could think of
purely identifying the traffic-light’s current state visually. Although this approach
would hardly require any additional devices to be installed in the infrastructure,
a resulting application in a car would only be able to react to the light’s current
state. Nevertheless, there are some works on transmitting information using high
speed LED transmitters, cf. [106]. Despite the fact that such technology allows us
to establish the necessary rather complex communication between the traffic-light
and a car, it cannot compensate the drawback that we would need to guarantee an
obstacle-free field of view. Especially in urban areas this would be hard to achieve.

This limitation of visual communication leads us to the idea of wireless
communication via radio networks, which is also called Car-to-Car (C2C) and
Car-to-X (C2X), respectively. In recent years there have been multiple research
projects making use of C2C and C2X (also called: V2V and V2X). Some examples
of developed applications are: an application for displaying information of
traffic-lights and giving advice on the velocity to be performed by the driver, cf.
[30], an application which provides information about construction areas along
with related changes in speed limits and possibly closed lanes, cf. [104], or a
system that informs about emergency vehicles, e. g., position and possible conflicts,
mostly for security reasons, cf. [58]. All the aforementioned projects make use of
communication based on wireless LAN. It comes with the advantages of being
easily deployed, being based on a mature technology, providing low latency, and
being capable of natively supporting C2C and C2X communication in ad hoc mode,
cf. [2]. Regarding more technical aspects, there exist many different standards and
specifications concerning WLAN. Among these, the suitable standard for vehicular
applications is the IEEE 802.11p-standard, cf. [4]. In practice, different types of
messages are exchanged periodically between the agents. To make use of a well
tested and approved standardization, we choose the resulting specifications of the
project simTD [104]. Four different types of messages are used for our purposes,
which are all of XML-type:
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• Cooperative awareness message (CAM): provides information of the presence,
the position, and the basic status of each agent.

• Decentralized environmental notification message (DENM): provides information
about specific driving environment events or traffic events to other agents.

• Intersection: provides topological information about an intersection via
GPS-data, e. g., number and position of lanes and stopping lines.

• Signal phase and timings (SPaT): provides the current status of a signalized
intersection along with the expected time to change.

These messages provide necessary information for the RACC’s functionality. Still,
considering further systems, which may also invoke a bidirectional communication
between the agents, the data provided by the car-related messages (CAM and
DENM) might not suffice. We will have a more detailed look at this discussion in
Section 5.2.1.

Concerning the concrete realization of the RACC, there are also other kinds of
technology which can be suitable for exchanging data periodically over distances
of several hundred meters with low latency. Another technology used for com-
munication between agents is long term evolution (LTE). It provides high data rate
and can benefit from a large coverage area. The attainable delay satisfies most
of the vehicular network application requirements, cf. [76], as long as a direct
communication between traffic-light and car is established. Current technical
solutions often realize a communication based on cellular network via a central
back-end server. The resulting indirect communication is often fraud with high
latency. Thus, we focus on 802.11p as it is perfectly suitable for our application and
we are mainly interested in developing algorithms which can be easily adapted
for different kinds of communication-techniques.

3.4.2 Cooperative Traffic-Light

Additional technical devices for the traffic-light have to be installed to make it
capable of providing the necessary information. These are according to [28]:

• A communication control unit (CCU), for wireless communication via C2X, cf.
Section 3.4.1. It is additionally installed in the car.

• A application unit (AU) is needed to process applications requiring a higher
computing capacity in the field.

• A GPS receiver has to be installed for both time and positioning reference.

Note that the calculated switching times, which are crucial for our assistance
system, can be inaccurate. This is due to the fact that the algorithm, which runs on
the AU, learns the switching times over a certain period of time and afterwards
provides estimated times until the next and second-next change, respectively.
These are usually accurate for traffic-lights with a fixed switching scheme. But
there are numerous traffic-lights with dynamic switching schemes, which can
be based on the current traffic situation or incorporate priorizations for public
transport or police vehicles. In this case, the calculated switching times are
fraught with inaccuracies. Nevertheless, even for dynamic switching schemes it is
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possible to calculate correct switching times about five seconds in advance. Once
the signal status for a lane changed to amber, there is usually the same timing
procedure (at least in Germany, cf. [26]) for the lanes, which are about to be set to
green: the amber-phase should last three or five seconds. The subsequent phase,
during which all lanes are set to red is fixed and depends on the geometry of
the intersection area. Afterwards, the phase of red-amber normally lasts another
second before this particular lane gets the green signal. Still, this information has
to be broadcasted with low latency. As mentioned above, this can not always be
guaranteed when using a communication technique via central back-end servers.
In this case, algorithms might be applied which are predicting future changes for a
longer time horizon in advance. Unfortunately, they are likely to be not very exact
– especially for traffic-lights with dynamic switching schemes.

3.4.3 Adaptions for the Car

We will now focus on additional technical and software requirements, which have
to be met in the car in order to run the RACC. All the computational devices
presented in this chapter are connected via a controller area network (CAN), cf. [63],
which is established in the car.

3.4.3.1 Positioning System For the purposes of the application, it is necessary
to guarantee a very fine position detection of the car on the road. In particular, we
have to know which lane the car is driving on. Otherwise we could not be sure
if the signal group we are matching ourself to is the correct one. As it is already
included in many cars, we use a GPS-device for position detection. In [77] the
authors demonstrate that error ranges in GPS positioning between 2 and 15 meters
occur in urban areas. To achieve a correctness that is satisfying for our application,
we make use of correction data based on mobile-communication technology via an
additional modem. This makes us capable of identifying a car’s position within an
error range of less than a meter. In combination with a map-matching algorithm,
which is not further explained in this thesis, we can determine the correct lane in
most situations.

3.4.3.2 Communication Devices The wireless communication with the traffic-
light via C2X is managed by the CCU. This is a computational device which
handles outgoing and incoming C2X-messages and provides the data via CAN.
Additionally, the car’s antenna is physically upgraded to allow C2X and C2C-
communication.

3.4.3.3 Radar Sensor When approaching a traffic-light and automatically pass-
ing the intersection, it is crucial to detect preceding vehicles. This can be achieved
via a radar sensor, which is necessary for the car’s ACC-system and thus already
installed in the car. The sensor shares information about acceleration and velocity
of a detected object as well as the current distance to it via CAN. This data is
analyzed in every time step by the regime-controller. Special care has to be taken if
an object is not moving. The sensor detects only those objects with a high reliability,
which are in motion or have been in motion in the course of the tracking process.
For our assistance system, it is crucial to detect not only moving vehicles, but
also those which are standing in front of the traffic-light. Therefore, we enabled
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(a) Currently red light,
but planned arrival at
green.

(b) Currently green light,
but planned arrival at
red.

(c) Currently red light,
pole-start in 1 second.
The switch to green will
be in 4 seconds.

Figure 3.3: Developer HMI showing three different situations when approaching a
traffic-light. The red and green carpet moving from the bottom to the top visualizes
the car’s position relatively to the signal phases.

the sensor’s functionality to detect all objects, including non-moving ones. The
resulting detection rate is not always satisfying. But as the main focus of this thesis
is to implement the car’s behavior, we do not discuss this issue any further.

3.4.3.4 Software Setting for Acceleration Controller Besides the processing
units mentioned above, the RACC needs to be implemented in the car. Thus,
another computational device, which runs a Windows operating system is installed
and connected to the CAN. The assistance system’s functionality, including the
ACADO-based acceleration controller, is encoded in C and C++-files. These are
included in the Automotive Data and Time-Triggered Framework (ADTF) , cf.[22].
Hence, the RACC is available in the car.

3.4.4 Human-Machine Interface

Besides a gain of efficiency in terms of increasing traffic flow, we also attempt to
design the application as convenient as possible for the driver. Consequentially,
one aspect is to inform the driver about the maneuver the car is about to perform.
Additionally, before the performance of the pole-start-regime, the driver has to
confirm that it is safe to accelerate the car and enter the intersection. For these
purposes, a Human-Machine Interface (HMI), shown in Figure 3.3, is developed,
which provides information about the current signal state of the traffic-light,
allowed directions of the lane the car is matched on, time in seconds until the next
change to green, preferred velocity, and currently performed velocity. Additionally,
we introduce a red and green carpet underneath the car moving from the bottom
to the top. It visualizes the car’s position with respect to the red and green signal
phases of the traffic-light to come. Thus, it indicates if the car will arrive at signal
state red or green, assuming that it keeps on driving with the current velocity. The
position of the stopping line in the display mirrors its distance to the car. It is
therefore moving from the top to the bottom. An arrow in front of the displayed
car points at the stopping line if the stopping-regime is performed, or at a leading
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(a) Currently red light,
but planned arrival at
green.

(b) Currently green light,
but planned arrival at
red.

(c) Currently red light,
planned pole-start in 1
second.

Figure 3.4: User HMI showing three different situations when approaching a
traffic-light. Information about the RACC is incorporated in an already existing
HMI providing information about multiple applications.

car if the following-regime is active. The three blue bars in the top right corner
indicate the quality of received C2X-messages and if a regime has already been
chosen. In Figure 3.3c), the reader can see the information that the car is about
to start after performing a pole-stop. At this central position also the prompt
occurs which asks the driver to confirm that the situation allows a safe starting
maneuver after a full stop. The quote Developer Mode indicates that this HMI is
highly experimental.

In cooperation with professional HMI-developers, another kind of HMI is
established. Figure 3.4 shows examples which correspond to the above ones in the
developer HMI. Here, information about the RACC is incorporated in the existing
HMI showing information about multiple systems and applications. Thus, in the
resulting layout, some aspects from the developer HMI, i. e., the green and red
carpet as well as information about the currently performed velocity, allowed
directions, and signal quality are omitted. Instead of the carpet, two traffic-lights
indicate the current signal state and the predicted state at scheduled time of arrival.
Again, information about the time to green if a pole-stop has been performed is
given, and the prompt, which asks for confirmation to start the car automatically,
occurs.

3.4.5 Test Drives

Up to this point, we have had an insight in the functionality and technical
requirements for the RACC. We now discuss setup and experiences which we
gained during intense test drives on both a test field closed for public traffic and in
real-world traffic.

Initial test drives for the system were performed on a test field. For this purpose,
we set up a portable traffic-light including necessary computing and communi-
cation devices as well as fictional data about adjacent lanes and stopping lines.
First, we focused on technical issues, such as range and latency in communication
between traffic-light and car. Also the quality of the car’s refined positioning
system was part of the experiments. Without going into too much detail, we can
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Figure 3.5: Some devices which are installed at multiple intersections in the city of
Braunschweig. The image shows antennas for communication, processing units
(gray boxes), and stereo cameras for monitoring traffic, cf. Section 6.3.

state that our requirements for these quantities could be met. Afterwards, the
regime-based functionality was deeply examined: selecting the proper regime for
a certain situation, calculating trajectories, using the car’s ACC, switching between
different regimes in certain situations, and passing the traffic-light’s stopping-line
shortly after switching to green with desired velocity.

Subsequently, we extended our experiments to real-world traffic. Part of the
project UR:BAN was to equip traffic-lights in several cities with devices which
allow to communicate and cooperate with them, cf. Section 3.1. Thus, the
so-called Anwendungsplattform Intelligente Mobilität (AIM), cf. [93], in the city
of Braunschweig was involved in the project. This is a test field in real-world
traffic which consists of multiple traffic-light controlled intersections. They all are
equipped with computational infrastructure, including those mentioned in Section
3.4.2. In Figure 3.5, some of these devices at one of the AIM-intersections can be
seen. Repeating the experiments of the test field, we achieved similar results. Only
the communication range was slightly shorter in the urban setting (possibly due
to structural disturbances or other present wireless transmitters), but with 300
meters still large enough. Also the RACC’s performance was still satisfying.

Beyond these issues, it was part of the test drives to get an impression of the
performance and practicability of the QP-solver qpDUNES, which is presented in
[29]. As the OCPs occurring in the RACC are rather sparse, it seems promising
to make use of a QP-solver exploiting this structure, which is qpDUNES. Besides
the very low solving times compared to ACADO’s standard QP-solver qpOASES,
qpDUNES reacted very sensitive to unforeseen changes in the measured states
leading to unreasonable solutions or even unsolvabilities. Thus, the final RACC-
implementation is based on qpOASES.
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Figure 3.6: Example of the information the MIB-HMI shows, when the car
approaches a traffic-light. Besides the intersection’s geometry and current states of
the traffic-light, predicted times until the next switches are visualized by receding
bars. Grey shadows on the lanes indicate queues of vehicles in front of the stopping
line. The red arrow marks the car’s position on a lane.

3.4.6 Acceptance of the System

It is not clear in advance how other traffic participants will react to a car which
behaves as explained above. Especially the presented deceleration processes
could possibly be surprising or even frustrating for others, for example, when
an equipped car is approaching a green light which will shortly turn red. The
application may begin a stopping maneuver, but other drivers behind us may
want to keep driving at their desired velocity, as they are not informed about the
change to come. One could also imagine other cars to overtake an equipped car
if it has stopped relatively far away from the stopping line. It is also not clear if
other cars, which are following an equipped car, will benefit from the additional
information.

During our test drives in the city of Braunschweig, we did not experience
frustration of other drivers or an overtaking maneuver in front of the stopping
line. Additionally, there is some research by the German Aerospace Center, which
is a partner in the UR:BAN-project, concerning the acceptance of assistance sys-
tems by other drivers. In particular, in [83], the authors find out that drivers in
non-equipped cars do actually benefit from leading cars which run a traffic-light
assistance system. More specifically, the first non-equipped follower behind an
equipped car is mainly influenced and adapts his behavior in a way that he also
profits from the application. We also experienced this behavior during our test
drives. In [92], parameters which measure the degree of approval of the system, are
introduced. Early analysis of experiments with test subjects in a driving simulator
reveals that there is a high level of acceptance regarding the introduced maneuvers.
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Figure 3.7: Example of the information the MIB-HMI shows, when the car
approaches a traffic-light. Besides the information shown in Figure 3.6, the symbol
for road works indicates road works on a lane.

In this section, we have seen the concept, functionality, and implementation of a
driver-assistance system so far. Besides results concerning the practicability and
acceptance of the system, we are interested in effects on real-world traffic-flow.
For the setting and results of experiments using a microscopic traffic simulation
software, cf. Section 6.4. In Section 6.4.1, the quality of the implemented MPC-
process is considered. In the remainder of this section, we present another – purely
informing – driver-assistance system developed in the UR:BAN-project.

3.5 Developing an Information System

In addition to the driver-assistance system which automatically performs certain
maneuvers, a purely visual system has been developed in the project UR:BAN.
It is called MIB-HMI, due to the fact that this HMI is displayed on the so-called
MIB-screen located in the center of the car’s dashboard. This system gathers all
the information which is available at a traffic-light controlled intersection. Beyond
the well described data about the traffic-light’s position, the exact geometry of the
junction, and dynamic information about the light’s signal state and upcoming
changes, there can be further information about other traffic participants available.

In the project UR:BAN, different systems have been developed, which are
based on communication between a traffic-light and other traffic participants,
e. g., cars, cyclists, emergency vehicles, and traffic cones. The latter ones can, for
example, indicate a temporary closure of a lane. For further information on those
systems, cf. [109]. All of them have in common that the traffic-light is aware
of the presence and position of the listed traffic participants because of wireless
communication. The installed AU, cf. Section 3.4.2, can mirror this information, or,
more specifically, spread the received messages. We want the MIB-HMI to provide
information to the driver, allowing him or her to make better and earlier decisions,
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Figure 3.8: Example of the information the MIB-HMI shows when the car ap-
proaches a traffic-light. Besides the information shown in Figure 3.7, the presence
and possible route of an emergency vehicle is illustrated.

which typically occur at intersections, e. g., which lane is the best choice to drive
on. Figure 3.6 shows the HMI’s content when approaching an intersection. Here,
the geometry of the intersection, the traffic-light’s current states, and the predicted
times until the next switches are visualized. Additionally, the gray shadows on
some lanes indicate queues of vehicles in front of the stopping line, based on both
direct measurements and estimates by the traffic-light. The red arrow marks the
current position of the car. For this purpose, the car’s positioning data are used to
determine the lane the car is driving on, and to indicate the distance to the stopping
line. The green area on the lane the car is driving on implies that the cars in
front of the stopping line will pass the traffic-light during the current green phase.
In Figure 3.7, additional information is provided. The driver is informed about
road works, which are indicated by a triangle including the according symbol.
Moreover, in Figure 3.8, an approaching emergency vehicle is indicated. As it also
broadcasts messages including information about its turn signal, we can mark the
route it will probably take.

The concept of enabling cooperation among different traffic participants and
infrastructure provides a variety of concepts and resulting systems. A majority of
them will eventually lead to an enhancement of traffic flow and certainly security
issues. If we carry the ideas of this section forward, we end up with cooperation
of cars and traffic-lights in both directions. This means, the traffic-light processes
data about position, velocity, and other information of oncoming cars. Resulting
systems, which incorporate these information, can lead to a further enhancement
in terms of traffic flow by adapting the light’s signal states highly dynamically. In
Section 5, we present an algorithm which regulates the transit of multiple cars
based on communication between the cars and the traffic-light in both directions.
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Another extension of the RACC could be to react not only to already performed
movements of other cars, which are detected via radar sensors, but also intended
trajectories could be shared among different traffic participants and incorporated
in the individual strategies. Especially dead times that arise until a movement is
detected could be reduced and resulting trajectories could be more comfortable
for the driver.

When we consider autonomously driving cars, we should be aware that
cooperation will not merely be optional but necessary. Imagine a non-negligible
amount of autonomous cars which respect all traffic regulations properly. Apart
from a potential increase in security, traffic flow could get worse in some places,
cf. [66]. Thus, cooperation between cars, as well as cars and infrastructure is a
highly dynamic and growing field. In the next section, we will follow the idea of
cooperation. Consequentially, we focus on globally optimized traffic flow.
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4 Optimizing Traffic Flow

Following the argumentation of the previous section, we now focus on globally
optimized traffic flow. The term globally does not refer to obtaining a global optimal
solution. Globally means that traffic as whole – from a global point of view, i. e.,
by regarding traffic-lights and all cars togehter – shall be optimized. In Section 3.1,
we have seen some examples for applications which aim to improve traffic flow at
intersections by considering each car individually. In the literature, a large number
of papers analyze problems in the context of optimizing traffic at traffic-light
controlled intersections. Often traffic-lights and cars are viewed separately. Big
efforts have been made and many algorithms have been studied to influence the
behavior of traffic-lights in order to increase traffic flow. For instance, in [33, 34]
mixed integer linear programming techniques are applied to this problem. Other
publications focus on self-adapting traffic-lights [110] and evolutionary algorithms
[91]. Another common approach is to improve a car’s individual behavior when
approaching a traffic-light while keeping the signal phases fixed. We have seen
examples from the literature as well as a detailed description of an assistance
system, which is developed in this thesis, in the previous section.

We now study traffic at traffic-light intersections as a whole. To this end, we
first discuss common approaches based on different kinds of modeling traffic
and resulting solving methods. Subsequently, we develop a MILP in Section 4.2
including variables for the states of both the cars and the traffic-lights on a fixed
time horizon. Simultaneously, realistic motion dynamics are incorporated. In
contrast to other publications, e. g., [112], which also contain controls for cars
and traffic-lights, we obtain solutions for a globally optimized traffic flow. These
offline-calculated solutions can serve as a benchmark for other approaches which
try to improve traffic flow at intersections and can provide heuristics, e. g., for
light-cycle optimizing algorithms. Later on, in Section 6, we compare the quality
of traffic flow achieved by the RACC with the globally optimal traffic flow. As the
behavior of traffic-lights in terms of allowed switching schemes is legally restricted,
we incorporate the majority of these regulations (in German traffic) into the MILP
in Section 4.2.5.

Due to the high complexity and runtimes of the presented MILP, we develop
solving strategies in Section 4.5 to reduce computing times. These are also
evaluated numerically in Section 6. Nevertheless, this approach is not suitable for a
real-time application due to high solving times, which are necessary for reasonable
amounts of cars and time horizons. The main purpose of the model is to provide
solutions which can serve as a benchmark for other methods or algorithms.

Parts of this section are currently under review for a publication together with
Mirko Hahn and Sebastian Sager. Mirko Hahn and Sebastian Sager contributed
to ideas leading to the different optimization models in this section. The joint
work with them also lead to the presented solving methods. Mirko Hahn highly
contributed to an implementation of the models and solving methods which are
under numerical investigation in Section 6. Parts of the therein presented results
are also included in the publication.
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4.1 Motivation and Setting
A detailed overview and discussion of methods for modeling traffic is given in [6].
We will highlight two major types of models in the following.

4.1.1 Macroscopic Traffic Models

A common approach to model traffic flow are macroscopic traffic models, which go
back to [72] and [86]. These models basically describe traffic on an abstract level
and do not consider each car individually. In many papers which aim to improve
traffic flow in a certain sense, traffic is modeled as macroscopic flow. Here, the
movement of cars is often described by a two-dimensional partial differential
equation for the traffic density ρ(x, t), where t ≥ 0 denotes time, and x ∈ R+ denotes
the position. In [45, 46], the authors consider the problem of computing optimal
traffic-light programs for intersections in an urban setting using traffic densities.
Also in [73] the presented solving strategies for optimizing urban traffic including
intersections are based on a macroscopic traffic model.

4.1.2 Microscopic Traffic Models

In contrast to macroscopic models, microscopic traffic models invoke ordinary
differential equations for each vehicle. Here, the individual position and velocity,
as variables depending on time, describe the state of the system. Reducing the
actions of a single vehicle to longitudinal movement on a single lane, the basic
structure of a microscopic model is as follows:


dsi
dt = vi,

dvi
dt = ai(s1, . . . , sN, v1, . . . , vN),

where i ∈ {1, . . . ,N} and ai is the current acceleration of the i-th vehicle depending
on the position s and velocity v of all vehicles. Due to the resulting large systems
of ordinary differential equations, many models reduce the acceleration of the
i-th vehicle to a reaction depending only on a subset of the other cars. Often only
the directly preceding car is taken into account. Hence, these models are also
called car-following models. Common examples from the literature are the models
of Krauß and the IDM by Treiber and Kesting, cf. [54, 59, 99]. A major advantage
of microscopic models compared to macroscopic models is that they regard the
motion of each vehicle individually, which allows us to invoke restrictions on
physical quantities, such as acceleration and jerk. This rather realistic description
of traffic flow results in a higher complexity of the model.

In this thesis, we introduce different approaches for improving traffic flow at
urban intersections. Besides the pure design of these methods, we also want to
compare them in terms of quality of the resulting traffic flow and other criteria.
Therefore, we have to make sure that they are comparable among each other. As
one of the approaches is a driver-assistance system, cf. Section 3, we want the
other solving methods to have similar properties. Thus, using a macroscopic traffic
model for optimizing traffic flow, which is the main issue of this section, would
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be rather inappropriate. In the following paragraph, we develop a mixed integer
linear program which incorporates the longitudinal motion model of the RACC
and is therefore based on a microscopic point of view.

4.2 Developing a Mixed Integer Linear Program
In this section, we develop an MILP which describes the traffic flow of all cars on
a simple urban road network within a fixed time interval T := [0,TN]. In addition
to the behavior of all cars at any timestep, we are interested in the required signal
states of the network’s traffic-lights.

The basic structure of our scenario, for which we explain the model, is as
follows: straight roads intersect in a single intersection. Each road consists of two
lanes running in opposite directions. In each lane, a traffic-light tl from the set
of traffic-lights TL is installed in front of the intersection. However, the derived
model allows to represent networks with multiple intersections and more than
two roads. For simplicity, we stick to the stated simple example when introducing
the model. As we want to determine the optimal movement of the cars along the
road offline, only the time each car enters the network, called arrival-time t̄c ∈ T ,
and its velocity at this time v̄c > 0 are fixed. All cars enter the network in the origin
of their respective lane. In order to facilitate comparisons of traveled distances
of different cars, e. g., to prevent collisions of cars on the same lane, each lane
starts at distance zero. Thus, the initial value of each car’s traveled distance is also
zero. Traffic-lights are installed at fixed positions which are determined by their
respective distance to the lane’s origin. The basic layout for a network consisting
of two lanes which intersect in a single intersection is visualized in Figure 4.1. In
particular, we need the model to contain the following characteristics:

• a car’s longitudinal movement,

• realistic bounds on the car’s motion,

• logic of traffic-lights, which basically permits and prohibits cars to be on the
intersection in certain timesteps,

• optionally, legal regulations on the behavior of the traffic-lights,

The goal is to determine the optimal traffic flow from a global point of view. More
specifically, we are not only interested in solutions which consider the behavior of
each car and traffic-light as it would be the case if everything was controlled from
a global control unit. We also want to determine a global optimum (in contrast
to local optima) as the obtained solution should serve as a benchmark for other
methods which increase traffic flow.

4.2.1 Cars and Motion Model

For the purposes of the model, a car c in the set of all cars C is a moving occupant
of a stretch of road. At any given time, it moves on a road using a specific lane.
A lane may be used by multiple cars. Two cars using the same lane may not
simultaneously occupy the same space within that lane. We refer to our efforts
to prevent this as collision-prevention. Note that we only consider longitudinal
movement and that overtaking maneuvers are forbidden.
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Figure 4.1: Simple intersection consisting of two intersecting roads. Each road
consists of two lanes running in opposite directions.

The movement of any given car is governed by the following laws of motion. Note
that we focus on linear constraints as friction is negligible in an urban setting
which means the trade-off between realism and low runtimes is acceptable:

ṡ(t) = v(t) ∀t ∈ T ,
v̇(t) = a(t) ∀t ∈ T ,
ȧ(t) = j(t) ∀t ∈ T ,
s(t) = 0 ∀t ∈ [0, t̄c],
v(t̄) = v̄ ∀t ∈ [0, t̄c], (4.1)
a(t̄) = 0 ∀t ∈ [0, t̄c],

v(t) ∈
[
vmin, vmax

]
∀t ∈ T ,

a(t) ∈ [amin, amax] ∀t ∈ T ,
j(t) ∈

[
jmin, jmax

]
∀t ∈ T .

In the ODE-system, s(t) is the traveled distance of the car, which is the position of
the car’s front on the lane. The initial distance is set to 0 for each car and increases
according to the car’s movement on the lane. Its velocity is encoded in v(t), a(t)
is its acceleration, and j(t) its jerk. The bounds 0 ≤ vmin < vmax, amin < 0 < amax,
and jmin < 0 < jmax are due to physical and comfort restrictions and set for each
car individually. Note that defining the IVP as above, i. e., on the whole time
horizon with initial values fixed until the car enters the network, and regarding
a shorter time horizon beginning at t̄c for each car is equivalent. The linear
ODE-system is discretized using a direct collocation method, cf. Section 2.1.1.4,
with an equidistant discretization T := {0, . . . ,N} of T . In fact, the explicit Euler
method on T with step length dt := TN/N is an appropriate choice for the rather
simple motion model. This yields the following system of equations. Note that
the variables for the jerk j(t) are omitted as they are only bounded from above and
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below. These bounds are enforced directly by bounding the difference between
the accelerations in succeeding time steps:

sc,t+1 = sc,t + vc,t · dt ∀c ∈ C, t ∈ T \ {N}, (4.2)
vc,t+1 = vc,t + ac,t · dt ∀c ∈ C, t ∈ T \ {N}, (4.3)

st = 0 ∀c ∈ C, t ∈ {0, . . . , t̄c}, (4.4)
vt = v̄c ∀c ∈ C, t ∈ {0, . . . , t̄c}, (4.5)
at = 0 ∀c ∈ C, t ∈ {0, . . . , t̄c}, (4.6)

vmin
c ≤ vc,t ∀c ∈ C, t ∈ T, (4.7)
vc,t ≤ vmax

c ∀c ∈ C, t ∈ T, (4.8)

amin
c ≤ ac,t ∀c ∈ C, t ∈ T, (4.9)
ac,t ≤ amax

c ∀c ∈ C, t ∈ T, (4.10)

as well as the inequalities:

jmin
c ≤

1
dt
·
(
ac,t+1 − ac,t

)
≤ jmax

c ∀c ∈ C, t ∈ T \ {N}. (4.11)

For simplicity, we demand t̄c ∈ T for all cars. After modeling the movement of
individual cars, we now focus on preventing collisions between succeeding cars
driving on the same lane. To this end, we introduce the set of predecessors Cpred

c
for each car c and constraints of the form:

sc,t ≤ sd,t − ld − gc ∀c ∈ C, d ∈ Cpred
c , t ∈ T, (4.12)

where ld is the length of car d and gc is the (optional) safety gap maintained by c.
As we are considering networks with single lanes without overtaking maneuvers
and turning maneuvers, one has |Cpred

c | ≤ 1 for each car c ∈ C and we write pred(c)
for the unique predecessor of a car c. Still, we need a way to prevent collisions on
the intersection between cars driving on different lanes.

4.2.2 Triggers

While collision-prevention between cars in a single lane is essential, the main goal
is to model traffic at intersections. Collision-prevention between different lanes is
a crucial component of this. A basic insight is that such interaction always yields
constraints that are only relevant for cars that enter specific sections of the road.
For instance, an intersection between two lanes is essentially a small section on
either lane that cannot be driven on freely. Generally speaking, we introduce the
concept of trigger zones. Simply put, a trigger zone is a subsection of a lane that is
special in that there is a set of constraints that apply to the car’s behavior only if
the car is located within that subsection.
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χt

st0 š Sstart Send ŝ

1

Figure 4.2: Admissible values for the distance variable st of a single car if the
trigger variables of a single trigger zone are χt = 0 and χt = 1.

In Section 4.2.3, we describe how to use trigger zones to model traffic-lights.
Furthermore, triggers can be used to a wide range of effects. For instance, they
may also be used to impose local velocity constraints.

4.2.2.1 Modeling Triggers In order to enable and disable constraints based on
the location of the car without leaving the framework of linear programming, we
use big-M formulations, cf. Section 2.12. We assume that we have binary variables
χtz,t for t ∈ T and a trigger zone tz from the set of all trigger zones in the network
TZ that are guaranteed to be 1 if a car is located within the trigger zone and can
be chosen to be 0 if no car is located within the trigger zone at timestep t. As we
mainly discuss the mechanism for a fixed single trigger zone, we simply write χt

instead of χtz,t. We now consider a generic linear inequality constraint of the form

aTx ≤ b.

By rephrasing this as big-M formulation

aTx −M · (1 − χt) ≤ b,

where M ≥ max
(
aTx − b

)
, we can ensure that the constraint becomes redundant if

χt = 0. We call the binary vector χ containing all χt for the whole time horizon
trigger indicator. The main question then becomes how to acquire such a trigger
indicator.

4.2.2.2 Variants for Trigger Indicators There are multiple ways of modeling
trigger zones with the ultimate goal of turning a given vector of binary variables χ
into a trigger indicator. For the purpose of this discussion, we assume that there is
a known lower bound šc and a known upper bound ŝc on a car’s distance variables
sc,t. Furthermore, we consider a trigger indicator with associated trigger zone[
Sstart

tl ,Send
tl

]
. For the sake of simplicity, we assume that šc < Sstart

tl < Send
tl < ŝc. As we

only regard a single car for our considerations in this section, we omit the indices
for its individual variables. We do the same for indices of a single trigger zone.

First, consider Figure 4.2. It shows the values the distance variable of a single
car should be able to attain for χt = 0 and χt = 1 of a trigger zone. Note that for
χt = 0, the permissible distance values form a non-convex set. This means that
there is no way to find a convex set of pairs (st, χt) that contains all of the marked
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Figure 4.3: Two convex sets of pairs (st, χt). A binary variable indicates in which
set the solution is located.

points but does not also contain points with χt = 0 and st ∈
(
Sstart,Send

)
. It follows

that there is also no polyhedron that meets these criteria. Since we are interested
in calculating global optima, it is our aim to design convex feasible sets. Note that
global refers here to the kind of optimum (in contrast to local optimum). Our main
goal is to find a linear programming formulation as these are additionally rather
comfortable to solve via established solver software. In order to achieve such a
formulation for the trigger mechanism, we must add at least one variable. The
variants presented in this section represent different ways of adding the necessary
variables. Additionally, we try to model the trigger mechanism in a way that
does not require a separate trigger variable χt for every pair of car and trigger
zone. Therefore, some of the presented variants allow trigger variables for a single
traffic-light to be shared among cars driving on a certain lane.

Type I: Outer-Convexification Triggers The first way one could go about adding
variables is depicted in Figure 4.3. Here, the feasible set is split into two convex
sets. We introduce a second type of binary variables χ′t for t ∈ T that indicate
which of the two "halves" our solution is located in and refer to these variables
as the hull choice variables. One can choose different variants of this approach,
e. g., symmetry is optional. One could generalize the approach by choosing two
parameters λ0, λ1 ≥ 0 with λ0 + λ1 ≥ 1 which indicate how far the hulls reach into
the trigger zone. The hulls would then be defined as the convex hulls of the (st, χt)
points

(š, 0) ,
(
Sstart, 0

)
,
(
(1 − λ0) · Sstart + λ0 · Send, 1

)
, (š, 1)

for χ′t = 0 and

(ŝ, 0) ,
(
Send, 0

)
,
(
(1 − λ1) · Send + λ1 · Sstart, 1

)
, (ŝ, 1)

for χ′t = 1, respectively. Figure 4.3 depicts these hulls for λ0 = λ1 = 1. We can now
model a trigger zone via the constraints:

((1 − λ1) · Send + λ1 · Sstart
− š) · χ′t − st ≤ −š ∀t ∈ T, (4.13)

λ1 · (Sstart
− Send) · χt + (Send

− š) · χ′t − st ≤ −š ∀t ∈ T, (4.14)

((1 − λ0) · Sstart + λ0 · Send
− ŝ) · χ′t + st ≤ (1 − λ0) · Sstart + λ0 · Send

∀t ∈ T, (4.15)

λ0 · (Sstart
− Send) · χt + (Sstart

− ŝ) · χ′t + st ≤ Sstart
∀t ∈ T. (4.16)
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1š

Sstart

Send

ŝ

Figure 4.4: Polyhedron resulting from the constraints, which define an outer-
convexification trigger.

The resulting three-dimensional polytope for each t ∈ T defined by Constraints
(4.13)–(4.16) and 0 ≤ χt, χ′t ≤ 1 is visualized in Figure 4.4. Again, λ0 = λ1 = 1 holds.

Type II: Enter-Leave Triggers In the enter-leave trigger formulation, we abandon
the single indicator variable in favor of two binary indicator variables χin

t and χout
t .

We want to establish the following logical implications:

χin
t = 0 ⇒ st ≤ Sstart,

χout
t = 0 ⇒ st ≥ Send.

If these implications hold, it follows that

st ∈
(
Sstart,Send

)
⇒ χin

t = 1 ∧ χout
t = 1.

If we can also guarantee that χin
t and χout

t can be set to 0 if st ≤ Sstart and st ≥ Send,
respectively, they can be used to acquire a meaningful trigger indicator via

χin
t + χout

t − χt ≤ 1 ∀t ∈ T. (4.17)
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Figure 4.5: Polyhedron resulting from the constraints, which define an enter-leave
trigger.

We ensure that when st <
(
Sstart,Send

)
, either χin

t or χout
t can always be assigned the

value 0. In this variant of modeling a required trigger zone, we end up with the
additional inequalities:

χin
t + χout

t ≥ 1 ∀t ∈ T, (4.18)(
Send
− š

)
· χout

t + st ≥ Send
∀t ∈ T, (4.19)(

Sstart
− ŝ

)
· χin

t + st ≤ Sstart
∀t ∈ T. (4.20)

Note that for χout
t = χin

t = 1, Equation (4.17) guarantees that χt = 1. It is therefore
sufficient to demand that χt ∈ [0, 1]. χt need not be explicitly marked as binary
variables. In Figure 4.5, the polyhedron for each t ∈ T defined by Constraints
(4.18)–(4.20) and χin

t , χ
out
t ≤ 1 is depicted. Table 4.1 lists the possible configurations

of the χ-type variables depending on the car’s position.
An advantage of both formulations is that the trigger variables χt can be shared

among all cars driving on the same lane. Nevertheless, we have to introduce the
additional binary variables χ′t, and χin

t , χ
out
t , respectively for every pair of car and

trigger zone.

Type III: Three-Way-Split Triggers For the sake of completeness, we briefly
address a third formulation for modeling a car’s position relative to a trigger zone.
In three-way split triggers, we partition the car’s distance-axis into three sections

Table 4.1: Possible values for the indicator variables of an enter-leave trigger
depending on the car’s current position st

st χin
t χout

t χt

[š,Sstart) {0, 1} 1 [χin
t , 1]

(Send, ŝ] 1 {0, 1} [χout
t , 1]

[Sstart,Send] 1 1 1
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Figure 4.6: Polyhedron resulting from the constraints, which define a three-way-
split trigger.

and introduce two additional binary indicators χpre
t and χpost

t to indicate together
with χt the car’s presence before, after and within the trigger zone, respectively.
These variables are linked using a linear equality constraint

χt + χpre
t + χpost

t = 1 ∀t ∈ T. (4.21)

Using Equation (4.21), we can induce the logic of a trigger-indicator by forcing
χpre

t and χpost
t to be 0 if st ∈

(
Sstart,Send

)
and setting them to 1 if st ≤ Sstart or st ≥ Send,

respectively. Constraints that fulfill the purposes are:

χpre
t + χpost

t ≤ 1 ∀t ∈ T, (4.22)(
Send
− Sstart

)
· χpre

t +
(
Send
− ŝ

)
· χpost

t + st ≤ Send
∀t ∈ T, (4.23)(

Sstart
− š

)
· χpre

t +
(
Sstart

− Send
)
· χpost

t + st ≥ Sstart
∀t ∈ Tl. (4.24)

Note that inequality (4.22) is already implied by equation (4.21). Again, the variable
χt can be chosen as χt ∈ [0, 1]. Here, equation (4.21) guarantees that the trigger
indicator χt has to be either equal to one or equal to zero. The polyhedron for every
t ∈ T resulting from the Constraints (4.21)–(4.24) and 0 ≤ χpre

t , χ
post
t is visualized in

Figure 4.6. The values that the χ-type variables are allowed to attain, based on the
car’s current position, are listed in Table 4.2.

Table 4.2: Possible values for the indicator variables of an three-way-split trigger
depending on the car’s current position st

st χpre
t χpost

t χt

[š,Sstart) 1 0 0
(Send, ŝ] 0 1 0
[Sstart,Send] 0 0 1
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Figure 4.7: Three cars c1, c2, c3 ∈ C driving on a lane in the network. The configu-
ration (χin

t , χ
out
t , χt) reads as ({0, 1}, 1, {χin

t , 1}) for c1, (1, 1, 1) for c2, (1, {0, 1}, {χout
t , 1})

for c3. As mentioned above, the variables χt need not be chosen binary due to
Equation (4.17). This leads to the attainable values ({0, 1}, 1, [χin

t , 1]) for c1, (1, 1, 1)
for c2, (1, {0, 1}, [χout

t , 1]) for c3.

An advantage of the three-way split formulation lies in the fact that it provides a
guarantee that χt acts as proper trigger indicator. While the other two formulations
allow for χt to jump to non-zero values (including 1) outside of the trigger zone as
long as this has no negative impact on the objective function value, the three-way
split formulation does not allow this.

However, this property can also be seen as the formulation’s weakness. In the
other formulations, trigger indicators can be shared among multiple cars, more
specifically, among cars heading towards the same trigger zone. In three-way
split triggers, this would not be possible as one car might force the indicator to
assume the value 0 whereas another might force it to assume the value 1, leading
to infeasibility. Three-way split triggers always require indicators to be car specific.

Numerical investigation of the different trigger formulations showed that type
II yields the best runtimes in most cases. Also compared to formulations of the
outer-convexification triggers with λ0 = 0 and λ1 = 1. For these values, no overlap
of the two halves exists, cf. Figure 4.3. This is why we focus on enter-leave triggers.
Figure 4.7 shows the three main configurations the trigger variable χt attains
depending on the values of χin

t and χout
t for the three different cars.

4.2.3 Traffic-Lights

So far, we have addressed general ways to cause certain constraints to become
relevant based on the current location of a car. In this section, we discuss ways of
using the trigger mechanism to model the effect of a traffic-light. Traffic-lights are
essentially reduced to sections of road that can only be driven on under certain
circumstances. Driving on one of these sections will then prevent other sections
from being driven on.

If we recall the concept of a trigger variable, we have a mechanism that allows
us to retrieve the presence of a car on a trigger zone. Following this idea, we
introduce a trigger zone for each traffic-light. The area where the lanes overlap on
the intersection contains the trigger zones. In the course of this thesis, we refer to
this area as intersection area. Figure 4.8 schematically shows an intersection with
four lanes on two intersecting roads. The car c with its current position st and the
trigger zone for the traffic-light the car is approaching are also visible. Additionally,
trigger variables χtl,t for each of the traffic-lights tl of the intersection and timestep
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Figure 4.8: Car c with its current position st driving on a lane towards an intersection.
The corresponding trigger zone for this lane starts at Sstart and ends at Send.

t ∈ T are introduced. We can interpret a traffic-light tl to have a green light at
timestep t if the corresponding trigger variable χtl,t equals 1. If χtl,t = 0 holds, the
traffic-light is set to red. If possible, we omit additional indices tl for traffic-lights.
They are only used if we want to distinguish between trigger variables of different
traffic-lights.

We now regard the set of all traffic-lights TL. For this set, we define a
decomposition into subsets

TL =

L⋃
·

l=1

TLl,

where L ∈N and the sets TLl contain conflicting traffic-lights. Conflicting means
that only a single traffic-light tl ∈ TLl is allowed to be set to green in each timestep.
This is enforced by the constraint:

∑
tl∈TLl

χtl,t ≤ 1. ∀t ∈ T, l ∈ {1, . . . ,L} (4.25)

In particular, if the network consists of a single intersection and all traffic-lights are
conflicting, it holds that L = 1. Theoretically, it is also possible to make traffic-lights
belonging to different intersections conflicting.
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4.2.4 Objective Function

In the previous sections, we focused on modeling longitudinal movement of cars
on straight roads and the inhibiting effects of traffic-lights that govern the traversal
of cars on intersecting sections of road. As we are looking for an optimal traffic
flow of multiple cars on a fixed time horizon from a global point of view, we have
to determine an objective function for that.

Optimal traffic flow could mean that one wants to reduce the (possibly weighted)
overall traveling time of all cars for reaching their destination from a given origin.
In our scenario, all cars have the same origin and no particular destination. As
the time horizon is also fixed, minimizing traveling time for a certain route is
similar to maximizing the covered distance at the end of the horizon in our
scenario. Remember that we want to optimize traffic flow as a whole. Therefore,
we maximize the sum of the distances of all cars in the last timestep N:

max
∑
c∈C

sc,N. (4.26)

Thinking about economical issues one could also try to minimize the overall
emissions. As the presented model does not include exhaust rates or something
similar, we can assess a car’s squared acceleration. Note that we would lose the
model’s linearity:

min
∑
c∈C,
t∈T

a2
c,t. (4.27)

One could also think about objective functions that take fairness into account. An
objective function as in (4.26) could lead to a traffic flow where some cars have to
wait for a relatively long time before they can pass an intersection (e. g., when the
number of incoming cars on intersecting roads is very unbalanced) for the sake of
a high overall traffic flow. Nevertheless, we focus on (4.26) as objective function
since we are mainly interested in traffic flow which is optimal regarding the whole
system.

For convenience, we list all constraints describing the passage of multiple
vehicles over an intersection below. We refer to the resulting MILP as global-MILP.
Remember that we choose to model the trigger mechanism via the trigger type II. In
contrast to prior notation, we do not omit the indices for the cars and traffic-lights.
Note that also more complex networks than the rather simple one which served for
introducing the model can be represented. For notational simplicity, we introduce
the set of traffic-lights which a car c passes during its traversal of the network as
TLc.
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max
a,v,s,χin,χout,χ

∑
c∈C

sc,N (4.28)

s.t.: sc,t+1 = sc,t + vc,t · dt ∀c ∈ C, t ∈ T \ {N}, (4.29)
vc,t+1 = vc,t + ac,t · dt ∀c ∈ C, t ∈ T \ {N}, (4.30)

1
dt
·
(
ac,t+1 − ac,t

)
≥ jmin

c ∀c ∈ C, t ∈ T \ {N}, (4.31)

1
dt
·
(
ac,t+1 − ac,t

)
≤ jmax

c ∀c ∈ C, t ∈ T \ {N}, (4.32)

sc,t = 0 ∀c ∈ C, t ∈ {0, . . . , t̄c}, (4.33)
vc,t = v̄c ∀c ∈ C, t ∈ {0, . . . , t̄c}, (4.34)
ac,t = 0 ∀c ∈ C, t ∈ {0, . . . , t̄c}, (4.35)

vmin
c ≤ vc,t ∀c ∈ C, t ∈ T, (4.36)
vc,t ≤ vmax

c ∀c ∈ C, t ∈ T, (4.37)

amin
c ≤ ac,t ∀c ∈ C, t ∈ T, (4.38)
ac,t ≤ amax

c ∀c ∈ C, t ∈ T, (4.39)
spred(c),t − sc,t ≥ lpred(c) + gc ∀c ∈ C, t ∈ T, (4.40)

χin
c,tl,t + χout

c,tl,t − χtl,t ≤ 1 ∀c ∈ C, tl ∈ TLc, t ∈ T, (4.41)

χin
c,tl,t + χout

c,tl,t ≥ 1 ∀c ∈ C, tl ∈ TLc, t ∈ T, (4.42)(
Send

tl − šc

)
· χout

c,tl,t + sc,t ≥ Send
tl ∀c ∈ C, tl ∈ TLc, t ∈ T, (4.43)(

Sstart
tl − ŝc

)
· χin

c,tl,t + sc,t ≤ Sstart
tl ∀c ∈ C, tl ∈ TLc, t ∈ T, (4.44)∑

tl∈TLl

χtl,t ≤ 1 ∀t ∈ T, l ∈ {1, . . . ,L}. (4.45)

Following the discussion of this section, we have met all requirements stated in the
beginning. In Section 6, we investigate the global-MILP numerically by solving
experimental data and comparing runtimes and complexity of the model with the
formulations and solving strategies we develop in the course of this section.

4.2.5 Additional Traffic-Light Regulations

While lane block effects are easily implemented and somewhat resemble real
traffic-lights, when confronted with dense traffic on multiple sides, they almost
certainly switch between sides very rapidly. Though this effect may yield optimal
outcomes, it is of limited use due to the fact that traffic-lights exhibiting such
behavior cannot be used by regular human drivers and therefore cannot be placed
on actual roads unless traffic is fully automated.

In reality, traffic-light programs are subject to additional constraints. They
switch at frequencies lower than the frequency of simulation timesteps and must
maintain their state for fixed amounts of time. To obtain results that are closer to
what would be achievable in reality, lane block effects could be furnished with
a kind of program consisting of the following additional parameters, which are
closely related to the legal regulations stated in [26]:
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• The pulse is the interval between two possible changes in a traffic-light’s
state.

• The green period is the time during which cars may enter the intersection. It is
characterized by a lower bound expressed in multiples of the pulse interval.

• The red period is the period during which cars may not enter the intersection.
It is characterized by a lower bound expressed in multiples of the pulse
interval.

• The cycle time is the time between the beginning of a green period and its
successive green period. It is characterized by a lower bound expressed in
multiples of the pulse interval.

• The evacuation time is a fixed time interval expressed in multiples of the pulse
interval. It is enforced at the beginning of the red phase in which crossing
cars may still not enter the intersection and is intended to provide time for
cars to leave the intersection. While technically part of the red phase, cars
may be located inside the intersection during this interval. This means that,
as far as lane block effects are concerned, it counts as part of the green phase.
The red and green periods are adjusted accordingly if evacuation times are
enforced.

By introducing these lane block programs and properly enforcing them, the
solutions obtained by the solver can be applied much better to real situations.
However, significant changes to the way the model is formulated are required.

4.2.5.1 Pulse Interval The difficulty in implementing pulse intervals lies in
whether or not one limits oneself to all traffic-lights in the network being synchro-
nized. The simplest way to maintain a constant state in a lane block for a fixed
period of time is to use the same χt for multiple timesteps. While this is simple and
(in the case of outer-convexification triggers) may substantially reduce the number
of binaries, it is not possible to find solutions where traffic-light pulses along the
same road are offset by a fraction of the pulse interval to allow for smoother traffic
flow. This may impact the quality of the solution.

Another way to model pulse intervals would be to introduce an additional
integer offset variable o for every trigger indicator. Let P ∈N be the length of the
pulse interval in timesteps and let o ∈ {0, . . . ,P − 1}. For a timestep t ∈ {2, . . . ,N},
we can enforce the pulse interval by inserting the following additional constraints:

|χt − χt−1| ≤ −
1
P
·

(
t − P ·

⌊ t
P

⌋
+ o

)
+ 2, (4.46)

|χt − χt−1| ≤
1
P
·

(
t − P ·

⌊ t
P

⌋
+ o

)
. (4.47)

Figure 4.9 illustrates the mechanism by which these constraints enforce the pulse
interval. As we can see, for each period the two graphs intersect in such a way that
an indicator change is only allowed when t is exactly at offset o from the beginning
of a period. Note that this is only guaranteed to work if we demand that the χ is
a binary vector. Otherwise, we cannot guarantee that the absolute value of the
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|χt − χt−1|

j0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 4.9: Variable offset pulse interval with (P = 10, o = 5)

difference |χt − χt−1| equals 1 for changing values of χt−1 and χt. This has an impact
on the enter-leave trigger-formulation and the three-way split which usually do
not require the trigger indicator itself to be binary.

4.2.5.2 Limiting the Green Period We now turn our attention towards imposing
limits on the green period. For the purpose of this discussion, we assume that the
green period has been properly adjusted to account for the fact that evacuation
time counts towards the green period rather than the red period (as it would in
reality). Let ǧ ∈ N be the minimal number of timesteps for a green period. Our
goal is to ensure that the traffic-light can only switch from green to red if it has not
been red for at least ǧ steps. We achieve this by imposing constraints on |χt − χt−1|,
which requires us to demand the integrality of χt. To ensure a minimal duration of
the green phase, we impose an upper bound on the downward change of χt which
exceeds 1 only if the green phase is long enough.

χt−1 − χt ≤
1
ǧ

ǧ∑
k=1

χt−k (4.48)

Note that if pulse intervals are implemented through a reduction of the number of
indicator variables, we can choose ǧ to be an appropriate number of pulse intervals.
This constraint also needs to be properly adjusted for t ≤ ǧ.

4.2.5.3 Limiting the Red Period Limits on the red period are obtained from
constraints limiting the green period by replacing χt with 1 − χt on the right hand
side and replacing χt−1 −χt with χt −χt−1 on the left hand side of constraints (4.48):

χt − χt−1 ≤ 1 −
1
ř

ř∑
k=1

χt−k. (4.49)

Here, ř ∈N is the minimum number of timesteps (or pulse intervals) within a red
period.
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4.2.5.4 Enforcing the cycle time The cycle time ensures that there is no oscil-
lating behavior of the traffic-light’s states. In real-world traffic-light programs,
running on traffic-light intersections in Germany, the time between two successive
changes of the traffic-light state from red to green is bounded from below by
30 seconds, cf. [26]. To enable this restriction in the above model, we add the
following constraints for a given lower bound of the cycle time č ∈N and every
timestep t:

χt − χt−1 − 1 ≤ χt−i−1 − χt−i ∀t ∈ T, i ∈ {1, .., č}. (4.50)

Again, we have to adjust this for the timesteps t ≤ č. In this case we drop the
constraints for i ≥ t.

4.2.5.5 Enforcing the evacuation time The evacuation time is included in real-
world traffic-lights in order to clear the intersection. This means, before switching
the signal state from red to green for a certain lane, all traffic-lights are set to red.
For our simple network, we assume the presence of a fixed evacuation time before
each switch from red to green.

Technically, the evacuation time is a time interval at the beginning of a red
phase during which cars may still remain within the intersection. For the purpose
of the implementation used in this thesis, the evacuation time is a time interval at
the end of a green phase during which cars may no longer enter the intersection.
We assume that the red and green period have already been adjusted accordingly.
We require the evacuation time e ∈N to be expressed in integer multiples of the
model’s timestep. For a given trigger indicator and point in time t ∈ {1, . . . ,N}, let
Et be the index set of pulse intervals that intersect the time interval between step t
and step t + e. Furthermore, let Sstart and Send be the lower and upper bounds of
the trigger zone in question.

We assume the presence of a binary indicator χ′t that accurately indicates entry
into the relevant trigger zone. This means, χ′t = 1 holds iff the car is on the trigger
zone. Note that among the trigger formulations presented in Section 4.2.2.2, only
the outer-convexification formulation with λ0 = 0 and λ1 = 1 and the three-way
split formulation provide such an indicator. The χin

t used in the enter-leave
formulation can be used to the same effect if we prevent it from assuming the
value 1 prior to the car entering the trigger zone by introducing constraints of the
following form:

χin
t ≤

1
Sstart − š

· (st − š) ∀t ∈ T. (4.51)

Given such a binary indicator, the time of entry into the trigger zone is characterized
by χ′t − χ

′

t−1 = 1. We can therefore prevent a car from entering the intersection
during the evacuation time by imposing an upper bound on this difference:

χ′t − χ
′

t−1 ≤ χi ∀t ∈ T, i ∈ Et. (4.52)
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Note that for lane block programs with a minimum red period spanning more
than e timesteps, this can be reduced to a single constraint:

χ′t − χ
′

t−1 ≤ χi, ∀t ∈ T and i = max Et. (4.53)

This is due to the fact that we can assume that the traffic-light cannot switch to red
in the time between timesteps t and t + e. Alternatively, we can use the following
constraints:

χ′t − χ
′

t−1 ≤
1
|Et|
·

∑
i∈Et

χi ∀t ∈ T. (4.54)

We incorporate these legal regulations for traffic-lights by extending the global-
MILP via adding the Constraints (4.46)–(4.52). The resulting MILP is called
global-realistic-MILP. Measured runtimes of the different formulations (4.52)–(4.54)
revealed the best performance for type (4.52). This is why we will work with this
kind of constraints. In Section 6, the influence of these regulations is investigated
in terms of runtime and achieved objective values of the MILPs.

4.3 Complexity Analysis

We derive statements about the computational complexity of the global-MILP with
the aid of results from scheduling theory. For this purpose, we give a short overview
of basic properties of scheduling problems and notation issues according to [81].
For a good overview over the wide area of scheduling theory, we refer the reader
also to [13].

A scheduling problem deals with the allocation of a finite number of resources
to a finite number of tasks over a given time period while optimizing one or more
objective functions. Often, the resources are machines in a particular production-
related environment or processing units. The tasks are often referred to as jobs
and are to be allocated to one or more machines for particular times. Special
restrictions or properties of the process can be considered if present. The objective
can be manifold. One possibility is the minimization of the completion time of
the last task or the sum of the completion times of all tasks. The properties of
a scheduling problem are described by a triplet α | β | γ, where α describes the
machine environment, β contains constraints and characteristics of the process and
may contain no entry at all or multiple entries. Finally, γ provides the objective
function which is to be considered. We present values of the triplet we will need
in the course of this section. A possible machine environment is:

Single Machine (1) This is the simplest case of all possible machine environments,
where a single machine processes all tasks occurring in the problem one after
another.

Job Shop (Jm) In a job shop problem with m machines, each job is processed by
multiple machines according to a predetermined individual route.
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Possible values for β are:

Release Dates (r j) The release date denotes the time the job arrives at the system,
i. e., that the task j cannot start its processing before its release date r j.

Processing Times (pi j) The processing time pi j describes the time it takes to
process job j on machine i. If only a single machine is present, the index i is omitted.
Usually, the processing times are only added to the problem-defining triplet if pi j

inherit certain properties, e. g., constant values for all jobs. In case of arbitrary
processing times, pi j are not added to the triplet.

Family Dependent Setup Times (s j,k) In some scheduling problems, the jobs are
grouped into mutually exclusive sets. Each set of jobs is referred to as family. If a
sequence of jobs on a machine requires a switch from a job in family j to a job in
family k, then a setup time of s j,k is incurred. In general, s j,k needs not to be equal
to sk, j. By definition sk,k equals 0.

Finally, we define a possible value for the objective function in γ which is to be
minimized:

Total Completion Time (
∑

CT j) For each job j, we define its completion time CT j

as the point in time the processing of job j is completed. The total completion time
means the sum of the completion times of all jobs in the problem.

In order to get in insight in the complexity of the global-MILP, we first asses that it
consists of

4 · |C| · |TN| · |TL| + 9 · |C| · |TN| + |TN| · |TL| + 2 · |C|

constraints and

2 · |C| · |TN| · |TL| + 3 · |C| · |TN| + |TN| · |TL|

binary and continuous variables. In Section 6.5, numerical investigation reveals
that solving the global-MILP without applying one of the methods described
below requires rather high solving times. This is not very surprising if we focus
on the involved task of determining an optimal sequence for the cars to pass the
intersection only. In fact, this problem can be regarded as a scheduling problem
and includes aspects that make the solution of classical scheduling problems
difficult. In order to get this insight, we define an optimization problem via:

Definition 4.1. We are a given a network of intersecting lanes, and a number of cars
c ∈ C, which enter the network at the beginning of a particular lane with an individual
velocity vmax

c at a certain point in time t̄c. Note that the number of intersecting lanes is
arbitrary. The aim is to determine an optimal sequence of all cars passing the central
intersection. To this end, we define the point in time a car c ∈ C fully passes the stopping
line of the intersection as CTc. Afterwards it is no longer considered. Formally, the length
of the conflict area is set to zero, i. e., SStart

tl = SEnd
tl for each traffic light tl. As objective

function, the sum of all CTc is to be minimized. Additionally, overtaking, lane-changes
and collisions between succeeding cars are forbidden. Finally, the movement of each car is
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modeled solely by the link of its velocity – which is bounded from below by zero and from
above by vmax

c – and its resulting position. The problem is set on a discretized and fixed
time horizon according to the global-MILP. For the purposes of the following discussion,
we call this optimization problem car-scheduling-problem (CSP).

Note that the CSP is strongly related to the global-MILP for a single intersection.
In particular, the ODE-Constraints (4.30)–(4.32) are omitted and the collision-
avoidance for succeeding cars, cf. Constraint (4.40), is enforced in front of the
traffic-light only. Security gaps between succeeding cars can be regarded as an
extended length of the leading car. All lanes are pairwise conflicting in the CSP. The
global-MILP’s objective function value can be retrieved from the CSP’s objective
function value by forward simulation of each car’s position until the end of the
time horizon:

sc,N = (TN − CTc) · vmax
c + Send

tl + lc.

With the aid of results from scheduling theory, we can derive the following
statement, which is consistent to [37]. There, the authors consider a single
intersection and cars, whose passage over the intersection has to be scheduled
minimizing the total completion time. The introduced algorithms therein are
based on a graph structure and stated to beNP-hard.

Theorem 4.2. The CSP isNP-hard.

Proof. The statement is derived by showing that each scheduling problem of
type 1 | r j |

∑
CT j, which is known to be NP-hard, cf. [69], can be transformed

into an instance of the CSP in polynomial time. To this end, for each job j of
the 1 | r j |

∑
CT j-type scheduling problem, a lane in the CSP’s road-network is

introduced. All of the resulting lanes intersect in a single intersection and are
pairwise conflicting. The length of the lanes is set to a fixed positive value, which
is chosen equally for all lanes and equals SStart.

Simultaneously, for each job j, a car c is added to the network. The car’s
properties are derived as described below. First, the time a car enters the network
t̄c is set to zero for each car. The maximum (and initial velocity) for each car is
derived from the lane’s length, which is without loss of generality set to 1 and the
job’s first possible processing time r j:

vmax
c :=

1
r j
.

We can assume that r j > 0 holds. Otherwise, we define r′j := r j + ε for all jobs and a
fixed ε > 0. Then, r′j is used for the definition of vmax

c . Finally, we set a car’s length
lc depending on the corresponding job’s processing time p j via:

lc := p j · vmax
c .

Clearly, the single machine in the original scheduling problem can be identified
with the CSP’s central intersection. The values of the respective objective functions
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∑
CT j (for the 1 | r j |

∑
CT j-type scheduling problem) and CTc for the CSP are

equal due to the CSP’s definition. The necessary transformations can be done
in polynomial time. Please note that this proof differs from the original version
according to comments by the reviewers. �

Remark 4.3. Theorem 4.2 provides a complexity result for the CSP only. However, we
do not have a result for the more complex problem setting modeled by the global-MILP.
Besides, it seems reasonable that adding those constraints, which model the longitudinal
motion more accurately, and extending the considered problem to the stretch of road behind
the intersection, do not facilitate the problem.

Incorporating conflict zones with a length strictly greater than zero, could be achieved
by considering family dependent setup times si, j, which add a non-negative value between
the processing of two jobs belonging to different families.

Regarding a road-network, which consists of multiple intersections, we can interpret
the CSP as a job-shop problem and derive aNP-completeness result again with complexity
hierarchies. For results that allow multiple lanes to be non-conflicting, i. e., for L > 1, one
has to refer to scheduling problems with parallel machines.

4.4 Digression in Modeling Traffic-Lights

In this section, we have a look at different formulations which aim to tackle the
traffic-light functionality. So far, we developed an approach that models the
traffic-light mechanism properly but suffers from two major drawbacks:

• Additional binary variables for each triplet of car, traffic-light, and timestep
are introduced, i. e., the χ{in,out}

c,tl,t variables. These are necessary for recognizing
if the car is on the intersection or not.

• The big-M formulations might lead to bad relaxations and therefore to a bad
solving behavior, e. g., high runtimes.

A very simple method to get rid of the additional indicator variables χ{in,out}
c,tl,t would

be to measure the euclidean distance between the car’s position and the center of
the intersection area. In case that the distance is lower or equal than the width of the
intersection area, the traffic-light must be green. We can express this mechanism
via the following constraint for each car and traffic-light per timestep:

sc,t −

Sstart
tl +

Send
tl − Sstart

tl + lc

2

2

≥

Send
tl − Sstart

tl + lc

2

2

−M · χtl,t. (4.55)

The positive constant M has to be chosen sufficiently large. Note that we incorporate
the car’s length into the constraint as it has to leave the intersection completely
before the traffic-light can be set to red. The variable χtl,t serves as binary indicator
for each traffic-light and timestep as it is the case in the global-MILP. In fact, the
Constraints (4.55) would replace the Constraints (4.41)–(4.44) as well as the binary
variables χ{in,out}

c,tl,t . Although the indicator variables χtl,t have to be modeled as binary
variables, in contrast to the formulation in the global-MILP, the total number of
binary variables is much less than in the global-MILP. Nevertheless, introducing
(4.55) would transform our currently linear problem to a quadratic non-convex
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one. Thus, locally optimal solutions are not necessarily globally optimal anymore
contradicting our demand of calculating the best possible traffic flow.
Another approach to reduce the global-MILP’s complexity would be to transform
the currently time-dependent system states of the ODE (4.1)

dx
dt

(t) = ft (t,x(t),u(t)) (4.56)

into a position-dependent system. According to [53], this can be achieved by
taking the inner derivative dt

ds (s) = 1
v(s) . This yields

dx
ds

(s) = fs

(
s,x(s) ·

1
v(s)

,u(s)
)
. (4.57)

Additionally, we introduce the elapsed time t as new state of the ODE system

dt
ds

(s) =
1

v(s)
(4.58)

Assuming that the ODE-system is again discretized using an appropriate collocation
method, we obtain variables of type tc,s for each car c ∈ C and discretized position
s ∈ S, where S is an appropriately discretized distance horizon for the problem
setting. These variables provide directly the timesteps when a car is on the
intersection area. Thus, we do not need any binary indicator variables of type
χ{in,out}

c,tl,t and associated constraints, which in the global-MILP are (4.41)–(4.44). As it
would be rather difficult to keep the global-MILP’s concept of binary indicators
for each traffic-light and timestep, which model the traffic-light’s signal-state, we
introduce a precedence-relation for each pair of conflicting cars c, d ∈ C. Assuming
that c drives towards traffic-light tlc and d approaches the conflicting traffic-light
tld, we want one of the following constraints to hold

tc,Sstart
tlc
≥ td,Send

tld
+ld ∨ td,Sstart

tld
≥ tc,Send

tlc
+lc , (4.59)

which means that either c enters the intersection area of the conflicting traffic-lights
after d left, or vice versa. This can again be achieved by big-M formulations, cf.
Section 2.2.4. In our particular case, this reads as:

td,Sstart
tld
− tc,Send

tlc
+lc ≤M · χc,d,tlc,tld ∀(c, d) ∈ C × C, (tlc, tld) ∈ TL × TL, (4.60)

tc,Sstart
tlc
− td,Send

tld
+ld ≤M ·

(
1 − χc,d,tlc,tld

)
∀(c, d) ∈ C × C, (tlc, tld) ∈ TL × TL, (4.61)

where χc,d,tlc,tld denotes a binary variable for each ordered pair of cars and related
traffic-lights tlc, tld ∈ TL × TL. These variables indicate which car passes the
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intersection consisting of the traffic-lights tlc, tld first. In fact, we only have to
consider conflicting cars and conflicting traffic-lights in the Constraints (4.60)
and (4.61). In summary, the transformation from a time-dependent system to
a position-dependent system leads to an omission of the two binary indicator
variables that indicate a car’s position relatively to the intersection area of a traffic-
light, including necessary constraints. The time-dependent indicator for each
traffic-light is superseded by a binary indicator for each ordered pair of conflicting
cars. Summing it up, at most 2 · |C| · |TL| · |T| binary indicators and at most |TL| · |T|
(not necessarily binary) indicators are omitted. In contrast, at most |C|2 · |TL|2 binary
precedence-indicators are introduced. If we consider networks where two different
cars share only a single intersection with conflicting traffic-lights (which is the
case for a single intersection), we can drop the indices tlc, tld leading to only |C|2

many additional binary variables. For relevant time horizons of several minutes
with a fine discretization, e. g., 2500 time steps and 100 cars, this means a dramatic
reduction of binary variables in the optimization problem. Moreover, the presence
of only a single kind of binary variables facilitates the decision which variable to
branch on in a possible branch-and-bound algorithm, cf. Section 2.2.3 and Section
4.5.2. However, the position-dependent formulation brings some disadvantages.
First, as no time-dependent state of the traffic-lights is present, legal regulations,
cf. Section 4.2.5, are difficult to implement. Further constraints possibly including
additional indicator variables would have to be added. Moreover, the resulting
program would not be convex anymore.

A third possibility for inducing the mechanism of a traffic-light is as follows:
based on the concept of the third trigger-formulation, cf. 4.2.2.2, we introduce
two binary variables for each triplet of car, timestep and traffic-light, i. e., χpre

c,tl,t

and χpost
c,tl,t. It should hold that χpre

c,tl,t is equal to 1 if and only if the car is in front
of the intersection area, while χpost

c,tl,t is equal to 1 if and only if the car is behind
the intersection area. This is enforced by the Constraints (4.22)–(4.24). With a
summation term for each car and traffic-light, we can determine the time steps
when a car enters the intersection area and when it leaves:

∑
t∈T

χpre
c,tl,t = zenter

c,tl ∀c ∈ C, tl ∈ TL (4.62)

N −
∑
t∈T

χpost
c,tl,t = zleave

c,tl ∀c ∈ C, tl ∈ TL. (4.63)

The binary indicator variables χc,t in the global-MILP are here dropped in favor
of integer variables z{enter,leave}

c,tl for each pair of car and traffic-light. As we saw in
the formulation above, we need a kind of precedence constraint for each pair of
conflicting cars at conflicting traffic-lights:

zenter
d,tld
− zleave

c,tlc
≤M · χc,d,tlc,tld ∀(c, d) ∈ C × C, (tlc, tld) ∈ TL × TL, (4.64)

zenter
c,tlc
− zleave

d,tld
≤M ·

(
1 − χc,d,tlc,tld

)
∀(c, d) ∈ C × C, (tlc, tld) ∈ TL × TL, (4.65)

Note that we do not need to model the z-variables explicitly and include Constraints
(4.62)–(4.63). The summation term can be plugged in directly into Constraints
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(4.64)–(4.65). We call the MILP consisting of Constraints (4.29)–(4.40) (ODE-
constraints and collision-prevention), (4.22)–(4.24) (three-way-split trigger), (4.64)–
(4.65), and Objective Function (4.28) timing-MILP. In a nutshell, the timing-MILP
uses the same amount of binary indicator variables as the trigger formulation in
the global-MILP for retrieving a car’s position. But instead of (not necessarily
binary) indicator variables for each traffic-light and timestep which are at most
|TL| · |T| many, binary precedence-indicating variables are introduced for each
pair of conflicting cars and their respective traffic-lights. Summing them up, the
timing-MILP inherits at most |C|2 · |TL|2 binary variables of type χc,d,tlc,tld for pairs of
conflicting cars and conflicting traffic-lights. If we consider again networks where
two different cars share only a single intersection with conflicting traffic-lights, we
can again drop the indices tlc, tld leading to |C|2 many binary variables.

Additionally, the timing-MILP is, in contrast to the ones discussed above, linear.
Still, we do not make use of it. Experiments on multiple test scenarios revealed
a higher solving time than the global-MILP on the same instances. Reasons for
this outcome could be that more binary variables are present than in the global-
MILP, even if the total number of variables are lower for certain instances. Also,
summation terms as in (4.62) often cause weak relaxations during the solving
process.

4.5 Solving Strategies
According to the statements in Section 4.3 concerning complexity and problem
size, the global-MILP might be rather intractable for reasonable problem settings.
We will investigate this issue in Section 6.5 numerically. At this point, we present
different methods to facilitate the solving process for the global(-realistic)-MILP
with the aid of methods presented in Section 2.2.

4.5.1 Iterative Solving Algorithm

We seize some of the ideas mentioned above and present an algorithm which
calculates exact solutions of the global-MILP and global-realistic-MILP. Basically,
smaller MILPs are solved iteratively as long as violated constraints are identified
and added to the model. Moreover, variables are left out in the beginning and
successively included later.

First, we exploit the fact that a car that has passed the intersection and reached its
maximum velocity as dictated by vehicle-specific limits, or the speed of a car directly
in front of it with lower maximum velocity, and is no longer accelerating, will
achieve its maximum contribution to the objective function (4.26) by maintaining
its velocity for the remainder of the time interval. This means that cars that reach
this steady state can be removed from the model early. Since this only changes the
value of the objective function (4.26) by a constant, the solution is not affected.

Additionally, we see that any given car’s behavior will not be affected by a
traffic-light’s trigger for most of the time interval. This applies specifically to cars
that have already passed the traffic-light, cars that have yet to reach the traffic-light
and cars that encounter no conflicting car while passing the corresponding trigger
zone. For such cars, the introduction of trigger-related model structures can be
avoided entirely. To omit these superfluous model elements, we follow an iterative
approach in which the model is solved repeatedly and additional variables and
constraints are added only to improve solution feasibility with respect to the
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Figure 4.10: Flow chart of the iterative solving algorithm.

complete model after each iteration. Figure 4.10 depicts a flow chart detailing the
steps of the iterative algorithm. In Section 6, we discuss the complexity reduction
that can be achieved using this approach, as well as resulting effects on solving
times.

Let us refine the ideas above and develop concrete methods. In the first step,
the model is initialized by introducing Constraints (4.29)–(4.39) and associated state
variables for an appropriate time frame for each car. The time frame is chosen by
estimating the amount of time the car will need to reach the intersection, pass it and
clear a given stretch of road behind the intersection, if left entirely unobstructed.
No trigger-related variables or constraints are introduced during initialization.
Hopefully, this method reduces the complexity of the MILP drastically.

The greedy-algorithm, which is discussed in Section 5, may be used to improve
the estimates on each car’s initial time frame and introduce some of the required
trigger-related structures. To this end, the greedy-solution is used as an MIP start
in the first iteration of the subsequent refinement loop.
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Algorithm 4.1: Pseudocode of the iterative solving algorithm.
initialize MILP with Constraints (4.29)–(4.39) and associated variables for
each car and those time steps which are at least necessary for the car to pass
the intersection with maximum velocity;

while MILP , global-MILP do
solve MILP;
if MILP infeasible then

return problem infeasible;
else

for each car c in C do
check for collisions with preceding car. Add Constraints (4.40) if
check failed;

check for conflicts with cars on the intersection by (iterative)
conflict-resolution. Add Constraints (4.41)–(4.45) and associated
variables if check failed;

check if c crossed the intersection and reached a steady state. Add
Constraints (4.29)–(4.39) for further time steps if check failed;

end
end
if all checks passed then

return solution of the global-MILP. To this end, extrapolate the
motion of cars into the future;

end
end
solve global-MILP;
return solution of the global-MILP or assess infeasibilty;

In the next step, the resulting problem is solved. Afterwards, it is analyzed whether
the resulting solution is also feasible with respect to the global-MILP. Initially,
collisions between succeeding cars driving on the same lane are identified. If these
are detected, constraints of the form (4.40) are introduced as needed. We refer to
this step as collision-prevention, which is in fact a cutting-plane method, cf. Section
2.2.1.

Afterwards, we check for conflicts, which occur on the intersection area of
the traffic-lights. Using the MILPs terminology, we look for cars on conflicting
lanes, which are on conflicting trigger zones for a timestep t ∈ T. The so-called
conflict-resolution identifies these conflicts and adds the trigger-related constraints
and variables of the conflicting vehicles for the time span in question. Particularly,
Constraints (4.41)–(4.45) are added to the model along with necessary χ-type
variables. This step consists of adding cutting planes and realizes a column-
generation method, cf. Section 2.2.2. Note that no pricing problem is solved here
to identify variables which are to be added to the problem.

Conflict-resolution will likely cause one of the conflicting cars to be delayed
slightly to avoid the conflict. In dense traffic, one can easily imagine the passing
car being closely followed by another car which would then come into conflict with
the crossing car in the next iteration. In such situations, the conflict-resolution may
require a high number of solver iterations. To avoid this becoming a problem, the
iterative conflict-resolution is introduced. Thereby, we attempt to resolve conflicts
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that arise as a result of newly introduced trigger infrastructure without performing
another full solver iteration. More precisely, a solver loop within the iterative
conflict-resolution is started in which every car’s trajectory is fixed, except for the
vehicles that were in conflict and their followers. Conflicts within the internal
solver loop are resolved using the conflict-resolution. This way, at least the conflicts
of the conflicting cars are resolved in each step. When a solution is found which
does not include any further conflicts, the internal solver loop is stopped and
the crucial trigger-related variables and constraints of this solution are added to
the model. Additionally, the last obtained solution can serve as MIP-start for the
solve-step.

After (iterative) conflict-resolution, the algorithm checks whether all cars
crossed the intersection and reached a steady state. If this is not the case for car c,
the model-growth takes its last known state and uses a simple forward simulation
with constant maximum jerk until ac,t = amax

c and constant maximum acceleration
until vc,t = vmax

c . Thus, the existence of the car is extended by introducing additional
Constraints (4.29)–(4.39) and associated state variables for further time steps as
needed. This way, the model-growth heuristically determines when the car will
have reached a steady state. Once this is the case for a car in an obtained solution,
the car is removed from the model for the rest of the time horizon T.

These steps are repeated until no introduction of further variables or constraints
are required. By extrapolating the steady state of all cars into the future, an optimal
solution of the global-MILP can be obtained. Note that this is only a valid method
if the maximum velocity of each car is not strictly greater than the maximum
velocity of its predecessor, which makes the collision-avoidance-constraint (4.40)
redundant once the steady state of each car is reached. In Algorithm 4.1, the
iterative solving algorithm is given in pseudocode.

Considering realistic traffic-lights, cf. Section 4.2.5, with the required constraints
and variables, we have to take some additional effects into account for the conflict-
resolution step. It becomes necessary to introduce trigger-related constraints and
variables if a car passes the intersection area even without being in conflict with
another car. This behavior is essential to the proper enforcement of traffic-light
programs as traffic-light rhythms can be affected by a car being on the intersection
area without encountering a crossing vehicle. These constraints and variables are
added during (iterative) conflict-resolution.

Theorem 4.4. The iterative solving algorithm terminates in finitely many steps. In the
worst case, 3 · |C| · |T|MILPs have to be solved.

Proof. For counting the number of MILPs to be solved, we refer to Algorithm 4.1.
In the worst case, only a single check for a single car fails after an MILP has been
solved. This triggers another solution process after the MILP has been slightly
adapted. As each kind of check can fail at most |T| times for a car, the stated
number of iterations follows. �

4.5.2 A Tailored Branch-and-Bound algorithm

As an alternative approach for improving the solving process of the global-MILP,
we present a standalone branch-and-bound algorithm, which exploits the structure
of the global-MILP. Its performance will be analyzed later, in Section 6.5.3. This
branch-and-bound algorithm is designed for networks which involve a single
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intersection only. Hence, indices for the traffic-light are omitted in the discussion.
Nonetheless, the routine can be adapted for multi-intersection networks. For a
discussion on branch-and-bound algorithms, cf. Section 2.2.3.

In the algorithm which we develop in this section, we branch on the trigger-
variables of type χin

c,t and χout
c,t for a car c and time-step t in increasing order of

the time index. Simply put, for every time-step t and car c, four different nodes
are generated, according to the possible values and combinations of the binary
variables. In each node of the tree, a linear program is solved, while those binary
trigger-variables are relaxed which have not been fixed yet. Moreover, these linear
programs do not cover the whole time grid T = {0, . . . ,N}, but only the first part of
the grid {0, . . . , t̃} for a particular t̃ ∈ T. In a sense, we follow the movement of the
cars over the course of time. Once an infeasibility is detected, the whole branch
can be pruned.

Algorithm 4.2 depicts an outline of the branch-and-bound algorithm. For
convenience, we define tinter

c as the lowest time step in which a car c is able to reach
the intersection without entering it. During the branch-and-bound algorithm,
each node stores information about its current depth d in the tree, the currently
considered car c, the current time step t, the upper bound u provided by the
current solution, and the set of already fixed binary variables f ix in a tuple of type(
d, c, t,u, f ix

)
. Before we discuss the branching step in detail, we have a look at the

bounding procedure.

Bounding Step As we solve LPs in each node which cover only a part of the
whole time horizon, we have to make sure to retrieve upper bounds on the objective
value as we are maximizing the objective function. Suppose that we calculated a
solution x∗ in the particular node with an objective value ot̃(x∗) of the smaller LP
covering the horizon [0, . . . , t̃]. Generally, the objective function reads as:

oi(x∗) :=
∑
c∈C

sc,i

for any i ∈ T. Obviously, oN(·) is the global-MILP’s objective function. The upper
bound u(x∗) on oN(·) in the whole branch is obtained via forward simulation of the
movements of all cars with maximum velocity vmax

c :

u(x∗) := ot̃(x∗) +
∑
c∈C

(N − t̃) · vmax
c · dt.

We can see that u(x∗) is a valid upper bound by assuming that a solution x̄N for the
whole MILP exists with an objective value oN(x̄N) > u(x∗). For the distances of the
vehicles in time-step t̃ in x̄N one has ot̃(x̄N) > ot̃(x∗) due to the construction of u(x∗).
This is a contradiction to x∗ being an optimal solution.

A more sophisticated approach for determining an upper bound considers the
distance of each car to its predecessor, as collisions are prohibited in the MILP. To
this end, we have to determine the extrapolated position ŝc,t of each car for each
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Algorithm 4.2: Pseudocode of the tailored branch-and-bound algorithm.

initialize tree Q with the root node
(
0, c, tinter

c ,∞, {}
)

for a car c with a minimal
value for tinter

c ;
set global lower bound l∗ := −∞ ;
while Q , ∅ do

select current node a from Q due to search strategy and remove it from Q;
if a.u < l∗ then

prune a;
continue;

end
solve LP with a. f ix on the grid {0, . . . , a.t};
if infeasible then

return infeasible;
end
perform bounding step and update a.u;
if a.u < l∗ then

prune a;
continue;

end
if a.t = N and χ{in,out}

c,N ∈ a. f ix for all c ∈ C then
if objective(a.x∗) > l∗ then

set current optimal solution x∗ ← a.x∗;
set global lower bound l∗ ← objective(a.x∗);

end
else

if a.t = N then
create single child node b;
set b.d← a.d + 1;
set b. f ix← a. f ix;
set b.u← a.u;
set b.c to a car c with χ{in,out}

c,N < b. f ix and minimum value of tinter
c ;

set b.t← tinter
b.c ;

add b to Q;
else

create four child nodes according to possible permutations of
{0, 1}2 which are the values of χ{in,out};

for each child b do
set b.d← a.d + 1;
set b.u← a.u;
set b.c← a.c;
set b.t← a.t + 1;
set b. f ix← a. f ix plus permutations of values in χ{in,out}

b.c,a.t+1;
add b to Q;

end
end

end
end
return optimal solution x∗;
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Figure 4.11: Current position and extrapolation of future positions of cars c and
c′. The extrapolations (light blue rectangles) predict conflicts on the intersection
in two time steps. Thus, the upper bound on the objective value is reduced by
2 ·min

(
vmax

c , vmax
c′

)
· dt.

time step. In this way, we obtain an extrapolated value which can be compared to
the predecessor’s position. The particular upper bound for each node reads as

u(x∗) := ot̃(x∗) +
∑
c∈C,

t∈{t̃,...,N}

ŝc,t.

The values for ŝc,t are defined via

ŝc,t̃ := sc,t̂,

ŝc,t = min
(
ŝc,t−1 + vmax

c · dt, ŝpred(c),t − lpred(c) − gc

)
∀t ∈ {t̃ + 1, . . . ,N}.

Bounding Heuristic An important effect on the quality of the upper bound is
neglected in the presented branching step: no conflicts of cars on the intersection in
future time steps are considered. That is, the position of all cars which are in front
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Figure 4.12: Car c on the network with position in time-step t. The vertical bar
indicates the position the car can at most achieve in the next time-step. In this case,
it cannot enter the intersection.

of the intersection in the current time step is simply extrapolated without taking
possible conflicts on the intersection into account. A heuristical approach, which
turned out to provide very good bounds in runtime experiments, incorporates
conflicts as follows: we count the number of time steps t > t̃ in which multiple
conflicting cars are on the intersection according to the extrapolated distances ŝc,t.
Remember that we received these distances by extrapolating each car’s distance
with maximum velocity. Each of these conflict-times means that at least one of the
conflicting cars cannot be on the intersection during this time step. This results in
a lower value of the upper bound in this node. Following this consideration, we
subtract vmax

c · dt from the upper bound u(x∗) for each conflict-time, where c is the
particular car with lowest maximum velocity participating in this conflict-time. In
case that four cars (one on each lane) are detected to be in a conflict, two of them
are not allowed to be on the intersection. Thus, we can increase the sum of all
conflict-times by two. Figure 4.11 depicts this situation for two conflicting cars.

Branching Step Creating four nodes for each car and timestep would lead to
a relatively large number of LPs which have to be solved in the resulting nodes.
Therefore, we exploit the structure of the model and omit certain kinds of nodes as
explained below. First, let us recall Table 4.1 which lists possible values for the
trigger-variables depending on a car’s current position. Thus, in the root node, we
can fix the values of χin

c,t to 0 for each car c and time-step t in which the particular
car is not able to reach the intersection even by driving with maximum velocity.
Analogously, we fix χout

c,t to 1 for each car and time-step in which the particular car
cannot manage to pass the intersection even by driving with maximum velocity.
Additionally, we distinguish the following situations to identify negligible nodes
for each car c:

(i) If c is in front of the intersection and not able to enter the intersection in the
next time-step even by driving with maximum velocity, we can fix χin

c,t to 0
and χout

c,t to 1 for all time-steps t in which c is not able to enter the intersection,
even by driving with maximum velocity. Remember that the current solution
provides a maximum value for the car’s covered distance in this time-step as
we are restricted to networks with a single intersection. Figure 4.12 visualizes
the described setting.

(ii) If c is in front of the intersection and able to enter in the next time-step by
driving with maximum velocity, cf. Figure 4.13, we generate two nodes
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Figure 4.13: Car c on the network with position in time-step t. The vertical bar
indicates the position the car can at most achieve in the next time-step. In this case,
it is able to enter the intersection. We generate an additional node, where c does
not enter the intersection if a conflicting car has the chance to enter before c will
have left.

with χin
c,t+1 = 1, χout

c,t+1 = 1 and χin
c,t+1 = 0, χout

c,t+1 = 1. This can be interpreted as
providing the possibility to enter the intersection in the following time-step
or to stay in front of the intersection, e. g., to allow a blocking car to enter it.
In case that c enters the intersection, we can bound the amount of time-steps
it will be on the intersection from below by assuming that it drives with
maximum velocity. Thus, we can generate nodes with χin

c,t′ = 1, χout
c,t′ = 1 for all

t′ > t in which c cannot manage to leave the intersection.
In case that a blocking car c′ is currently on the intersection, cf. Figure 4.14,
we do not provide the possibility for c to enter. More specifically, c′ has to be
on the intersection and is not able to leave it in the next time-step by driving
with maximum velocity. As we are maximizing the covered distance, c′ will
not slow down in the next timestep, once it is on the intersection. This means,
we only generate the node with χin

c,t+1 = 0, χout
c,t+1 = 1 in this case. Note that

we do not cut off valid solutions as we already generated nodes allowing
c to enter the intersection before c′ because this case already applied for c′.
Analogously to the argumentation above, we can generate nodes for all t′ > t
in which c′ is not able to leave the intersection with χin

c,t′ = 0, χout
c,t′ = 1.

(iii) If c is currently on the intersection and is not able to leave it in the next
time-step by driving with maximum velocity, we only generate nodes with
χin

c,t+1 = 1, χout
c,t+1 = 1. We again generate similar nodes for all t′ > t in which c

cannot manage to leave the intersection. Figure 4.15 visualizes the situation
occurring here.

(iv) The last case occurs when c is either already behind the intersection or still on
it, but able to leave it in the next time-step by driving with its current velocity.
In this case, we generate nodes for all t′ ∈ [t + 1, . . . ,N] with χin

c,t′ = 1, χout
c,t′ = 0.

We do not cut off valid solutions here as once the car left the intersection, it
is not able to enter it again. Also, it will not slow down, once it entered the
intersection because of the distance, which is to be maximized. Thus, we at
most cut off non-optimal solutions. In Figure 4.16, the described setting can
be seen.
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Figure 4.14: Car c on the network with position in time-step t. The vertical bar
indicates the position the car can at most achieve in the next time-step. In this case,
it is able to enter the intersection. A blocking car c′ on the intersection prohibits c
to enter.

Bounding Alternative As an alternative for solving an LP in each step which
covers only a certain part of the time grid, one could also solve an LP for the
whole time horizon. Such an LP would again be a relaxation of the global-MILP
in the variables which are to be branched, with all branching-variables fixed up
to the current time step. The bound in each node would simply be the objective
value of the LP’s optimal solution in this node. In Section 6.5.3, we compare both
approaches in terms of different parameters. We focus on the quality of the bounds
yielded by each method as well as the overall solving times and the solving times
for each node.

Search Strategy The strategy for selecting the next node is realized via depth-
first-search. This means, the node in Q with the highest depth d is chosen. If
multiple nodes with the same depth exist, the node with the highest local upper
bound u is chosen. As soon as a new integral solution is obtained, the node which
provides the highest upper bound is selected. Thus, we realize a diving-method
here, cf. Section 2.2.3
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Figure 4.15: Car c on the network with position in time-step t. The vertical bar
indicates the position the car can at most achieve in the next time-step. In this case,
it is not able to leave the intersection.
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Figure 4.16: Car c on the network with position in time-step t. The vertical bar
indicates the position the car can achieve in the next time-step with its current
velocity. In this case, it either already left the intersection or is able to leave in the
next time-step.

In the next section, we go back a step from an overall optimized traffic flow and
present an algorithm which calculates trajectories for each car individually. The
reduction in complexity that we achieve can hopefully be used to design a system
for a real-world application.

As we will see in Section 6.5, the solving times for the global-MILP are quite
high – at least with respect to practical purposes. Thus, an application which is
based on the global-MILP is difficult to implement. Furthermore, the global-MILP
determines an offline calculated behavior, which is rather sensitive considering a
not exact performance of the calculated trajectories by the cars. This would result
in collisions between succeeding cars and on the intersection. The experiences
we made while testing the RACC on the road suggest that it is nearly impossible
to perform these trajectories sufficiently well. Thus, it would be necessary to
recalculate the global-MILP repeatedly, which is again inhibited by the high solving
times. Finally, the model does not consider cars which are not connected to the
system that calculates the solutions. Nevertheless, the solutions of the global-MILP
can serve as a benchmark for the algorithm to be developed in the following
section, and, of course, other systems and strategies which aim to improve traffic
flow at traffic-light controlled intersections.
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5 An Individual Approach to Optimizing Traffic Flow

In the previous section, we developed an MILP which includes an objective to
achieve a globally optimal traffic flow by calculating states for cars and traffic-lights
in a network of intersecting roads. The solutions of this MILP serve as bench-
marks for applications which generate suboptimal but practically implementable
solutions.

In this section, we discuss an algorithm which aims to optimize the behavior of
every car c ∈ C individually. Other cars are only considered to prevent collisions of
succeeding cars on a lane and conflicting cars on the intersection. In the literature,
a variety of publications consider GLOSA-methods, cf. Section 3. This approach
calculates static velocities for each car to pass the intersection while preceding
cars are neglected. Often, these velocities are displayed as advice to the driver
and are not performed automatically. In [19], the authors present a system, which
dynamically calculates times for each car to pass the intersection and non-static
velocities in order to increase traffic flow. It is refined and extended by human
drivers in [20, 21, 103]. The advantage of our method is that we calculate trajectories
for every car, whereas the aforementioned system only switches between constant,
maximum, and minimum acceleration in each step. This approach not only leads
to a suboptimal behavior of the cars, the resulting trajectories should be rather
uncomfortable for the passengers. Thus, we incorporate realistic motion dynamics
and bounds on the physical quantities of the model. Another approach presented
in [97], is based on time slots, which are dynamically assigned to vehicles and
allow them to pass the intersection. Besides the fact that this approach is somehow
related to the algorithm developed in the course of this section, we propose a
method, which is more dynamic as no slots of fixed time exist. Again, our approach
includes concrete acceleration-trajectories in contrast to the mentioned method.
Finally, the authors of [107] present an algorithm similar to our approach for
trains moving one after another on a single-track network. Thereby, two trains are
forbidden to be in the same segment simultaneously. They also compare different
solving methods, including MILPs, regarding runtimes and objectives, as we do in
this thesis.

In this section, we first present the algorithm. Afterwards, possible adaptions
and extensions are discussed. Finally, we propose a real-world system based on
the algorithm.

5.1 Algorithm
In order to make the solutions of the individual optimization comparable to the
solutions of the global-MILP, the algorithm is based on the longitudinal motion
model and trigger mechanism of the previous section. Also the discretized
timehorizon T = {0, . . . ,N} is kept. In contrast to the global-MILP, the variables for
the cars and traffic-lights are not calculated as a whole. In contrast, smaller MILPs
for each car c ∈ C individually are solved iteratively.

The passage of the cars over the intersection is based on a first-come, first-served
principle. Again, we want to maximize the covered distance for each car. To
this end, the proposed algorithm, which is visualized in Figure 5.1, performs
the following steps for each point in time t ∈ T. An ordered list S handles the
cars which are to be optimized. It is initialized with the empty set. Prior to the
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first optimization, the algorithm’s current time step t is increased until the set
Ĉt := {c ∈ C|t̄c = t} containing all cars that enter the network in the current time
step is not empty and appended to the queue S. As long as S is not empty, the
following steps are performed iteratively. First, an MILP for the first member of S
called c̄ is solved. In most cases, a car which enters the network in the current time
step, i. e., t̄c̄ = t, is considered. For simplicity, we omit the index c̄ for the current
car and regard the MILP given by:

max
a,v,s,χin,χout,χ

∑
t∈T

st (5.1)

s.t.: st+1 = st + vt · dt ∀t ∈ T \ {N}, (5.2)
vt+1 = vt + at · dt ∀t ∈ T \ {N}, (5.3)

1
dt
· (at+1 − at) ≥ jmin

∀t ∈ T \ {N}, (5.4)

1
dt
· (at+1 − at) ≤ jmax

∀t ∈ T \ {N}, (5.5)

st = 0 ∀t ∈ {0, . . . , t̄c}, (5.6)
vt = v̄ ∀t ∈ {0, . . . , t̄c}, (5.7)
at = 0 ∀t ∈ {0, . . . , t̄c}, (5.8)

vmin
≤ vt ∀t ∈ T, (5.9)

vt ≤ vmax
∀t ∈ T, (5.10)

amin
≤ at ∀t ∈ T, (5.11)

at ≤ amax
∀t ∈ T, (5.12)

spred(c),t − st ≥ lpred(c) + g ∀t ∈ T, (5.13)

χin
tl,t + χout

tl,t − χtl,t ≤ 1 ∀tl ∈ TLc, t ∈ T, (5.14)

χin
tl,t + χout

tl,t ≥ 1 ∀tl ∈ TLc, t ∈ T, (5.15)(
Send

tl − š
)
· χout

tl,t + st ≥ Send
tl ∀tl ∈ TLc, t ∈ T, (5.16)(

Sstart
tl − ŝ

)
· χin

tl,t + st ≤ Sstart
tl ∀tl ∈ TLc, t ∈ T. (5.17)

The slightly modified objective function compared to the global-MILP is explained
below. Note that in Constraint (5.13), the value of the predecessor’s currently
covered distance spred(c),t is fixed since the optimal solution for the vehicle’s pre-
decessor is already determined, because it enters the network earlier. Remember
that no overtaking maneuvers are allowed. In the first step, each vehicle schedules
a preferred transit through the network individually, only regarding preceding
vehicles in order to avoid collisions. The constraint which couples conflicting
traffic-lights ∑

tl∈TLl

χtl,t ≤ 1 ∀t ∈ T, l ∈ {1, . . . ,L} (5.18)

is handled outside the MILP. In case that any violation of this constraint is detected,
the MILP is reoptimized while fixing some of the values for χtl,t according to the
following rules.
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Figure 5.1: Flow chart of the iterative algorithm.
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Thus, in the next step, called enter-check, the car’s scheduled passage through
the trigger zone is analyzed: if no conflict with conflicting cars occurs, the car’s
variables are fixed. We also call the particular car to be fixed. To this end, we
have a look at the particular time step tenter

∈ T in which the car planned to enter
the trigger zone of a traffic-light tl ∈ TL: if a violation of Constraint (5.18) occurs
– due to a conflicting car being on the intersection area – the MILP is resolved
for c̄ while fixing χtl,tenter to 0. In other words, if another car on a conflicting road
already scheduled to be on the intersection, the passage of c̄ is rescheduled while
respecting the other car. We can do even better and fix χtl,t to 0 for all following
time steps t > tenter until the conflicting car scheduled to leave the trigger zone.
Currently, χtl,t = 1 is allowed, even if no car is in the trigger zone of tl. We have
to modify the solution after the optimization such that χtl,t = 1 holds if and only
if a car is on the traffic-light’s trigger zone. Otherwise, conflicts may be detected
falsely. This does not have any influence on the value of the objective function.

In contrast, if no violation of Constraint (5.18) for tenter occurs, it is checked if
there are no conflicts in succeeding time steps. In other words, the passage of an
already fixed car c′ on a conflicting lane has to be rescheduled if it planned to
enter the trigger zone after the current car c̄. To this end, it is checked if there is a
t̂ ∈ {tenter + 1, ..., tleave

− 1}with χtl′,t̂ = 1 for a conflicting traffic-light tl′ ∈ TL, while
tleave is the time c̄ leaves the trigger zone. If this is the case, the MILPs for the car c′

that induces χtl′,t̂ = 1 and all its already fixed successors are reoptimized. For this
purpose, c′ and its successors ordered according to their respective arrival-times
are added to the set C̃c′ which is prepended to S. This step is called blocking-check.

As soon as S is empty, t is increased until Ĉt is nonempty, or the end of the time
horizon is reached, i. e., t = N, which indicates the algorithm’s termination.

Due to the fact that the cars do not consider their successors, they behave
in a rather uncooperative way in front of the traffic-light. This means, that if
a car has to decelerate in front of the traffic-light, because of the passage of
conflicting cars, it happens that it may stop in the very beginning of the network.
Consequently, succeeding cars may not be able to avoid a collision, due to bounds
on the acceleration and jerk. Therefore, we consider not only the covered distance
in the final timestep, but also in the prior steps. The resulting objective function
for each car reads as:

max
∑
t∈T

st. (5.19)

We refer to this algorithm, because of its behavior of locally optimizing the
trajectories, as greedy-algorithm. A description in pseudocode is given in Algorithm
5.1. In Section 6.6, we investigate the performance of the greedy-algorithm and
compare it to the global-MILP and the RACC.

Theorem 5.1. The greedy-algorithm terminates after finitely many iterations. In the
worst case, the number of iterations is exponential in the number of cars.

Proof. In order to see that the first statement holds, we consider for Algorithm 5.1
that for each pair of cars c, d, where c caused a failed blocking-check for d, d cannot
cause a failed blocking-check for c in the same inner iteration. Thus, no infinite
loops occur. Additionally, for each car at most |C| − 1 many enter-checks can fail
per while-iteration.
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Algorithm 5.1: Pseudocode of the greedy-algorithm.

initialize with empty queue S := ∅ and t := 0. Set all cars to be not fixed;
while S = ∅ do

append all cars c to queue S with t̄c = t;
t := t + 1

end
while t , N do

repeat
remove first element c̄ of queue S;
if c̄ is not fixed then

fix current car c̄;
initialize MILP for c̄;

end
solve MILP;
if enter-check failed then

fix χtl,tenter (and possibly for subsequent time steps) to zero;
insert c̄ at the beginning of S;
continue;

end
if blocking-check failed then

prepend blocking cars and their successors to S and unfix them;
continue;

end
until S = ∅;
while t , N do

if ∃ c ∈ C with t̄c = t then
append c to queue S;
break;

end
increment current time step t := t + 1;

end
end

The exponential number of iterations is due to the blocking-checks. Let N|C| be
the number of iterations which are to be solved in the worst case for |C| many
cars, when regarding solely blocking-checks. Clearly, if |C| = 1, then N|C| = 1 as
no failed checks can occur. It then holds that N|C| = 2 ·N|C|−1 + 1. This can be seen
by following inductive argumentation: increasing the number of cars from |C| to
|C| + 1, triggers in the worst case all iterations, which were necessary for |C|many
cars (N|C|). Additionally, another iteration for the new car is necessary (N|C| + 1). In
the worst case, this new car triggers a reoptimization of all other cars again, due to
a failed blocking-check. Hence, the number of iterations sums up to 2 · N|C| + 1.
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This recursive formulation reads explicitly as N|C| = 2|C| − 1. Again, we can show
this by an inductive statement:

N1 = 1
N|C|+1 = 2 ·N|C| + 1

= 2 ·
(
2|C| − 1

)
+ 1

= 2|C|+1
− 1.

Considering also failed enter-checks, at most |C|−1 many additional iterations may
be performed in each inner loop of Algorithm 5.1. This leads to (|C| − 1) ·

(
2|C| − 1

)
iterations in the worst case.

�

5.2 Extensions and Adaptions
A major advantage of the greedy-algorithm compared to algorithms for the global-
MILP is that it can be executed on distributed computation units. More specifically,
we do not need a central unit, which is aware of all cars and traffic-lights with their
respective states and specifications. In fact, each car can compute its individual
trajectory. We only have to take care that the scheduled passing times of the
vehicles are managed and reoptimizations, due to conflicting cars, are triggered.

5.2.1 A Real-World System for Optimized Traffic Flow

With the aid of wireless communication among vehicles and between vehicles and
infrastructural devices, the presented algorithm could be suitable for a real-time
procedure. In Section 6.6, we show experimentally that the greedy-algorithm
yields promising runtimes regarding real-time systems.

Such an application called greedy-cruise-control could be designed as follows:
whenever a car is within a certain range with respect to a traffic-light, the system
is activated. This is, in a sense, equivalent to a car entering the network in the
greedy-algorithm. Information about the traffic-light’s position, geometry of the
intersection, and so on can be exchanged via wireless communication, cf. Section
3.4.1, using the intersection-message. The solve-step of the algorithm can then be
performed on a computational device in the car. Necessary information about
preceding cars – via messages of type CAM and DENM – can be exchanged either
directly between the cars or could also be distributed by the traffic-light.

Once the car calculated its preferred trajectory and passing times over the
intersection, it communicates this information to the traffic-light. There, the
enter-check and blocking-check are performed. In other words, the traffic-light
manages the passing times of the cars and adapts its light-switching schemes
accordingly. If any conflicts are detected, the traffic-light triggers a reoptimization
in the respective cars analogously to the mechanism of the ordered list in the outline
of the greedy-algorithm. To this end, it shares information about the timesteps,
which hinder the particular car to pass the intersection as preferred. By fixing
the appropriate trigger-variables, the car incorporates these information for the
reoptimization process. Afterwards, the calculated passing times (and possibly the
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trajectory) are communicated to the traffic-light. This process is performed until
no further changes are triggered. Neither by the traffic-light for reasons explained
above nor by the car itself. As the available messages for C2X-communication do
not invoke data which are crucial for the discussed functionality, either the present
message types have to be extended, or new messages have to be introduced. In
particular, the possibility to transmit calculated trajectories and passing times from
the car to the traffic-light has to be provided. Additionally, the traffic-light must
be able to broadcast information about possibly blocked time steps to the car.

As we already discussed, performing calculated trajectories exactly is only
hard to achieve in practice. Therefore, the greedy-cruise-control could contain a
mechanism which allows a vehicle to trigger a reoptimization. This mechanism
also has to be covered by (newly introduced or extended) wireless communication
messages.

In such a practical system, we do not operate on a fixed setting as described
in Section 5.1. Hence, situations might occur, where the algorithm does not
terminate – especially, if each car can trigger a reoptimization. Because of bounds
on the physical quantities, it might also happen that no feasible solutions exist for
single cars, e. g., because of reoptimizations which are triggered shortly before
the car enters the intersection area. For this reason, a mechanism should be
included, which fixes the switching times of the traffic-light some seconds in
advance inhibiting these effects. Nevertheless, the greedy-cruise-control might
realize some security fallbacks analogously to the mechanism of the RACC. For
example, the car’s ACC, cf. Section 3.4.3.3, could always overrule the system for
security reasons.

Another issue that has to be considered is, how cars which are not equipped
with the greedy-cruise-control can be incorporated. To this end, we can use the
car’s ACC-system and the security fallback explained above. A more sophisticated
approach would be that each car is aware of all equipped cars and their respective
positions by wireless communication. Consequently, if the radar sensor detects
a preceding car which is not broadcasting these information, the greedy-cruise-
control could be disabled.

Additionally, we have to ensure that the traffic-light’s signal-states, which
are based on the calculations of equipped cars, do not change rapidly. More
generally, the resulting switching schemes should allow human drivers to react to
the signal states properly. In absence of cars with enabled greedy-cruise-control,
the traffic-light performs its usual switching scheme.

5.2.2 Additional Traffic-Light Regulations

In Section 4.2.5, we already discussed legal regulations for switching schemes of
traffic-lights. These can be incorporated in the greedy-algorithm by simply adding
a third kind of check after the blocking-check. This traffic-light-check can easily be
included into the greedy-cruise-control. As the other checks are executed by the
traffic-light’s processing unit, the traffic-light-check can also be performed there.
In particular, after the blocking-check is finished, a valid solution for the time
horizon [0, t] exists. The traffic-light-check examines the planned regulations of
the traffic-light’s switching scheme in increasing order in time. Once a violation is
detected, the indicator variables for this time step (and possibly further time steps)
are fixed accordingly. Afterwards, those cars, which have not completely passed
the intersection until t, are reinserted into S.
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Lemma 5.2. The extension of the greedy-algorithm to respect legal traffic-light regulations
increases the maximum number of iterations by the factor N for a considered time grid of
{0, . . . ,N}.

Proof. Based on the proof of Theorem 5.1 we count the number of loops occurring
additionally when introducing traffic-light-checks. After the conflict-check and
blocking-check is performed, it is possible that the current switching scheme
is invalid. This can happen at most t times if the greedy-algorithm currently
considers the subgrid {0, . . . , t} and leads to an additional factor of N in the worst
case. �

In the following section, we investigate the performance and quality of the greedy-
algorithm’s solutions and compare them to the other methods for improving traffic
flow, which we have introduced in the course of this thesis. We will also measure
the impact of different kinds of parameters for legal traffic-light regulations, as
well as the impact of different percentages of non-equipped cars.
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6 Numerical Results

In Sections 3, 4, and 5, we introduced different methods to improve traffic flow
at traffic-light controlled intersections. These methods include an acceleration
controller (RACC), which is already working in a car, cf. Section 3, as well as
MILPs which calculate traffic flow from a global and an individual point of view,
cf. Sections 4 and 5. In this section, we investigate these approaches regarding
different parameters:

• The value of the global-MILP’s objective function. For retrieving this value
from solutions of the greedy-algorithm, some postprocessing has to be done.

• The mean travel time and waiting time of all cars in the network. While travel
time measures the time it takes for each car to traverse the network, the
waiting time measures the difference between travel time and theoretical
time for an unobstructed traversal of the network. Both values are suitable
for indicating the quality of traffic flow according to [25].

• The mean simulated fuel consumption and CO2-emissions of all cars in the
network. We also refer to these parameters as environmental parameters.

• The greedy-algorithm and RACC can be run online in a traffic simulation
software. This allows us to vary the percentage of cars which are equipped
with the respective system. The aforementioned parameters are measured
with respect to different equipment rates.

• As stated in Section 4.2.5, there are legal regulations for the behavior of traffic-
lights. If possible, the influence of these rules on the other parameters is
measured.

• The RACC is additionally considered in terms of the quality of the performed
trajectories in the car.

Figure 6.1 illustrates which solving method or system is evaluated in terms of
which parameter. Note that all parameters are evaluated for all cars in the scenario:
those which are optimized by one of the considered methods, and those which
mirror real-world traffic. We call the former cars equipped and refer to the latter
ones as non-equipped.

Before we discuss the results of the experimental data in Sections 6.4–6.6, we
present the traffic-simulation software we used in Section 6.1, define a consistent
experimental setting in Section 6.2, and consider the representation of real-world
traffic in the simulation, cf. Section 6.3. At the end of this section, we rank the
different methods and discuss possibilities for introducing them in real-world
systems.

6.1 Traffic Simulation Software
In order to analyze and rate the effects on traffic which are achieved by the
applications and methods in this thesis, it is necessary to represent the motion of
cars on a road as well as traffic-lights and their signal states. The chosen software
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Figure 6.1: Overview of the different criteria which were measured for simulated
real-world traffic and the different solving methods.
Annotations. 1 environmental parameters fuel consumption and CO2-emissions, 2 objective value
of the global-MILP, 3 equipment rate, 4 influence of (different) traffic-light regulation-rules, 5

performance of solving strategies

should allow to control the movements of all cars on the road and the traffic-
light’s signal-states very accurately and in fine time steps. A visual representation
would be an additional feature that would facilitate debugging processes and
provide a convenient style of presenting our systems. Hence, a microscopic traffic
simulation software seems appropriate for our purposes. Such a software is related
to microscopic traffic models, cf. Section 4.1.2, and allows the simulation of single
cars and other entities in the network.

In this thesis, we use the SUMO (Simulation of Urban MObility) software
framework, cf. [57], to represent the developed methods. SUMO is a free and
open-source traffic simulation suite which allows modeling of intermodal traffic
systems including road vehicles, public transport and pedestrians. Included with
SUMO is a GUI which visualizes the processes in the network. SUMO comes
with a variety of possibilities for evaluating the simulated traffic. These are,
e. g., CO2-emissions and fuel consumption according to [101]. Networks of roads
can be either implemented using files in an .xml-style or can be imported from
different sources, e. g., OpenStreetMap. The behavior of traffic-lights and cars
can be accessed via TraCI (Traffic Control Interface), which allows to retrieve values
of simulated objects and to manipulate their behavior online. TraCI is available
in different programming languages, e. g., Java and C++. We make use of the
implementation of TraCI in Python as it is the best maintained one.

6.2 Network and Experimental Setting
We consider two different kinds of road network. These are fixed throughout
this section to provide measurements which are comparable among the different
methods. Thus, all of them are tested on the single-intersection network, cf. Figure
6.2, and on the four-intersections network, a schematic illustration of which is given
in Figure 6.3. The single-intersection network consists of a single intersection of
two roads, each with one lane in either direction. All lanes have a width of 2.5
meters and a stretch of 200 meters of road is added in each direction from the
intersection. The four-intersections network consists of four roads with one lane in
each direction. The roads are laid out in a grid-like pattern with two roads being
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Figure 6.2: Layout of the single-intersection network.

oriented in north-south direction and the other two in east-west direction such that
the resulting four intersections form the corners of a square. Each lane is 2.5 meters
wide, and stretches of road are added such that each lane has 200 meters in front
of the first intersection, 100 meters between the first and the second intersection
and 200 meters behind the second intersection. As we only consider straight
movement of cars without turning maneuvers, we allow opposite traffic-lights to
be green simultaneously. More specifically, opposite traffic-lights always behave
in the same way. Thus, for two opposite traffic-lights tl, tl′ one has:

χtl,t = χtl′,t ∀t ∈ T.

We can adjust the global-MILP slightly by omitting half of the trigger variables
for the traffic-lights and formulate the Constraints (4.41), which relate the trigger
zones and traffic-lights, accordingly.

The testing instances are the same for all different methods and algorithms,
except for the global-realistic-MILP and the tailored branch-and-bound process.
The reasons are explained in the respective sections. In fact, the arrival-time
of each car is fixed for each testing instance. It is obtained by the following
principle: a mean rate of cars per lane and minute for a certain amount of
minutes is fixed (20 vehicles for the single-intersection network and 10 vehicles
for the four-intersections network). The actual number of cars for each minute
is randomly distributed according to a Poisson distribution, which according
to [31] is suitable for generating traffic-related data. Specific arrival-times are
distributed equidistantly over the minute. If present, the fixed switching schemes
of the traffic-lights include a red-amber phase, a green phase, an amber phase, and
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Figure 6.3: Layout of the four-intersections network.

a red phase for all traffic-lights of the intersection. The last red phase contains
an evacuation time that guarantees that no vehicle is on the intersection when
a conflicting lane is set to green, cf. [26]. Each cycle consists of two succeeding
and equal phases for the two sets of conflicting (and pairwise intersecting) lanes.
We denote the duration of the different phases by: duration red-amber phase |
duration green phase | duration amber phase | duration red phase.

For each scenario (which is represented by a single column in the tables below),
five different instances are generated and processed. The evaluated parameters are
geometric means of all five instances and apply for single cars, except for the global
objectives. For all methods, we set the sampling rate to 10 Hz, which means dt = 0.1
for the MILPs. Analogously, the sampling rate of the RACC’s iterative algorithm as
well as the discretization of the time horizon in the OCPs is set to 0.1 seconds. The
time horizon, which occurs in the MILPs is always defined to be T := [0, 250]. The
physical bounds on the motion of the cars are chosen similarly for each method
according to Table 6.1. All experiments were run on a system with Intel Core
i5 CPU with 1.8 GHz, 8 GB memory and a 64-bit Windows 7 operation system.
CPLEX V12.6 serves as MILP-solver for all optimization problems occurring here.
The experiments concerning the branch-and-bound algorithm in Section 6.5.3 as
well as the greedy-algorithm in Section 6.6 were executed with AMPL in version
20160325.
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Table 6.1: Bounds on the states of the vehicles which are equivalent for each car
and method.

Value Description

vmin
c 0 minimum velocity in m/s

vmax
c 13 maximum velocity in m/s

amin
c −3.5 minimum acceleration in m/s2

amax
c 2.5 maximum acceleration in m/s2

jmin
c −3 minimum jerk in m/s3

jmax
c 3 maximum jerk in m/s3

lc 5 length of the car in m
gc 0 security gap of the car in m

6.3 Real-World Traffic
A crucial part of analyzing the effects on traffic is to simulate real-world traffic
appropriately. Usually, traffic is simulated in SUMO using car-following models,
cf. Section 4.1.2. By default, the model by Krauß [59] is enabled which provides
different parameters to adapt the behavior of cars in the simulation. Table 6.2
shows the adjustable parameters and typical values for each of them.

Unfortunately, these parameters do not lead to a realistic behavior of cars when
passing urban traffic-lights. More specifically, the starting maneuvers and the
way cars follow another starting car lack a satisfying realism. It seems not to be
clear which values these parameters should attain to mirror real-world traffic at
traffic-light intersections. In order to overcome this unsatisfying situation, we
analyzed recorded data of vehicles passing an intersection in the city of Braun-
schweig. This particular intersection is equipped with technology to record traffic
participants both visually with multiple stereo cameras and with radar sensors. We
already referred to this intersection, which belongs to the Anwendungsplattform
Intelligente Mobilität (AIM), in Section 3.4.5. The camera system does not only
record the traffic on the intersection area visually but also identifies multiple
parameters of traffic participants, e. g., position, velocity, acceleration, and type
(car, van, truck, bike, bicycle, pedestrian). This data – which is visualized in
Figure 6.4 – is available in a sampling rate of 4 Hz. Together with the information
about the traffic-light’s signal-states, we identify some of the parameters for the
car-following model, cf. Table 6.3 and [48]. As the object identifier of the recording
system is limited in terms of the monitored area and maneuvers of cars, we are only
able to determine a subset of the available parameters. These are subsequently
implemented in SUMO in order to achieve a more realistic behavior of vehicles

Table 6.2: Adjustable parameters for the default car-following model in SUMO
with default values.

Parameter Value Description

accel 3.0 acceleration ability in m/s2

decel 3.5 deceleration ability in m/s2

sigma 0.5 driver imperfection ∈ [0, 1]
tau 2.0 time gap to front vehicle in s
minGap 2.5 gap to front vehicle if halting in m
maxSpeed 13.9 driver’s desired velocity in m/s
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Figure 6.4: Screenshot of the video data used for calibrating the parameters of the
car-following model. The green boxes indicate identified objects, green triangles
visualize their predicted movement.

which are not equipped with one of the systems or solving methods. The remaining
parameters are kept unchanged from the default parametrization. Note that the
value maxSpeed does not coincide with vmax, which denotes the maximum allowed
velocity. While maxSpeed influences the acceleration in the applied car-following
model in the first place, the actual performed velocity of all cars is bounded by
vmax to keep it consistent among the different solving methods. In addition to the
behavior of real-world vehicles, the recordings at the intersection were used to
measure the amount of cars that occur at an intersection during the rush hour.
Thus, the testing instances for experiments on the single-intersection network
show a mean arrival-rate of cars according to these measurements.

In Table 6.4 and Table 6.5, we present results for simulation of pure real-world
traffic on the two networks. Comparing the parameter values in the different
switching schemes, one can observe that the scheme which lasts one minute per
cycle in both networks provides the best results. This outcome is quite intuitive:
most of the time is lost when cars have to decelerate and accelerate in order to
respect a red traffic-light. Once the cars are in motion, i. e., the traffic flows, there is
not much friction. In both networks, the emissions and fuel consumption behave
accordingly.

Table 6.3: Parameters for the default car-following model in SUMO with values
identified via evaluation of real-world data.

Parameter Value Description

accel 1.8 acceleration ability in m/s2

tau 1.0 time gap to front vehicle in s
maxSpeed 13.6 driver’s desired velocity in m/s
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Table 6.4: Obtained values for real-world traffic on the single-intersection network
with different switching schemes for the traffic-lights.

1s | 9s | 3s | 2s1 1s | 24s | 3s | 2s1

travel time [s] 96.96 69.90
waiting time [s] 64.98 37.82
fuel consumption [ml] 67.87 53.31
CO2 emissions [g] 154.97 121.74

Annotations. Values are geometric means per vehicle of five testing instances.
1 duration red-amber phase | duration green phase | duration amber phase | duration red phase

Note that we do not compare the measurements of the two different networks
against each other. This is mainly due to the fact that we consider loose traffic
in the bigger network. Otherwise, the global-MILP would not be solvable in
reasonable time. We refer to Section 6.5 for a further discussion on this issue.

6.4 Numerical Results for the RACC

In this section, we consider the RACC, cf. Section 3. To this end, we evaluate
the quality of performed trajectories of the car by comparing planned trajectories
and actually performed ones. Afterwards, we have a look at the effect of the
RACC on real-world traffic using SUMO. Thus, we use an implementation of
the acceleration controllers of the deferred-transit and pole-start-regime via the
ACADO-framework, which are also running in the test vehicle. Apart from that,
the functionality of the system as well as the data exchange between SUMO and the
ACADO-controllers is implemented in Python. Wireless communication between
the traffic-lights and the approaching cars is not further modeled in terms of delay
times, lost messages, or other issues arising in a realistic setting. The C2X-range
is fixed at 200 meters. In fact, once a car reaches this distance to a traffic-light,
the RACC is enabled. Vehicle-specific parameters are chosen according to Table
6.1. Additionally, the value for vpre f , which is the preferred velocity of the car
when passing the intersection, is set to 13 m/s. The time horizons for the deferred-
transit and pole-start-regime are chosen to last 15 s. The minimal velocity for
performing a deferred-transit is equal to 5 m/s. Finally, the stopping-gap during
the pole-stop-regime equals 10 m.

Remember that besides the acceleration controllers, the RACC includes func-
tionalities of the car’s ACC-system, e. g., when the car-following regime is activated.
Due to no implementation of the ACC which could be invoked in the simulation

Table 6.5: Obtained values for real-world traffic on the four-intersections network
with different switching schemes for the traffic-lights.

1s | 9s | 3s | 2s1 1s | 24s | 3s | 2s1

travel time [s] 79.99 65.70
waiting time [s] 40.36 26.08
fuel consumption [ml] 65.33 55.07
CO2 emissions [g] 149.20 125.76

Annotations. Values are geometric means per vehicle of five testing instances.
1 duration red-amber phase | duration green phase | duration amber phase | duration red phase
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Figure 6.5: Velocities according to initially planned trajectory v∗ and actually
performed one vmeas.

being available, we model the car’s behavior in this case via the car-following
model mentioned above. This model is also parametrized like real-world traffic.
Certainly, the behavior of real drivers differs from the trajectories induced by the
ACC. But, beyond the fact that we do not have an implementation of the ACC and
somehow have to incorporate following maneuvers, we can adjust the ACC of the
test vehicle. This way, it is possible to reproduce the behavior of the cars in the
simulation to a certain standard in the test vehicle. As the RACC has no influence
on the behavior of the traffic-lights, we run simulations for different switching
schemes, which we already used above.

6.4.1 Quality of Performed Trajectories

Before we dive into the evaluation of the effects on real-world traffic, we are
interested in the performance of the implemented controllers in a real car. For the
purposes of the discussion, we focus on the deferred-transit-regime. Figures 6.5
and 6.6 illustrate deviations between the solution of an OCP for the whole time
horizon and the actually performed velocity and distance in a test drive for a real
car. Note that the depicted solution of the OCP is calculated in the very beginning
of the maneuver. The performed trajectories are results of an MPC-process, which
basically resolves the OCP considering actualized measurements, cf. Section 2.1.2.
Especially the deviation between initially planned velocity and the measurements
during the test drive seems to be rather large with up to 2 m/s. Also a time gap
of about half a second between the planned deceleration in the beginning of the
maneuver and the actually performed deceleration is obvious. In fact, this gap
is even bigger for an acceleration process, although it is not clearly visible in
the graph. This is due to the fact that the car is already accelerating when the
acceleration-phase in the initial solution begins – because of deviations from the
solution in the first part of the maneuver.
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Figure 6.6: Distances according to initially planned trajectory s∗ and actually
performed one smeas.

Table 6.6 shows these inaccuracies in terms of the mean squared error (MSE) between
the initial solution and actual realization in the car. The mean squared error is
defined as:

MSE(x) =
1
N
·

N∑
i=1

(
x∗i − xmeas

i

)2

for a variable x and N measurements xmeas
i at time points i ∈ {1, . . . ,N}. In our

test drives N equals 150 due to the length of the time horizon of 15 s and the
MPC’s discretization of 0.1 s. Possible reasons for these errors are dead times
that arise between triggering a certain acceleration or deceleration and the actual
performance by the engine. These dead times are about 0.5 s and 1 s. In general,
acceleration processes (a > 0) cause higher dead times which is mainly caused
by the more complex physical process. Hopefully, this effect diminishes for
electrical engines. Besides these dead times, the process certainly is confounded
by measurement-errors of the car’s position, velocity, and acceleration leading to
inaccurate solutions. The solving times of the single OCP’s fulfill our purposes
and are between 0.001 s and 0.1 s for nearly all iterations.

In the end, it is important that the deviation in the last time step – when the
traffic-light switches to green – the car’s velocity is sufficiently close to the desired
velocity without being greater, and the distance to the stopping line is close to
zero. Considering again the graphs in Figures 6.5 and 6.6, we can assess only
slight differences of 1.8 m and 0.18 m/s (vpre f = 11 m/s here). Table 6.6 depicts these
values for two more test drives where all of them are satisfying besides relatively
great deviations during the maneuver.
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Table 6.6: Mean squared errors of initially planned trajectories and actually
performed ones considering acceleration, velocity, and distance. Additionally, the
total deviation concerning distance and velocity in the last time step, i. e., when
the traffic-light switches to green is given.

MSE(a) MSE(v) MSE(s) |s∗t f
− smeas

t f
| |v∗t f

− vmeas
t f
|

test drive 1 0.28 1.24 7.60 1.81 0.18
test drive 2 0.84 3.05 51.73 1.84 0.06
test drive 3 0.62 3.90 86.93 3.55 0.81

Annotations. MSE means the mean squared error between initial optimal solution and actually
performed trajectory with respect to respective variable.

6.4.2 Visualization in SUMO

At this point, we regard the representation of the RACC’s functionality in SUMO.
In Figures 6.7–6.13, screenshots of a single intersection in SUMO can be seen. The
colored bars indicate the color the traffic-light is showing in the depicted moment.
Orange illustrates the red-amber phase, which is enabled in german traffic-lights
between the red phase and the green phase and usually lasts one second, cf. [26].
The different colors of the cars encode the regime which is currently activated.
Red indicates the pole-stop-regime, green the pole-start-regime, dark blue the
deferred-transit-regime, cyan the free-transit-regime, and yellow denotes the
car-following-regime. White cars are not equipped with the RACC and therefore
only controlled via the car-following model.

Figures 6.7–6.9 show the impact of the pole-stop and subsequent pole-start-
regime compared to non-equipped cars. The first vehicle on the lane going from
left to right is stopping with a gap of 10 meters in front of the red traffic-light
while the non-equipped cars going from right to left are stopping directly in front
of it. One can see the equipped car accelerating in the pole-start-regime during
the red phase. Hence, it passes the stopping line after the traffic-light switched
to green with a higher velocity than the non-equipped cars. Additionally, the
white vehicles still have to react to the switch to green. Note that in the simulation,
even non-equipped vehicles accelerate during the red phase when following an
equipped car, as they only consider the leading vehicle. In Section 3.4.6, we already
discussed results from surveys revealing this behavior by real drivers.

Figures 6.10–6.11 illustrate the behavior of cars with activated deferred-transit-
regime: without falling below vmin the car going from left to right passes the
intersection, while the non-equipped cars stop in front of the traffic-light. In both
scenarios, it seems that cars running the RACC exploit a single green phase more
efficiently, i. e., more vehicles are able to pass the intersection during a single green
phase. Possibly, this could result in an improved traffic flow.

Finally, Figures 6.12–6.13 illustrate the free-transit-regime. The equipped
car is passing the intersection while keeping its desired velocity. In contrast,
the non-equipped car is not aware of an imminent switch to green and therefore
decelerating in front of the traffic-light. Again, an improvement of the overall traffic
flow is hopefully achieved by the behavior of the equipped car. We investigate the
impact of the RACC on traffic flow in the section below.
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Figure 6.7: Visualization of the RACC using SUMO. The red car performs the
pole-stop-regime. Yellow cars follow according to the car-following-regime. White
cars model real-world traffic.

6.4.3 Effects on Traffic Flow

Table 6.7 and Table 6.8 show results of simulations according to the explanations
in Section 6.2. First, we have a look at the differences between real-world traffic
evaluated in the former section and RACC-traffic with an equipment rate of 100 %.
At first glance, we can assess an improvement in travel time and waiting time
for all combinations of network and switching schemes. The traffic in scenarios
with the shorter cycle time benefits more from the RACC, in particular with a
decrease of up to 28 % regarding the waiting time. This result corresponds to the
intuition that scenarios with a shorter cycle time benefit more as the RACC mainly
optimizes the starting maneuvers. Once the traffic flows more or less constantly,
the RACC has no impact. Besides the fact that in the four-intersections network
possibly more starting maneuvers occur, the gain in traffic flow is higher in the
single-intersection network. This is possibly due to the higher density of cars in
the smaller network. The values of the environmental parameters show a similar
behavior.

Table 6.7: Obtained values for traffic induced by the RACC on the single-intersection
network with different switching schemes for the traffic-lights and percentage of
equipped cars.

1s | 9s | 3s | 2s1 1s | 24s | 3s | 2s1

10 %2 50 %2 100 %2 10 %2 50 %2 100 %2

travel time [s] 95.23 87.90 78.95 69.49 68.44 66.96
waiting time [s] 63.23 55.85 46.91 37.44 36.39 34.88
fuel consumption [ml] 66.69 61.78 55.01 52.77 50.23 48.11
CO2 emissions [g] 152.27 141.07 125.61 120.49 114.70 109.86

Annotations. Values are geometric means per vehicle of five testing instances.
1 duration red-amber phase | duration green phase | duration amber phase | duration red phase,
2 percentage of cars which are equipped with the RACC
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Figure 6.8: Visualization of the RACC using SUMO. The green car performs the
pole-start-regime while the traffic-light is still red. Yellow cars follow according to
the car-following-regime. White cars model real-world traffic.
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Figure 6.9: Visualization of the RACC using SUMO. The green car performed the
pole-start-regime. Because of its acceleration during the red phase, it passed the
stopping line with a higher velocity after the traffic-light switched to green. Hence,
the green phase might be used more efficiently in terms of traffic flow. Yellow cars
follow according to the car-following-regime. White cars model real-world traffic.
The difference between the traveled distances of equipped and non-equipped cars
is visible.
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Figure 6.10: Visualization of the RACC using SUMO. The blue car performs the
deferred-transit-regime. The yellow car follows according to the car-following-
regime. White cars model real-world traffic.
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Figure 6.11: Visualization of the RACC using SUMO. The blue car performs the
deferred-transit-regime and passes the intersection with the minimum value of
desired velocity and 40 kilometers per hour. Hence, the green phase might be used
more efficiently in terms of traffic flow. The yellow cars follow according to the
car-following-regime. White cars model real-world traffic. The difference between
the traveled distances of equipped and non-equipped cars is visible.
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Figure 6.12: Visualization of the RACC using SUMO. The cyan car performs the
free-transit-regime and passes the intersection with the desired velocity. White
cars model real-world traffic. Due to the unawareness of an imminent switch to
green, the non-equipped car going from right to left decelerates in front of the
traffic-light.
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Figure 6.13: Visualization of the RACC using SUMO. The cyan car performed the
free-transit-regime and passed the intersection with its desired velocity. In contrast,
the non-equipped car going from right to left had to decelerate and accelerate in
front of the traffic-light. The resulting difference in traveled distances is visible.
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Table 6.8: Obtained values for traffic induced by the RACC on the four-intersections
network with different switching schemes for the traffic-lights and percentage of
equipped cars.

1s | 9s | 3s | 2s1 1s | 24s | 3s | 2s1

10 %2 50 %2 100 %2 10 %2 50 %2 100 %2

travel time [s] 79.37 78.63 70.91 65.18 64.44 63.13
waiting time [s] 39.73 39.06 31.26 25.55 24.82 24.50
fuel consumption [ml] 65.06 63.60 57.18 54.67 53.66 51.73
CO2 emissions [g] 148.58 145.23 130.58 124.85 122.55 118.14

Annotations. Values are geometric means per vehicle of five testing instances.
1 duration red-amber phase | duration green phase | duration amber phase | duration red phase,
2 percentage of cars which are equipped with the RACC

Focusing solely on the RACC, we recognize the same development of the values
between the different switching schemes as in the real-world traffic: in both
networks, traffic flow is higher for the longer cycle times of the traffic-lights. Better
values for CO2-emissions and fuel consumption can be assessed accordingly.

At this point, we want to investigate the impact of the equipment rate. For a
fixed equipment rate, the differences between the scenarios with different cycle
times reveal analogous trends for all measured parameters. When the network
and switching scheme is fixed, all parameters improve when the equipment
rate is increased. We can assess a decrease in travel time of up to 17 % for the
short-cycled single-intersection network when increasing the equipment rate from
10 % to 100 %. A sightly lower gain can be determined for the short cycle time
in the four-intersections network. We discussed reasons for a higher gain when
introducing the RACC for shorter traffic-light cycles above. Worth noticing is the
fact that in none of the analyzed scenarios, the RACC leads to a decrease in traffic
flow – even for low equipment rates. There is a small increase in CO2-emissions
and fuel consumption for the short-cycled four-intersections network with an
equipment rate of 10 %. However, the overall effect of the RACC seems to be rather
negligible for this scenario when regarding the differences in travel and waiting
time.

6.4.4 Effects on Cities

The effect of the RACC on traffic is also discussed in the UR:BAN-project, cf. [58].
The setting of the simulation which serves as a basis to measure these effects
slightly differs from the one used for the experiments in this section. In particular,
also roads with multiple parallel lanes allowing different turning maneuvers are
considered. Additionally, the generated traffic and the switching schemes of the
traffic-lights differ from the previously analyzed data. As the effects of the RACC
on traffic for a single intersection are similar to those discussed above, we do not
stress them again. But beyond these evaluations, the results are scaled up for
whole cities based on the amount and distribution of different types of intersection
layouts. In fact, a decrease of up to 15% in travel time is assessed for traffic within
a distance of 300 meters in front of traffic-light controlled intersections. Likewise,
fuel consumption is reduced by up to 7%.



6 Numerical Results 99

Table 6.9: Values in the experimental setting for parameters that induce regulations
on the traffic-light’s switching scheme.

Value Type

pulse interval 10 · dt (1 s) grid-like time steps
green period 50 · dt (5 s) lower bound
red period 50 · dt (5 s) lower bound
cycle time 0 (due to high runtimes) lower bound
evacuation time 30 · dt (3 s) lower bound

6.5 Numerical Results for the global-MILP
In this section, we discuss the quality of the global-MILP’s solutions in terms
of the known parameters. In particular, we consider travel time, waiting time,
CO2-emissions, and fuel consumption as in the sections above. To this end, the
solutions calculated offline via CPLEX are transferred into SUMO. The Python
interface TraCI allows us to control the motion of all cars in each timestep. Thus,
we can retrieve the parameters of interest for the solutions of the global-MILP.
Afterwards, we investigate the performance of the solving process. To this end,
the solving strategies which are developed in Section 4.5 are compared among
each other.

6.5.1 Effects on Traffic Flow

Before we have a look at the particular parameters, we note that incorporating
legal traffic-light regulations in the global-realistic-MILP cannot be realized as
in the sections above. There, a fixed cycle is realized in the SUMO-simulation,
which the cars react to online. In the global-realistic-MILP, cf. Section 4.2.5, legal
regulations are expressed by lower bounds on the duration of the green and red
phase, as well as by a lower bound on the cycle time, which is the time between
two successive green phases. Additionally, an evacuation time, in which no car is
allowed to enter the intersection, is enforced. To ensure further realism, switches
are only possible on grid points of the pulse interval, i. e., only every second. Table
6.9 provides specific values for these bounds in the experimental data. Note that
for our particular scenario with two conflicting traffic-lights, the values for bounds
on the green period and red period coincide.

In Table 6.10, results concerning the quality of traffic flow and environmental
parameters are displayed. The two scenarios of the global-MILP provide an
increase in traffic flow (in terms of a very short waiting time) of 99 % and 98 %
compared to the RACC, while the values for the environmental parameters decrease

Table 6.10: Obtained values for the traffic induced by solutions of the global-MILP
and global-realistic-MILP.

single-intersection single-intersection(realistic) four-intersections

travel time [s] 31.86 31.89 39.57
waiting time [s] 0.32 0.33 0.34
fuel consumption [ml] 31.00 31.50 38.36
CO2-emissions [g] 70.80 71.97 87.64

Annotations. Values are geometric means per vehicle of five testing instances.
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Figure 6.14: Situation in a solution of the global-MILP. The cars do not respect any
security gaps when passing the intersection.

about 30 %–50 %. Certainly, these values are difficult to achieve in a real-world
application. Besides the high runtimes we discuss below, the cars in the solutions
of the global-MILP do not respect any security gaps when following each or when
passing the intersection. Figure 6.14 visualizes an example of such a situation.
Furthermore, the traffic-light’s switching scheme does not incorporate any legal
regulations. In fact, no traffic-light as entity with regulatory purposes is needed
at all. One can argue that for future traffic with all cars driving autonomously,
this would be a considerable setting. To this end, it would be possible to establish
a communication among all cars on the road, e. g., with C2X-technology. Based
on a consistent set of rules about right of way at intersections, autonomously
driving cars could coordinate their passages over the intersection without any
regulatory intervention by another unit, e. g., a traffic-light. Beyond the fact that
such a scenario is hard to imagine in the near future, a reliable technical solution
for regulating traffic at intersections should certainly always be able to incorporate
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traffic which does not communicate with the other participants and is not moving
autonomously. Besides common non-autonomous cars, this can be pedestrians
and cyclists. We introduced such a system, which can be seen as a combination
of optimizing traffic based on recent technology and conventional traffic-light-
governed right of way regulation, in Section 5.2.1 as greedy-cruise-control. In
Section 6.6, we discuss experimental results for this system.

The values for simulations of the global-realistic-MILP are determined on the
single-intersection network only. Moreover, we consider very loose traffic flow
here making a comparison with the other methods, e. g., the RACC, obsolete. This
is due to the very high complexity of the problem and the resulting runtimes,
which we discuss below and are the main purpose of the experiments for the
global-realistic-MILP. In particular, here, the traffic consists of 8 cars per lane and
minute on average for a time horizon of 30 seconds. Regarding the waiting time,
we can assess that these rules are more or less redundant for the solution.

6.5.2 Iterative Solving Algorithm

We now discuss the performance of the iterative solving algorithm developed in
Section 4.5.1. The experiments differ in the methods which are used to determine
the optimal solution of the global-(realistic)-MILP. In Figure 4.10, a flow chart
visualizes these methods. Basically, in each set of chosen methods the collision-
prevention, conflict-resolution, and model-growth are included. Let us shortly
recap the major ideas:

• start with relaxed global-(realistic)-MILP for a shorter time horizon. To this
end, omit all indicator variables, constraints for collision-prevention with
the predecessor, and all constraints concerning trigger variables,

• add constraints preventing collisions with the predecessor if needed (collision-
prevention),

• add constraints and indicator variables if conflicts on the intersection are
detected (conflict-resolution),

• add constraints and indicator variables if conflicts on the intersection are
detected iteratively until no further conflicts arise in the current MILP
(iterative conflict-resolution),

• expand the time horizon of the current MILP if needed and add necessary
variables and constraints (model-growth)

• solve the greedy-algorithm in advance and provide its solution as start
heuristic to CPLEX (greedy-start).

The first set of experiments realizes collision-prevention, conflict-resolution, and
model-growth. The second set differs in so far as it additionally provides CPLEX
with the greedy-algorithms’s optimal solution as MIP-start. It can be used by the
solver as initial node in the internal branch-and-bound tree. Thus, a better bound
might be available which possibly speeds up the solving process. In the third set of
experiments, no greedy-solution is considered. In exchange, the more sophisticated
iterative conflict-resolution (ICR) is enabled. Finally, in the fourth set, all of the
methods: model-growth, collision-prevention, iterative conflict-resolution, and
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Table 6.11: Obtained values network for the global-MILP on the single-intersection
network.

global-MILP set 11 set 22 set 33 set 44

runtime5 - 201.27 179.81 160.12 154.48
objective - 394 637.00 394 636.80 394 636.60 394 636.50
constraints 3 602 820 153 318.22 153 380.57 153 225.98 153 380.24
cont. variables 1 202 500 151 845.78 151 973.59 151 766.52 151 961.57
binary variables 800 000 1 499.87 1 454.4 1 489.46 1 463.45
no. outer iterations6 - 6.85 3.37 2.70 2.17
no. ICR iterations7 - - - 7.23 2.99

Annotations. Values are geometric means per vehicle of five testing instances.
1 model-growth, collision-prevention, conflict-resolution, 2 additional greedy-solution as
MIP-start, 3 iterative conflict-resolution instead of simple conflict-resolution,4 additional greedy-
solution as MIP-start and iterative conflict-resolution instead of simple conflict-resolution, 5 in
CPU-seconds, 6 number of outer solver iterations (see Fig. 4.10), 7 number of iterations in the
iterative conflict-resolution per call.

greedy-solution are considered. Tables 6.11 and 6.12 give observed values for all of
the sets of experiments. In the first column, the total size of the pure global-MILP
in terms of number of constraints and continuous and binary variables is presented.
The full description of the polytope would be quite complex and result in very
high solving times for finding an optimal solution. In fact, CPLEX was not able
to determine even a single solution for the considered testing data. Note that
the experimental data solved with the different methods slightly differ in their
objectives. This is due to CPLEX’s abortion criterion which identifies a solution as
optimal if the gap between primal and dual bound is below a certain threshold of
1 % per default.

Regarding the runtimes, we can observe that in all cases the solving process
benefits from the presented heuristics. Instances on the single-intersection network
benefit more from applying the solution heuristics. We observe an improvement of
roughly 25 % with all heuristics activated, while the biggest gap in terms of runtime
between set 1 and a more complex solving approach for the four-intersections
network is about 14 %. Also, the differences in runtime regarding the various

Table 6.12: Obtained values for the global-MILP on the four-intersections network.

global-MILP set 11 set 22 set 33 set 44

runtime5 - 823.67 924.16 712.79 821.33
objective - 405 882.90 405 882.80 405 882.40 405 883.70
constraints 8 672 830 201 032.16 201 477.56 201 074.34 201 559.96
cont. variables 1 247 500 199 139.61 199 457.17 199 120.75 199 493.95
binary variables 825 000 1 827.83 1 945.52 1 873.40 1 972.17
no. outer iterations6 - 7.42 4.43 3.13 3.66
no. ICR iterations7 - - - 10.05 6.32

Annotations. Values are geometric means per vehicle of five testing instances.
1 model-growth, collision-prevention, conflict-resolution, 2 additional greedy-solution as
MIP-start, 3 iterative conflict-resolution instead of simple conflict-resolution,4 additional greedy-
solution as MIP-start and iterative conflict-resolution instead of simple conflict-resolution, 5 in
CPU-seconds, 6 number of outer solver iterations (see Fig. 4.10), 7 number of iterations in the
iterative conflict-resolution per call.
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Table 6.13: Obtained values with traffic-light regulations on the single-intersection
network.

global-realistic-MILP set 11 set 32 global-MILP (set 4)3

runtime4 - 4 402.48 1 897.87 3.01
objective - 50 249.10 50 253.60 50 931.00
constraints 322 034 27 593.63 198 954.01 15 951.69
cont. variables 127 500 19 862.85 24 325.63 15 854.31
binary variables 87 500 3 100.52 6 092.47 84.12
no. outer iterations5 - 42.74 3.18 1.00
no. ICR iterations - - 85.85 1.00

Annotations. Values are geometric means per vehicle of five testing instances.
1 model-growth, collision-prevention, conflict-resolution, 2 iterative conflict-resolution instead
of simple conflict-resolution, 3 additional greedy-solution as MIP-start and iterative conflict-
resolution instead of simple conflict-resolution, 4 in CPU-seconds, 5 number of outer solver
iterations (see Fig. 4.10), 6 number of iterations in the iterative conflict-resolution per call.

sets of methods are not consistent in the two networks. A possible reason for
this might be the different densities of traffic in both networks. Besides this issue,
the iterative solving algorithm drastically decreases the problem size for both
networks, making it solvable in reasonable time in the first place.

Regarding the number of constraints and continuous and binary variables
which are necessary to determine the final solution, we cannot identify immense
differences between the several sets of methods. In the experiments on the single-
intersection network, the fastest configuration is the one with the second most
added constraints and continuous variables. Apparently, the overall runtime
correlates with the number of outer solver iterations, cf. Figure 4.10, mostly for the
single-intersection network. ICR and greedy-start seem to influence the solving
process by decreasing the number of necessary outer iterations. Adding both
methods to the algorithm, i. e., using set 4, reduces the amount of outer loops
even more for the single-intersection network. In fact, ICR seems to benefit from
a greedy MIP-start in terms of performed iterations. In Section 6.6, we discuss
runtimes of the greedy-algorithm giving us an idea of how big the percentage of
runtime to determine the MIP-start is.

We will now rate the impact of the iterative solving algorithm on the global-
realistic-MILP, cf. Section 4.2.5. Table 6.13 shows results for traffic on the
single-intersection network. Remember that we did not perform experiments
on the same testing instances as for the global-MILP. In fact, the traffic flow for
the global-realistic-MILP is relatively loose. Otherwise, a solution would not be
computable in reasonable time. Note that due to runtime restrictions, the bound
on the cycle time is not included, cf. Table 6.9, and we did not implement the
pulse interval. Thus, constraints of type (4.50), and (4.46)–(4.47) are left out. The
greedy-algorithm is also not implemented for the global-realistic-MILP and cannot
serve as a start heuristic. The last column shows the performance of the iterative
algorithm for the global-MILP on this loose experimental data. As there is only a
slight difference in the objective value between the global-MILP (column 4) and
the global-realistic-MILP (columns 1 – 3), the regulations for the traffic-light’s
switching scheme seem not to be very restrictive for the testing data. This is also
quite intuitive due to the loose character of the traffic. The average number of
performed outer iterations supports this statement. Performing only a single outer
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Figure 6.15: Solving times of testing instances for the global-MILP without any
solving strategies and the tailored branch-and-bound algorithm.

iteration implies that only a single MILP was solved. In particular, the solution
provided by the greedy-algorithm is obviously optimal for the global-MILP. Thus,
the runtime in the last column is made up of the runtime for the greedy-algorithm,
and a single solving process of the relaxed global-realistic-MILP, which includes
binary variables added by CPLEX because of the provided initial solution.

Regarding the runtimes for solving the global-realistic-MILP, we can assess
that making the problem more complex, e. g., by adding further constraints to
the switching-scheme regulation or making the traffic more dense, would lead to
unreasonable runtimes. The main statement of these observed values is the massive
decrease in complexity which is achieved by the iterative solving algorithm. The
number of constraints, which are present in the final formulation of the global-
realistic-MILP is about 40 % lower for the method set 3 and reduces by 90 % for
method set 1 compared to the total formulation of the MILP. Also, the number of
continuous and binary variables reduces massively. Besides, the average runtime
of method set 3 is less than 50 % of the runtime of method set 1, although the final
MILP in the iterative process is more complex. As it is the case in the global-MILP,
the number of outer iterations seems to be crucial for the runtime. This is also
quite reasonable as each outer iteration depicts the necessity to solve an MILP. The
difference in complexity between the global-realistic-MILP and the global-MILP
for this testing data is not as big as the runtimes would suggest. At most, the
number of binary variables differs, which seem to make the problem very difficult.
Hence, it seems reasonable to consider binary variables particularly in the solving
process. In Section 2.2, we discussed different methods to handle mixed integer
programs and consecutively developed a tailored branch-and-bound process for
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Figure 6.16: Number of visited nodes during the tailored branch-and-bound
algorithm. Blue bars indicate measurements for solving an LP for the complete
time horizon in each node. Red bars indicate measurements for solving LPs for
smaller time horizons which grow in the course of the process. In the latter case,
bounds are obtained by forward simulation. The dark bars denote in which node
the optimal solution is found.

solving the global-MILP in Section 4.5.2. Subsequently, the performance of this
method is presented.

6.5.3 Tailored Branch-and-Bound Process

In Section 4.5.2, we introduced a branch-and-bound algorithm that exploits the
structure of the global-MILP. We will now describe experiments we performed on
certain testing instances in which we measured the respective solving times for the
global-MILP by CPLEX without any solving strategies and the branch-and-bound
method. Furthermore, we evaluate the number of visited nodes and solving time
per node for two different variants of the branch-and-bound algorithm. While each
LP is solved by CPLEX, the model representation as well as the branch-and-bound’s
logic is implemented in AMPL. The testing instances are rather small compared to
experiments above: eight to twelve cars in the whole single-intersection network
with a time horizon of 100 seconds. This is due to the fact that otherwise, the
global-MILP given by its complete description would not be solvable in reasonable
time by CPLEX.

Figure 6.15 shows the times for solving the global-MILP without any solving
strategies and the solving times for the branch-and-bound algorithm. Note that we
present results for the variant of the branch-and-bound which solves an LP in each
node defined on a growing subset of the whole time horizon here (called increasing
horizon method). Additionally, the heuristic for the bounding step is enabled. For
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Figure 6.17: Average solving times per node during the tailored branch-and-bound
algorithm. Blue bars indicate measurements for solving an LP for the complete
time horizon in each node. Red bars indicate measurements for solving LPs for
smaller time horizons which grow over the course of the process. In the latter case,
bounds are obtained by forward simulation.

the testing instances, the optimization problems were always solved to optimality,
except for two instances. We obtain an optimal solution which differs by less
than 0.1 % from the optimal value, with this difference being possibly caused by
numerical issues or tolerances of the solver. All instances but one benefit from
the branch-and-bound method and reveal advantages in solving time of up to
72 %. Besides, the overall runtime for the branch-and-bound is in fact higher,
due to additional times which are necessary for calculating the bounds and other
crucial steps. However, the performance for these calculations can be strongly
improved by more sophisticated implementations and data structures, e. g., by
using CPLEX’s C++ library.

In addition to identifying advantages of the branch-and-bound process com-
pared to solving the global-MILP without any solving strategies solely by CPLEX,
we compare the two different variants of the branch-and-bound algorithm as
presented in Section 4.5.2 in terms of number of visited nodes and average solving
time for each LP. Figures 6.16 and 6.17 visualize the respective outcomes. It is
worth noticing that, apart from slightly fewer nodes being visited for the increasing
horizon method, the average solving times are considerably higher when an LP for
the whole time horizon is solved in each node. The biggest difference in average
solving time per node is 91 %.

Besides the advantage considering solving times, the experiments do not
provide evidence for the performance of the branch-and-bound algorithm when
solving bigger problems. It also remains open for future investigations, how the
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Table 6.14: Obtained values for the greedy-algorithm and global-MILP on the
single-intersection network.

greedy-algorithm global-MILP

runtime [s] 43.78 154.48
MILP-objective 394 612.65 394 636.50
number of optimizations 170.05 -
number of optimizations per car 1.07 -
runtime per optimization [s] 0.24 -

Annotations. Values are geometric means per vehicle of five testing instances.

iterative solving algorithm would behave if the developed branch-and-bound
method was incorporated.

6.6 Numerical Results for the Greedy-Algorithm
Here, we consider the performance and effects on traffic of the greedy-algorithm,
cf. Section 5.1, and greedy-cruise-control developed in Section 5.2.1. The process is
similar to the experiments above: the effects on traffic measured in terms of travel
time, waiting time, and the environmental parameters are obtained by simulations
in SUMO. To this end, the functionality of the greedy-cruise-control is implemented
in Python using SUMO’s interface called TraCI. The necessary calculations in
CPLEX are invoked via CPLEX’s Python-interface. Thus, the greedy-cruise-control
can be run online in SUMO, which allows us to consider not only equipped
cars, but also mixed traffic with different percentages of cars running the system.
Non-equipped cars are again controlled via the car-following-model. Hence,
the greedy-algorithm can be identified with the greedy-cruise-control with an
equipment rate of 100 %. Furthermore, different regulations of the traffic-light’s
switching scheme are considered. The communication between traffic-lights and
cars as well as among different cars (for avoiding collisions on a lane) is modeled as
for the RACC. The range is again fixed at 200 meters. In Section 5.2.1, we suggest
to disable the greedy-cruise-control as soon as a non-equipped leader is detected.
For the experiments, we introduce a threshold of 40 meters. If a non-equipped car
is closer than this value, the system is disabled for the succeeding equipped car.
Therefore, it is possible that no optimizations at all might occur in the experiments.

Table 6.15: Obtained values of the greedy-algorithm and global-MILP on the
four-intersections network.

greedy-algorithm global-MILP

runtime [s] 71.98 712.79
MILP-objective 405 799.44 405 882.40
number of optimizations 221.98 -
number of optimizations per car 1.38 -
runtime per optimization [s] 0.28 -

Annotations. Values are geometric means per vehicle of five testing instances.
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Table 6.16: Obtained values for traffic induced by the greedy-algorithm with no
traffic-light regulations and equipment rate of 100 % on the single-intersection and
four-intersections network.

single-intersection four-intersections

travel time [s] 31.88 40.00
waiting time [s] 0.34 0.38
fuel consumption [ml] 31.14 38.21
CO2 emissions [g] 71.15 87.29

Annotations. Values are geometric means per vehicle of five testing instances.

6.6.1 Runtimes

First, we compare the performance of the greedy-algorithm in terms of runtime
and objective value to the respective values of the global-MILP. To this end, we
perform calculations with CPLEX and AMPL and postprocess the solution of
the greedy-algorithm in order to obtain the value of the global-MILP’s objective
function. Table 6.14 and Table 6.15 show the according results on the same testing
instances we used for the global-MILP. For convenience, we included runtimes
and objective value of the global-MILP, which we already presented above. For
both networks we assess an advantage of the greedy-algorithm considering the
runtime of up to 90 % on the four-intersections network, whereas the value of the
global-MILP’s objective function differs only slightly. In particular, the difference
is less than 1 %. Certainly, this gap might increase for scenarios with more dense
traffic. However, at least for the scenarios of the single-intersection network, we
consider traffic densities which occur at an intersection in the city of Braunschweig
during rush hour. Crucial for an assistance system, such as the greedy-cruise-
control, is a reasonable runtime of the underlying optimization procedure. In
both tables, we determine runtimes of only a few milliseconds per optimization.
As an implementation of the greedy-cruise-control might be based on parallel
calculations on each car, the runtimes support the statement that it should be
suitable for practical purposes.

6.6.2 Effects on Traffic Flow

As the values of the global-MILP’s objective function suggest, the traffic flow
induced by the greedy-algorithm is nearly as good as the globally optimized
traffic flow. Also, the environmental parameters are nearly the same for both
methods. Table 6.16 shows the appropriate measurements. Note that we do not
investigate any traffic regulations for traffic with an equipment rate of 100 % as
these would be in a sense pointless. In contrast to this, the experiments considering
the global-realistic-MILP serve for a discussion on the complexity and impact of
the iterative solving algorithm.

In Table 6.17 and Table 6.18, the measurements for experiments with different
percentages of equipped cars and traffic-light regulations for the greedy-cruise-
control are displayed. Note that we do not consider a fixed switching scheme as
for the RACC as this would not be suitable here. Instead, the green time for each
traffic-light is bounded from below and above by the values given in the tables. In
case that no equipped car triggered a switch of the traffic-light, the particular cycle
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Table 6.17: Obtained values for traffic induced by the greedy-cruise-control on
the single-intersection network with a certain percentage of equipped cars and
additional regulations for the switching behavior of the traffic-lights.

1 s | 9 – 14 s | 3 s | 2 s1 1 s | 24 – 29 s | 3 s | 2 s1

10 % 50 % 10 % 50 %

travel time [s] 84.75 83.43 76.00 76.06
waiting time [s] 52.48 51.28 44.16 44.03
fuel consumption [ml] 49.73 50.13 47.86 47.94
CO2 emissions [g] 113.56 114.49 109.30 109.49
number of optimizations 2.00 19.68 1.852 15.51
number of optimizations per guided car 0.15 0.25 0.072 0.20

Annotations. Values are geometric means per vehicle of five testing instances.
1 duration red-amber phase | duration green phase | duration amber phase | duration red phase,
the green phase is variable as otherwise the mechanism of greedy-cruise-control would be
pointless, 2 For one testing instance no optimization is performed. The number of optimizations
is determined to be 0.01 as otherwise the geometric mean would be 0.

is performed while realizing the maximum bounds. This implicitly complicates
the comparison to the simulations of real-world traffic, cf. Section 6.3.

Concerning the single-intersection network, we can barely determine any
differences between the respective equipment rates. A relatively big gap compared
to fully-equipped traffic regarding quality of traffic flow and the environmental
parameters is obvious. This is possibly due to the fact that the greedy-cruise-control
is disabled as soon as a non-equipped leader closer than 40 meters is detected.
The low values for the number of optimizations per car support this assumption.
Additionally, no traffic-light regulation at all is present for the greedy-algorithm’s
experiments as this would be pointless for an equipment rate of 100 %. Compared
to real-world traffic, we assess improvements for the short cycle time in terms of
waiting time of about 19 % and about 25 % for the environmental parameters. The
latter ones also decrease for the longer cycle time, as we observe a reduction of
about 12 %. In contrast, the traffic flow seems to deteriorate slightly, i. e., waiting
time increases about 18 %. Reasons for this could be that the cycle times for the

Table 6.18: Obtained values for traffic induced by the greedy-cruise-control on
the four-intersections network with a certain percentage of equipped cars and
additional regulations for the switching behavior of the traffic-lights.

1 s | 9 – 14 s | 3 s | 2 s1 1 s | 24 – 29 s | 3 s | 2 s1

10 % 50 % 10 % 50 %

travel time [s] 78.22 66.56 80.68 71.48
waiting time [s] 38.41 26.88 40.87 31.56
fuel consumption [ml] 57.19 55.12 60.05 57.03
CO2 emissions [g] 130.06 125.90 137.14 130.24
number of optimizations 23.44 140.79 24.71 129.04
number of optimizations per guided car 1.46 1.76 1.54 1.60

Annotations. Values are geometric means per vehicle of five testing instances.
1 duration red-amber phase | duration green phase | duration amber phase | duration red phase,
the green phase is variable as otherwise the mechanism of greedy-cruise-control would be
pointless.
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real-world scenario do not exactly match with those from the simulations of greedy-
cruise control. Also, the number of optimizations per guided car is quite low for all
scenarios – and especially for the simulations with longer cycle time. This means
that a lot of equipped cars did not manage to enable the greedy-cruise-control due
to close preceding cars. Probably, the threshold of 40 meters is chosen too large.

Regarding the four-intersections network, we assess noticeable differences
between the particular equipment ratios. Due to the loose character of traffic, the
amount of equipped cars whose greedy-cruise-control is not disabled is higher as
in the small network. Besides the development of travel time and waiting time
when changing the equipment rate, the values for the environmental parameters
also improve when the equipment rate is increased. Nonetheless, there is also
a slight deterioration in terms of traffic flow and environmental parameters for
the longer cycle time. Reasons might be the same as for the single-intersection
network. On both networks, traffic flow benefits from shorter green times, which
is consistent with the experiments for the RACC.

6.7 Comparison of Different Approaches and Future Research

We shortly recall the main concepts of the different methods which are developed
in the course of this thesis:

• the RACC implements a regime-based acceleration controller for an individ-
ual car reacting solely to the actual and intended behavior of the traffic-light,

• the greedy-algorithm calculates trajectories for cars individually and negoti-
ates times for passing the intersection with the traffic-light,

• the global-MILP models an overall optimized traffic flow for all participants
that is calculated offline.

Summing up the experiments, we can assess that all methods lead to an improve-
ment in terms of traffic flow and environmental parameters compared to nowadays
real-world traffic flow – even for low equipment rates. For some of these methods,
the effects of certain parameters, e. g., the equipment rate, or cycle times of the
traffic-lights, are investigated. Roughly speaking, the enhancements are bigger for
shorter cycle times of the traffic-lights and grow with an increase in the equipment
rate, cf. Sections 6.4.3 and 6.6.2.

Figures 6.18 and 6.19 provide a visualization for the single-intersection network
concerning waiting time and fuel consumption for the different methods. Remem-
ber that the big gap in the values for the greedy-algorithm is certainly due to an
absence of traffic-light regulation for an equipment rate of 100 %. In terms of the
average waiting time, we can assess an improvement of up to 28 % for the RACC
for the single-intersection network and 23 % for the four-intersections network.
A major benefit in terms of waiting time is achieved by the greedy-algorithm.
In fact, a gain of at most 99 % for both networks compared to real-world traffic
can be observed. Surprisingly, the overall optimized traffic flow according to the
global-MILP achieves traffic flows which are just slightly better. Possibly this gap
will enlarge for denser traffic.
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Figure 6.18: The average waiting time of cars for real-world traffic and the different
methods on the single-intersection network with the shorter cycle-time if present.
The different colors depict different equipment rates.

Regarding fuel consumption we can derive analogous outcomes: for the RACC,
a decrease of up to 19 % and 12 % is measured during the experiments on the
single- and four-intersections network, respectively. The outcomes for the greedy-
algorithm and the solutions of the global-MILP are again on the same level.
Improvements of up to 54 % for fuel consumption on the single-intersection net-
work and 41 % on the four-intersections network can be observed.

The outcome of the experiments suggests a high potential for enhancements of
traffic in different dimensions using cooperative systems. A major takeaway-
message of this thesis is that calculating optimal solutions concerning the behavior
of cars and traffic-lights from an individual point of view in contrast to a global
one can result in a massive reduction of the problem’s complexity. In parallel,
the benefit for traffic as a whole is surprisingly close to what can be achieved
by global optimization – at least for the greedy-cruise-control. Additionally,
applications which consider each car individually seem to be more attractive for a
contemporary introduction: participants who do not run the respective system
can easily be considered, and different variants of an application, e. g., due to
various implementations by different car-manufacturers, can work concurrently.
Furthermore, different levels of a particular application are considerable. Examples
are the RACC and the greedy-cruise-control: while a subset of cars might be able
to receive messages from an infrastructural device only and react to it, another
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Figure 6.19: The average fuel consumption of cars for real-world traffic and the
different methods on the single-intersection network with the shorter cycle-time if
present. The different colors depict different equipment rates.

subset of cars might be capable of transmitting messages to the device as well and
negotiate a time for a transit. Even cars which do not run any of these systems
might be included in this scenario. We proposed an extension of the RACC, which
could also be considered for an application based on the greedy-algorithm, where
not only the actual movement of other cars is detected and reacted to. In fact,
cars might exchange information about intended maneuvers among each other
and incorporate these information. Some of the dead times that occur when an
acceleration controller is applied could be avoided, probably leading to an even
bigger improvement in traffic flow.

In contrast, a traffic-scenario which is optimized from a global point of view, as
it is the case in the global-MILP, requires that all participants run the particular
system – although different parametrizations could be allowed. Furthermore,
some efforts have to be made in order to derive algorithms and methods which
can provide solutions for a globally optimal traffic flow in reasonable time for
considerable instances. Certainly, there is still potential beyond the considera-
tions stated in this thesis. Nonetheless, the introduced global-MILP constitutes a
benchmark for other algorithms or applications. Besides the discussed pros and
cons of the respective systems and optimization approaches, the main advantage
of suboptimal individual systems – especially the RACC – is that they can be
implemented with contemporary technology and have been successfully tested.
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Future research might focus on further solving strategies. It seems promising
to combine the presented branch-and-bound algorithm and the iterative solving
algorithm, as both methods lead to noticeable reductions in solving times during
the respective experiments. One possibility is to incorporate the branch-and-bound
algorithm in the solving procedure of the MILPs occurring in the iterative solving
algorithm. Moreover, there certainly is still potential in improving the respective
solving methods themselves, e. g., by calculating better bounds and introducing
other kinds of cuts during the iterative conflict resolution.

In fact, for developing (non-optimal) driver-assistance systems or other appli-
cations, it is an important tool to value the resulting behaviors of the cars. Thus,
extending the global-MILP, such that additional maneuvers, e. g., lane changes
and turning maneuvers, can be modeled seems quite reasonable. Of course, also
the possibility to investigate more complex networks and traffic situations, which
is mainly achieved by improving the solving process, would be desirable.
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