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Abstract

Periodic cellular processes and especially circadian rhythms, governed
by the oscillating expression of a set of genes based on feedback regulation
by their products have become an important issue in biology and medicine.
The central circadian clock is an autonomous biochemical oscillator with
a period close to 24 hours. Research in chronobiology demonstrated that
light stimuli can be used to delay or advance the phase of the oscillator,
allowing it to influence underlying physiological processes. Phase shifting
and restoration of altered rhythms can generally be viewed as open-loop
control problems that may be used for therapeutic purposes in diseases.
We study a circadian oscillator model of the central clock mechanism for
the fruit fly Drosophila and show how model-based mixed-integer optimal
control allows for the design of chronomodulated pulse-stimuli schemes
achieving circadian rhythm restoration in mutants and optimal phase syn-
chronization between the clock and its environment.

Keywords: Circadian clock; mixed-integer optimal control; bang-bang
control; phase tracking and entrainment

1 Introduction

Self-organized rhythmic processes are encountered at all levels in cell biology
and are a subject of great interest for both biological and mathematical research
communities [1]. Biological systems are open and kept far from equilibrium by
fluxes of matter and energy. For these reasons, the systems are always exposed
to external perturbations and the balance between robustness and sensitivity to
external stimuli is a crucial issue.

*Corresponding author. E-Mail address: lebiedz@iwr.uni-heidelberg.de

1



The role of circadian rhythms with a period of nearly 24 hours is of partic-
ular importance because many physiological and behavioral functions of living
creatures, ranging from insects to mammals, appear to be governed by this
so called “master clock”. A pacemaker delivers a circadian rhythm, generated
by periodic activation/inhibition of transcription of a set of genes, denoted as
“clock genes”. The molecular basis of these mechanisms has been clarified over
the past decade, first for an insect, the fruit fly Drosophila [2] and more recently
also for mammals (see [3] for a review). Circadian rhythms represent one of the
most intensely studied examples of oscillatory systems in biology and a variety
of mathematical models has been developed which accurately describe many
properties of circadian rhythms [31].

The central mechanism of circadian clocks seems to be conserved among
many organisms and is based on a feedback regulated gene transcription net-
work in the cell nucleus and its corresponding protein translation products in
the cytoplasm. Disorders of the circadian system and of the circadian pace-
maker interfere with the timing of sleep and waking and can affect sleep onset,
duration, sleep quality and sleep episode duration. Misalignment between the
internal circadian pacemaker and the external environment is believed to cause
health problems such as cardiovascular disease, diabetes, sleep disorders, and
gastro-intestinal disorders [4, 5]. The external natural light-dark cycle is the pri-
mary environmental stimulus for entraining circadian rhythms in most species,
including humans. In fact, some of the most intriguing observations related to
circadian rhythms are that they are entrained by periodic light and darkness pe-
riods, persist under conditions of complete darkness and can be modified (phase
shifted) by external light stimuli.

Taking into account these issues, medical techniques known as “chronother-
apy” have been developed over the past twenty years [6] and mathematical
models can be exploited for these tasks [9]. Chronotherapy can be viewed as
a therapeutic control operated via drug injection schedules or modifications of
the environment (e.g., exposure to light or feeding). Cancer is one field of
medicine where chronotherapeutic approaches have been developed and tested
[10]. Chronomodulated injection for example allows to lower considerably the
side effects of highly toxic anticancer drugs [7] in chemotherapy.

Clinical observations indicate that circadian rhythms may be altered in many
types of cancer [11]. It has also very recently been established that the circadian
clock plays a key role in tumor suppression [12] and that rhythm alteration itself
might even cause cancer. Thus an additional goal of cancer therapy beyond the
destruction of tumor cells might be the restoration of the endogenous circadian
time structure because such a restoration could improve the prospects of patient
recovery [8].

All these aspects and considerations motivate the study of control problems
devoted to targeted manipulation of circadian rhythms. Mathematical models
are a valuable tool here in order to analyze potential control schemes. A general
problem formulation may be to act upon the central clock system considered in
a pathological state in order to modify its properties and bring it back close to
a desired target state, e.g. the healthy state.
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In order to demonstrate exemplarily the value of mathematical models and
the application of advanced numerical control techniques, we study rhythm con-
trol schemes of the central clock genes and proteins for the fruit fly Drosophila.
A simplified Drosophila model has recently been studied from a control point
of view in [13], where the authors theoretically investigate periodic activa-
tion/inhibition schemes of the translation frequency of messenger RNA of a
clock gene. Flatness based control methods have been applied to control pro-
tein concentration oscillations in [14]. The aim was to restore a circadian rhythm
of mutants showing either too short or too long periodicity of their endogenous
cycle. Careful analysis of the effects of a single short exposure to bright light
or of interrupted bright light pulses may have important implications for the
practical application of light treatment in case of circadian rhythm sleep disor-
ders. Compared with constant stimulation or once-a-day administration, which
are both inefficient, intermittent stimulation of several hours duration within a
24 hours period is successful in achieving control aims in the Drosophila model
[13]. However, repetitive uninterrupted exposure to bright light for many hours
and days is often not feasible in a clinical settings.

Here, we use model-based optimal control of mixed-integer type for systemat-
ically finding appropriate external pulse-stimuli leading to optimal synchroniza-
tion of the circadian model with the desired behavior like specific phase shifting
or restoration of altered rhythms of mutants. Possible control parameters are
the rates of protein synthesis and degradation. Our integer optimal control ap-
proach allows to systematically identify stimuli that switch between two given
bounds for the control parameter (bang-bang control). Such discrete pulse-
stimuli can be much more easily realised in practice than continously varying
control functions. However, the numerical solution of mixed-integer problems
is extremely challenging and we apply a recently developed powerful algorithm
based on multiple shooting (see section 4).

1.1 Model

One of the detailed models available for the circadian clock is based on experi-
mental observations collected for the fruit fly Drosophila, a widely used model
organism in biology. The model [22] (schematized in figure 1) is centered around
negative auto-regulation of gene expression. It takes into account nuclear tran-
scription of the per and tim genes and transport of the per and tim mRNAs into
the cytoplasm, where they are translated into PER and TIM proteins. The lat-
ter can be multiply phosphorylated and form a complex that enters the nucleus
and represses per and tim transcription. The model incorporates degradation of
the PER and TIM proteins and their mRNAs. Light entrainment necessitates
modeling the transcriptional regulation of both key proteins PER and TIM,
since light selectively promotes the degradation of TIM [26, 27]. The maximum
rate of TIM degradation νdT increases with increasing light intensity, where a
10-min light pulse is assumed to double the rate constant for a duration of 3h
[22]. In mammals, where per and tim genes are also found, light acts by enhanc-
ing the rate of per expression νsP [16]. The Drosophila model is described by a
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Figure 1: Model for circadian oscillator in Drosophila involving negative regu-
lation of gene expression by PER and TIM. per (MP ) and tim (MT ) mRNAs
are synthesized in the nucleus and transferred into the cytoplasm, where they
accumulate at the maximum rates νsP and νsT, respectively. There, they are de-
graded enzymatically at the maximum rates, νmP and νmT, with the Michaelis-
Menten constants, KmP and KmT. The rates of synthesis of the PER and
TIM proteins are proportional to MP and MT characterized by the apparent
first-order rate constants ksP and ksT. Parameters ViP(ViT) and KiP(KiT) (i
= 1,...4) denote the maximum rate and Michaelis constant of the kinase and
phosphatases involved in the reversible phosphorylation of P0 (T0) into P1 (T1)
and P1 (T1) into P2 (T2), respectively. The fully phosphorylated forms (P2 and
T2) are degraded by enzymes with maximum rate νdP and νdT and Michaelis-
Menten constants KdP and KdT and reversibly form a complex C (association
and dissociation are characterized by the rate constants k3 and k4), which is
transported into the nucleus at a rate characterized by the apparent first-order
rate constant k1. Transport of the nuclear form of the PER-TIM complex (CN)
into the cytoplasm is described by the apparent first-order rate constant k2.
The negative feedback exerted by the nuclear PER-TIM complex on per and
tim transcription is modeled by a Hill-type equation. For the full kinetic model
equations see [22].

set of 10 ordinary differential equations (ODEs) that govern the time evolution
of the concentrations of per and tim mRNAs and of the various forms of PER
and TIM proteins and the PER-TIM complex [22] with 38 model parameters.
The model can reproduce circadian oscillations in continuous darkness, entrain-
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ment by light-dark cycles, and phase shifting by light pulses. Figure 2 shows
the oscillations in total PER protein (Pt) level, per mRNA (Mp), and nuclear
PER-TIM complex (CN ) under dark conditions. Such conditions are accounted
for in the Drosophila model by holding the parameter, which measures the max-
imum rate of TIM degradation νdT = 2.4nMh−1 at a constant low value. The
PER-TIM control system generates autonomous oscillations with a period of 24
hours for the set of parameter values considered in Table 1.
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Figure 2: Oscillations of circadian rhythms in Drosophila for the model provided
in Table 1 under continuous darkness. The curves are obtained by numerical
integration using the BDF-Integration formula implemented in DAESOL-II [17].

The full model equations are given in appendix A. The parameters with
comparably strong phase and period effects control the degradation of mRNAs
and proteins and the protein translation. Using this knowledge, it is in principle
possible to modify the related processes in a desired way. For example, tran-
scription rates can be varied by tuning the promoter strength using directed
evolution [28], translation rates are influenced by ribosomal binding sites of dif-
ferent activities [29], and degradation kinetics of mRNA can be altered through
modification of its secondary structure for stability [30].

We use the model of circadian rhythms in Drosophila [22] for our optimal
control study. After a short analysis of its bifurcation structure, for a better un-
derstanding of the underlying dynamics and its dependence on external stimuli,
we want to demonstrate the control possibilities in two different optimal control
tasks. In the first scenario, we look at the so called “phase-tracking”, where
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we compute stimuli, which cause a phase-shift of the oscillation-period and in
the second scenario we demonstrate how to control the restoration of a normal
circadian cycle for mutant type Drosophila, which have a non 24-hours period
by controlling the rate of protein synthesis.
The results may be useful in the treatment of circadian rhythm disorders, such
as delayed-sleep phase syndrome, advanced-sleep phase syndrome, shift-work
dyssomnia and jet-lag while improving alertness and performance through syn-
chronizing the biological clock with its environment [15] and may be useful in
cancer chronotherapy when circadian rhythms are thought to be altered.

2 Bifurcation Analysis

Figure 3: Bifurcation diagram showing the range of sustained oscillations as
a function of the light-controlled parameter in the molecular model for the
circadian clock [22]. The diagram represents the stable (solid line) or unstable
(dashed line) steady-state value of a state variable (the concentration of the
phosphorylated TIM form), as well as the envelope (maximum and minimum
oscillation value) of stable (solid circles) or unstable (open circles) sustained
oscillations, as a function of νdT. Numerical computations for the bifurcation
diagram were performed with the software package AUTO [33].

For a better understanding of the results of our optimal control approach,
we use a bifurcation analysis of the model for the circadian clock with respect to
the light-sensitive parameter νdT, which is shown in the figure 3. It represents
the dynamic behavior of the oscillatory system by a single state variable, the
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fully phosphorylated form of the TIM protein (T2), as a function of νdT. At low
values of νdT, a stable steady state is obtained. As νdT increases, the steady
state becomes unstable, and sustained limit cycle oscillations occur. Beyond a
second bifurcation point at large νdT, the steady state recovers its stability. For
some parameter values, coexistence of a stable steady state and a stable regime
of limit cycle oscillations is observed.

In this situation of coexisting stable steady states and stable limit cycle os-
cillations, the effect of a light pulse can bring the oscillating system into the
basin of attraction of the stable singularity so that circadian oscillations are
suppressed permanently. The duration and amplitude of the light-induced bio-
chemical changes, that succeed in suppressing the rhythm, vary with the phase
of the rhythm when the light pulse is applied. A second light pulse can bring
the system back from the stable steady state into the basin of attraction of the
stable oscillations. A recent analysis for finding the optimal light stimulus by
mixed-integer optimization to permanently suppress and restore the circadian
rhythms has been studied [18]. In general, a finite stimulus will force a deviation
of the oscillator’s trajectory but it will return to stable limit cycle asymptot-
ically. However, the system undergoes a phase shift and depending upon the
time and strength of the stimulus the resultant phase will vary. In the following,
we will exploit the described occurrence of a stable steady state and a limit cy-
cle to systematically compute mixed-integer optimal controls, which drive the
dynamics into the region of the stable steady state and back to achieve, for
example, a specific desired phase shift for a mutant type Drosophila with non
24-hours period circadian rhythms.

3 Formulation of optimal control problems

The aim of our approach is to change the behavior of the dynamical system by
a time variant external control such as the maximum rate of protein degrada-
tion (νdT) or translational frequency (ks). We will denote the corresponding
functions by u(t). We want to minimize the integrated difference between the
state trajectory x(t) of the system and a reference trajectory xr(t). This refer-
ence trajectory is obtained by solving a boundary value problem that includes
a periodicity constraint

xr(0) = xr(T )

with T = 24. We fix the parameters to the values given in Table 1, which
corresponds to a ”darkness scenario” except νdT. We apply the optimal control
software package MUSCOD-II [21] that implements the direct multiple shooting
method, see section 4.1. As a numerical solution of the boundary value problem,
we obtain the value of the parameter νdT = 2.4nMh−1 for which the system
shows the desired periodic behavior with a period of exactly 24 hours. As can be
seen in figure 3, for the value νdT = 2.4nMh−1 the system is characterized by an
unstable steady state surrounded by stable limit cycle oscillations respresented
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in solid circles. Therefore, the calculated reference orbit xr(t) corresponding to
νdT = 2.4nMh−1 is stable.

Our optimization problem now consists of minimizing the deviation from
this reference trajectory for given initial values x(0) = x0 over a given time
horizon,

min
u,x

∫ t

0

‖x(t)− xr(t)‖22dt (1)

subject to ẋ = f(x, u, p),

x(0) = x0,

x(t) ≥ 0,

umin ≤ u(t) ≤ umax.

The constraints of the optimization problem are the function f , which rep-
resents the differential equation model given in appendix A, control boundaries
u ∈ [umin, umax] and positive concentrations.

In the first control scenario, for phase tracking of circadian rhythms, we use
the light sensitive νdT as a control parameter and the other parameter values
are fixed to the values given in Table 1. In the second control scenario, for
restoration of altered rhythms, we use the translation frequency (ks) of the
proteins PER and TIM as a control parameter, which may be influenced by
suitable drugs.

In practice, the light sensitive parameter νdT, and the translation frequency
ks are easier to control as a switching off-on-off control function than a function
with continous control values over time. Mathematically this means that we
have to restrict the control function u(t) to take values in {umin, umax} only.
This can be reformulated via u(t) = umin + w(t)(umax − umin) into a binary
valued control function w(t) ∈ {0, 1}.

4 Numerical Optimal Control Methods

4.1 Direct Methods of Optimal Control

There are various methods in the literature to solve optimal control problems
for ODE. We choose Bock’s direct multiple shooting method, [23], as this ap-
proach has proven to be a reliable tool not only for mechanics and chemical
engineering, but also in systems biology of self-organization, e.g., [19], [20]. It
is a direct method and therefore based on a transformation of the infinite–
dimensional control problem to a finite–dimensional nonlinear program (NLP)
by a discretization of the control functions. A time grid of multiple shooting
nodes is introduced,

0 ≤ t1 ≤ . . . ≤ tnms
= T. (2)
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Figure 4: Illustration of direct multiple shooting during SQP iterations. The con-
trols are discretized, the corresponding states obtained by piecewise integration. The
matching conditions are violated in this scheme — the overall trajectory is not yet
continuous.

With finitely many control parameters qi ∈ IRni ,

q = (q0, q1, . . . , qnms−1)T ,

a piecewise approximation û of the control functions u on the grid (2) is then
defined by

û(t) = ϕi(t, qi), t ∈ [ti, ti+1], i = 0, . . . , nms − 1. (3)

In practice the functions ϕi are typically vectors of constant, linear or cubic
functions. On the grid (2) node values sxi ≈ x(ti) ∈ IRnx are introduced, from
now on 0 ≤ i < nms, that serve as initial values of intermediate trajectories. All
values x(t) in between the grid points are obtained by a decoupled integration
with an ODE solver on each of the multiple shooting intervals. Continuity of
the state trajectory at the multiple shooting grid points

sxi+1 = x(ti+1; sxi , qi, p) (4)

is incorporated via equality constraints into the NLP. Here x(·) denotes the
solution of the ODE on interval [ti, ti+1] with initial values sxi at time ti. Figure
4 illustrates the concept of direct multiple shooting. The control variables qi,
the global parameters p, that may include the time horizon length h = tf−t0 for
problems with free end time, and the node values sxi are the degrees of freedom
of the discretize and parameterized optimal control problem. If we write them
in one nξ–dimensional vector

ξ = (sx0 , q0, s
x
1 , . . . , qnms−1, s

x
nms

, p)T , (5)

subsuming all equality constraints and continuity conditions (4) in a function
G(ξ) and all inequality constraints in a function H(ξ) the resulting NLP can be
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formulated as

min
ξ

F (ξ)

subject to G(ξ) = 0, (6)

H(ξ) ≤ 0.

This NLP can be solved with tailored iterative methods exploiting the structure
of the problem, e.g., by sequential quadratic programming (SQP). The continu-
ity conditions do not necessarily have to be satisfied during the iterations of the
SQP algorithm used to solve the NLP, but surely when convergence has been
achieved. Direct multiple shooting is therefore a so called all–at–once approach
that solves the dynamic equations and the optimization problem at the same
time opposed to the sequential approach of single shooting that computes a
continuous trajectory as a feasible ODE solution in every iteration. For more
details on direct multiple shooting, see [23] or [21].

4.2 Mixed-Integer Optimal Control Methods

If the optimal control problem under consideration contains control functions
w(·) with a restriction to values in a disjoint set, say to {0, 1}nw , the methods
have to be extended. We say that a trajectory T = (x,w, u, p) is binary admis-
sible, if all constraints are fulfilled and w(t) ∈ {0, 1}nw for all t ∈ [t0, tf ]. For the
application treated in this paper, we apply the novel algorithm MSMINTOC in-
troduced in [24] that can be sketched as follows. We relax the control functions
to w(·) ∈ [0, 1]nw . We solve the relaxed problem for a given control discretiza-
tion G0 and obtain the grid–dependent optimal function value ΦRL

G0 . We iterate
on a refinement of the grid for next steps with the idea to extrapolate towards
nms 7→ ∞. We obtain ΦRL = ΦRL

Gnext as the objectivefunction value on the finest
grid Gnext . This objective function value serves as a lower bound that can be
approximated up to any user–specified tolerance ε > 0 by a binary admissible
trajectory, for a proof see [24]. If the optimal trajectory on Gnext is already bi-
nary admissible then stop. Otherwise apply a rounding or penalty heuristics on
the grid. If the trajectory is binary admissible, obtain an upper bound ΦROU .
If ΦROU < ΦRL + ε then stop. Otherwise optimize the switching times for a
fixed switching structure, initialized with the trajectory obtained by heuristics.
Again, if the obtained trajectory is binary admissible, obtain an upper bound
ΦSTO and if ΦSTO < ΦRL + ε then stop. For most practical problems and the
model under consideration in this study a modest iteration on next is sufficient
to obtain a binary admissible trajectory that is within a certain tolerance to the
reachable objective function value. If this is not the case, a further interplay
between a penalty term homotopy with an adaptive refinement of the control
discretization grid or even a rigorous determination of the global solution on
a grid by, e.g., Branch & Bound is necessary. See [24] for details, proofs and
applications.
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5 Results

5.1 Optimal phase tracking of circadian rhythms

Circadian rhythms can be phase shifted by a light pulse. The result can be a
phase advance, a phase delay, or no measurable phase change at all [25]. Plot-
ting the direction and magnitude of the phase shift as a function of the phase
of the rhythm, when the perturbation is timed, yields the phase-response curve.
Molecular models have been used to obtain theoretical phase-response curves
that can be compared with experimental observations ([31, 22, 32]).
Here, the aim of our optimal control approach is to automatically identify
strength and timing of light-switching induced parameter changes for TIM pro-
tein degradation which synchronize the system with a desired reference trajec-
tory and result in an induced phase shift. We use the light-sensitive control
parameter νdT(t) as a control function and compute a relaxed optimal control
νdT(t) as a solution of problem (1) after relaxation of the integer constraints to
w(t) ∈ [0, 1] using piecewise constant control parameterization. The result for
the control function is shown in figure 5 (left) and the corresponding controlled
system trajectory is shown in figure 6 (left). The controller is able to recover
a maximum 12-hours phase difference within 40-hours with 0.5 hours accuracy.
Obviously the rhythm can be successfully tracked by continuously adjustable
time-varying light stimuli.
However, these continuously changing controls are difficult to realize in practice
and therefore, we go on to compute a pulse control in terms of a bang-bang
solution of problem (1) that switches between a maximal and minimal value of
the control parameter. In figure 5 (right), the obtained pulse control computed
via mixed-integer optimal control and in figure 6 (right) the corresponding con-
trolled system state trajectory of PER-TIM protein complex in the nucleus is
plotted. From figure 6, it is obvious that there is hardly a difference between
the relaxed and the mixed integer result.

5.2 Restoration of altered circadian rhythms

The Drosophila circadian rhythm model can also be used for studying possibili-
ties to modify pathological rhythms, e.g. to restore the normal characteristics of
the circadian time structure, bearing in mind possible applications in pharma-
cokinetics. In this case, the aim of our control problem is to determine the type
of perturbation by which pathological oscillations could be reverted optimally
to the normal pattern of oscillation.

We model altered pathological rhythm by changing the parameters νdP =
2.4nMh−1 and νdT = 2.4nMh−1, the maximal degradation of PER and TIM
proteins. These parameter values represents the nonmutant or “wild-type”
Drosophila, with an oscillation period of 24 hours. By changing the param-
eter values to νdP = 4.5nMh−1 and νdT = 4.5nMh−1, we model the mutant
Drosophila, called perl, and with νdP = 1.25nMh−1 and νdT = 1.25nMh−1,
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Figure 5: Relaxed (left) and bang-bang (right) optimal control functions for the
phase tracking of circadian rhythms by light. The control input is the light-
sensitive maximum rate of protein degradation νdT(t).
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Figure 6: Phase tracking by light stimuli corresponding to the optimal control
functions in figure 5, left: relaxed control scenario, right: bang-bang control
scenario. The plot shows the PER-TIM protein concentration. Solid lines sym-
bolize reference trajectories while dashed lines symbolize the controlled and
uncontrolled PER-TIM complex.

mutant Drosophila, called pers, with altered amplitude and endogenous oscil-
lation period of 29 hours and 19 hours respectively. Such mutants with long
period of about 29 hours and short period of about 19 hours are well known in
case of Drosophila [34]. For optimal control, we consider the problem of shifting
a mutant Drosophila PER cycle towards a wild-type Drosophila PER cycle, set-
ting its period precisely back to 24 hours. Since we have changed for modeling
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the mutant Drosophila PER cycles the light sensitive parameter νdT, we assume
that the alteration of circadian rhythms have to be influenced by an indirect
way of pharmalogical access to change the period and geometric characteristics
of the altered limit cycle characterzing the nominal oscillations. We use the
translation frequency ksP and ksT of PER and TIM proteins as control param-
eters, which may be influenced by suitable drugs. Time varying drug injecting
pumps with constant inputs could be used for the purpose of chronomodulated
drug administration. The control objective is to restore the nominal 24 hours
period of circadian oscillations and the characteristics of the oscillations (shape
and amplitude) close to the nominal values.
Starting from the mutant Drosophila perl, we focus on changing the trans-
lation frequency ks of mRNAs into the nonphosphorylated form of proteins.
Here we assume the translation frequency of PER ksP and TIM protein ksT
are the same and equal to ks. In our case, ks is assumed to switch between
a minimal (kmin) and a maximal (kmax) value . This can be formulated as
k(t) = kmin +w(t)(kmax−kmin), where w(t) is a binary-valued control function.
In figure 7 (left), the resulting control input ks(t) as a solution of problem (1)
using a piecewise constant control parametrization with relaxation of the integer
constraints is shown. With this control function, the controller is able to restore
a period of 24 hours, phase and amplitude of nominal oscillations very well for
the long period mutant perl by suitable variation of the translation frequency
(data not shown). In figure 7 (right), the mixed integer solution of the opti-
mal control problem (1) is shown, which has been computed starting from the
relaxed control function. The obtained controlled trajectories are plotted in fig-
ure 8 for the mixed-integer control input. In the (left) plot, the controlled and
uncontrolled perl mRNA concentrations and the non mutant wild type state
trajectory xr(t) are shown. From this figure, it can be seen that it is possible
to restore both, the period and amplitude of the mutant oscillations, close to
the desired trajectory xr(t). For visualisation, we plotted nuclear per mRNA vs
PER-TIM complex concentration on right side of figure 8.

Similar results can be achieved for mutant type Drosophila pers with altered
amplitude and endogeneous oscillation period of 19 hours. Here, only the mixed
integer control inputs ks(t) for restoration of pers mutant rhythm are shown in
figure 9 (left) and the corresponding controlled per mRNA trajectory (figure 9
(right)). The pulse control is also obtained starting from a former computed
relaxed control function (data not shown). It is possible to restore the period of
oscillations to 24 hours but the amplitude of oscillations are not restored well.
Parameters with higher sensitivity, like transcription rates might allow more
efficient ways of restoration in this case.

6 Conclusion

Applications of control theory to complex biological systems and model-based
specific manipulation of system dynamics are promising visions in biomedical
applications for systematic design of chronomodulated therapeutics. Since it is
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Figure 8: Rhythm restoration of mutant Drosophila perl by the optimal bang-
bang control functions from figure 7 (right). The (left) plot shows the per mRNA
protein concentration and the (right) plot shows the corresponding limit cycles
for the perl mutant restoration in a phase space projection.

often not possible to control system dynamics in a continuous manner, system-
atic computations of discrete control functions are necessary. As an example to
demonstrate the value of model based numerical optimal control in this context,
a mixed-integer programming approach is applied to a Drosophila model to ma-
nipulate the system dynamics in a systematic way. Analysis of the circadian
clock demonstrates that control inputs, such as light, that directly influences the
parameter νdT, can be used to manipulate the system dynamics. Translation
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Figure 9: Bang-bang control solution (left) for circadian rhythm restoration of
mutant pers in Drosophila by varying the translation frequency ks. The plot
(right) shows the corresponding per mRNA protein concentration.

frequencies ks may also be used as control functions, if they can be influenced in
order to restore altered circadian rhythms. This may be done by suitable drugs,
which mostly can only be applied in a discrete fashion. Although the study
makes use of Drosophila circadian system, the phase tracking and restoration
control algorithm described in this paper is generic and can be applied to any
biological oscillator.
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A Drosophila model-equations and rate-constants

dMp

dt
= vsP

KIP
n

KIP
n + CN

n − vmP
MP

KmP +MP
− kdMP

dP0

dt
= ksPMP − V1P

P0

K1P + P0
+ V2P

P1

K2P + P1
− kdP0

dP1

dt
= V1P

P0

K1P + P0
− V2P

P1

K2P + P1
− V3P

P1

K3P + P1
+ V4P

P2

K4P + P2
− kdP1

dP2

dt
= V3P

P1

K3P + P1
− V4P

P2

K4P + P2
− k3P2T2 + k4C − vdP

P2

KdP + P2
− kdP2
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dMT

dt
= vsT

KIT
n

KIT
n + CN

n − vmT
MT

KmT +MT
− kdMT

dT0
dt

= ksTMT − V1T
T0

K1T + T0
+ V2T

T1
K2T + T1

− kdT0

dT1
dt

= V1T
T0

K1T + T0
− V2T

T1
K2T + T1

− V3T
T1

K3T + T1
+ V4T

T2
K4T + T2

− kdT1

dT2
dt

= V3T
T1

K3T + T1
− V4T

T2
K4T + T2

− k3P2T2 + k4C − vdT
T2

KdT + T2
− kdT2

dC

dt
= k3P2T2 − k4C −K1C + k2CN − kdCC

dCN
dt

= k1C − k2CN − kdNCN

The total (nonconserved) quantities of PER and TIM proteins, Pt and Tt are
given by

Pt = P0 + P1 + P2 + C + CN

Tt = T0 + T1 + T2 + C + CN

Kinetic parameter Parameter value Kinetic parameter Parameter value
vsP 1 nMh−1 kd 0.01h−1

vsT 1 nMh−1 kdC 0.01h−1

vmP 0.7 nMh−1 kdN 0.01h−1

vmT 0.7 nMh−1 V1P 8 nMh−1

KmP 0.2 nM V1T 8 nMh−1

KmT 0.2 nM V2P 1 nMh−1

ksP 0.9 h−1 V2T 1 nMh−1

ksT 0.9 h−1 V3P 8 nMh−1

vdP 2.4 nMh−1 V3T 8 nMh−1

vdT 2.4 nMh−1 V4P 1 nMh−1

k1 0.6 h−1 V4T 1 nMh−1

k2 0.2 h−1 K4T 2.0 nM
k3 1.2 nM−1h−1 K4P 2.0 nM
k4 0.6h−1 K3T 2.0 nM

KIP 1.0 nM K3P 2.0 nM
KIT 1.0 nM K2T 2.0 nM
KdP 0.2 nM K2P 2.0 nM
KdT 0.2 nM K1T 2.0 nM

n 4 K1P 2.0 nM

Table 1: Rate constants for the Drosophila model.
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