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Abstract. Numerical algorithm developers need standardized test instances for
empirical studies and proofs of concept. There are several libraries available for finite-
dimensional optimization, such as the netlib or the miplib. However, for mixed-integer
optimal control problems (MIOCP) this is not yet the case. One explanation for this
is the fact that no dominant standard format has been established yet. In many cases
instances are used in a discretized form, but without proper descriptions on the modeling
assumptions and discretizations that have been applied. In many publications crucial
values, such as initial values, parameters, or a concise definition of all constraints are
missing.

In this contribution we intend to establish the basis for a benchmark library of
mixed-integer optimal control problems that is meant to be continuously extended online
on the open community web page http://mintoc.de. The guiding principles will be
comprehensiveness, a detailed description of where a model comes from and what the
underlying assumptions are, a clear distinction between problem and method description
(such as a discretization in space or time), reproducibility of solutions and a standardized
problem formulation. Also, the problems will be classified according to model and
solution characteristics. We do not benchmark MIOCP solvers, but provide a library
infrastructure and sample problems as a basis for future studies.

A second objective is to formulate mixed-integer nonlinear programs (MINLPs) orig-
inating from these MIOCPs. The snag is of course that we need to apply one out of
several possible method-specific discretizations in time and space in the first place to
obtain a MINLP. Yet the resulting MINLPs originating from control problems with an
indication of the currently best known solution are hopefully a valuable test set for de-
velopers of generic MINLP solvers. The problem specifications can also be downloaded
from http://mintoc.de.
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1. Introduction. For empirical studies and proofs of concept, devel-
opers of optimization algorithms need standardized test instances. There
are several libraries available, such as the netlib for linear programming
(LP) [4], the Schittkowski library for nonlinear programming (NLP) [59],
the miplib [43] for mixed-integer linear programming (MILP), or more
recently the MINLPLib [13] and the CMU-IBM Cyber-Infrastructure for
for mixed-integer nonlinear programming (MINLP) collaborative site [15].
Further test libraries and related links can be found on [12], a comprehen-
sive testing environment is CUTEr [27]. The solution of these problems
with different solvers is facilitated by the fact that standard formats such
as the standard input format (SIF) or the Mathematical Programming Sys-
tem format (MPS) have been defined.

Collections of optimal control problems (OCPs) in ordinary differential
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equations (ODE) and in differential algebraic equations (DAE) have also
been set up. The PROPT (a matlab toolkit for dynamic optimization using
collocation) homepage states over 100 test cases from different applications
with their results and computation time, [31]. With the software package
dsoa [19] come currently 77 test problems. The ESA provides a test set of
global optimization spacecraft trajectory problems and their best putative
solutions [3].

This is a good starting point. However, no standard has evolved yet
as in the case of finite-dimensional optimization. The specific formats for
which only few optimization / optimal control codes have an interface,
insufficient information on the modeling assumptions, or missing initial
values, parameters, or a concise definition of all constraints make a transfer
to different solvers and environments very cumbersome. The same is true
for hybrid systems, which incorporate MIOCPs as defined in this paper as
a special case. Two benchmark problems have been defined at [45].

Although a general open library would be highly desirable for opti-
mal control problems, we restrict ourselves here to the case of MIOCPs, in
which some or all of the control values and functions need to take values
from a finite set. MIOCPs are of course more general than OCPs as they
include OCPs as a special case, however the focus in this library will be
on integer aspects. We want to be general in our formulation, without
becoming too abstract. It will allow to incorporate ordinary and partial
differential equations, as well as algebraic constraints. Most hybrid systems
can be formulated by means of state-dependent switches. Closed-loop con-
trol problems are on a different level, because a unique and comparable
scenario would include well-defined external disturbances. We try to leave
our approach open to future extensions to nonlinear model predictive con-
trol (NMPC) problems, but do not incorporate them yet. The formulation
allows for different kinds of objective functions, e.g., time minimal or of
tracking type, and of boundary constraints, e.g., periodicity constraints.
Abstract problem formulations, together with a proposed categorization of
problems according to model, objective, and solution characteristics will
be given in Section 2.

MIOCPs include features related to different mathematical disciplines.
Hence, it is not surprising that very different approaches have been pro-
posed to analyze and solve them. There are three generic approaches to
solve model-based optimal control problems, compare [8]: first, solution of
the Hamilton-Jacobi-Bellman equation and in a discrete setting Dynamic
Programming, second indirect methods, also known as the first optimize,
then discretize approach, and third direct methods (first optimize, then dis-
cretize) and in particular all–at–once approaches that solve the simulation
and the optimization task simultaneously. The combination with the ad-
ditional combinatorial restrictions on control functions comes at different
levels: for free in dynamic programming, as the control space is evaluated
anyhow, by means of an enumeration in the inner optimization problem of
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the necessary conditions of optimality in Pontryagin’s maximum principle,
or by various methods from integer programming in the direct methods.

Even in the case of direct methods, there are multiple alternatives to
proceed. Various approaches have been proposed to discretize the differ-
ential equations by means of shooting methods or collocation, e.g., [10, 7],
to use global optimization methods by under- and overestimators, e.g.,
[18, 48, 14], to optimize the time-points for a given switching structure,
e.g., [35, 25, 58], to consider a static optimization problem instead of the
transient behavior, e.g., [29], to approximate nonlinearities by piecewise-
linear functions, e.g., [44], or by approximating the combinatorial decisions
by continuous formulations, as in [11] for drinking water networks. Also
problem (re)formulations play an important role, e.g., outer convexifica-
tion of nonlinear MIOCPs [58], the modeling of MPECs and MPCCs [6, 5],
or mixed-logic problem formulations leading to disjunctive programming,
[50, 28, 47].

We do not want to discuss reformulations, solvers, or methods in detail,
but rather refer to [58, 54, 28, 5, 47, 50] for more comprehensive surveys
and further references. The main purpose of mentioning them is to point
out that they all discretize the optimization problem in function space in a
different manner, and hence result in different mathematical problems that
are actually solved on a computer.

We have two objectives. First, we intend to establish the basis for
a benchmark library of mixed-integer optimal control problems that is
meant to be continuously extended online on the open community web page
http://mintoc.de. The guiding principles will be comprehensiveness, a
detailed description of where a model comes from and what the underlying
assumptions are, a clear distinction between problem and method descrip-
tion (such as a discretization in space or time), reproducibility of solutions
and a standardized problem formulation that allows for an easy transfer,
once a method for discretization has been specified, to formats such as
AMPL or GAMS. Also, the problems will be classified according to model and
solution characteristics.

Although the focus of this paper is on formulating MIOCPs before any
irreversible reformulation and numerical solution strategy has been applied,
a second objective is to provide specific MINLP formulations as benchmarks
for developers of MINLP solvers. Powerful commercial MILP solvers and
advances in MINLP solvers as described in the other contributions to this
book make the usage of general purpose MILP/MINLP solvers more and
more attractive. Please be aware however that the MINLP formulations we
provide in this paper are only one out of many possible ways to formulate
the underlying MIOCP problems.

In Section 2 a classification of problems is proposed. Sections 3 to
11 describe the respective control problems and currently best known so-
lutions. In Section 12 two specific MINLP formulations are presented for
illustration. Section 13 gives a conclusion and an outlook.
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2. Classifications. The MIOCPs in our benchmark library have dif-
ferent characteristics. In this section we describe these general character-
istics, so we can simply list them later on where appropriate. Beside its
origins from application fields such as mechanical engineering, aeronautics,
transport, systems biology, chemical engineering and the like, we propose
three levels to characterize a control problem. First, characteristics of the
model from a mathematical point of view, second the formulation of the
optimization problem, and third characteristics of an optimal solution from
a control theory point of view. We will address these three in the following
subsections.

Although we strive for a standardized problem formulation, we do not
formulate a specific generic formulation as such. Such a formulation is not
even agreed upon for PDEs, let alone the possible extensions in the direc-
tion of algebraic variables, network topologies, logical connections, multi-
stage processes, MPEC constraints, multiple objectives, functions including
higher-order derivatives and much more that might come in. Therefore we
chose to start with a very abstract formulation, formulate every control
problem in its specific way as is adequate and to connect the two by us-
ing a characterization. On the most abstract level, we want to solve an
optimization problem that can be written as

min
x,u,v

Φ[x, u, v])

s.t. 0 = F [x, u, v],
0 ≤ C[x, u, v],
0 = Γ[x].

(2.1)

Here x(·) : Rd 7→ Rnx denotes the differential-algebraic states1 in a d-
dimensional space. Until now, for most applications we have d = 1 and
the independent variable time t ∈ [t0, tf ], the case of ordinary or algebraic
differential equations. u(·) : Rd 7→ Rnu and v(·) : Rd 7→ Ω are controls,
where u(·) are continuous values that map to Rnu , and v(·) are controls that
map to a finite set Ω. We allow also constant-in-time or constant-in-space
control values rather than distributed controls.

We will also use the term integer control for v(·), while binary control
refers to ω(t) ∈ {0, 1}nω that will be introduced later. We use the expres-
sion relaxed, whenever a restriction v(·) ∈ Ω is relaxed to a convex control
set, which is typically the convex hull, v(·) ∈ convΩ.

Basically two different kinds of switching events are at the origin of
hybrid systems, controllable and state-dependent ones. The first kind is
due to degrees of freedom for the optimization, in particular with controls
that may only take values from a finite set. The second kind is due to

1Note that we use the notation common in control theory with x as differential states
and u as controls, not the PDE formulation with x as independent variable and u as
differential states.
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state-dependent switches in the model equations, e.g., ground contact of
a robot leg or overflow of weirs in a distillation column. The focus in the
benchmark library is on the first kind of switches, whereas the second one
is of course important for a classification of the model equations, as for
certain MIOCPs both kinds occur.

The model equations are described by the functional F [·], to be spec-
ified in Section 2.1. The objective functional Φ[·], the constraints C[·]
that may include control- and path-constraints, and the interior point con-
straints Γ[x] that specify also the boundary conditions are classified in
Section 2.2. In Section 2.3 characteristics of an optimal solution from a
control theory point of view are listed.

The formulation of optimization problems is typically not unique.
Sometimes, as in the case of MPEC reformulations of state-dependent
switches [5], disjunctive programming [28], or outer convexification [58],
reformulations may be seen as part of the solution approach in the sense of
the modeling for optimization paradigm [47]. Even in obvious cases, such
as a Mayer term versus a Lagrange term formulation, they may be math-
ematically, but not necessarily algorithmically equivalent. We propose to
use either the original or the most adequate formulation of the optimization
problem and list possible reformulations as variants.

2.1. Model classification. This Section addresses possible realiza-
tions of the state equation

0 = F [x, u, v]. (2.2)

We assume throughout that the differential-algebraic states x are uniquely
determined for appropriate boundary conditions and fixed (u, v).

2.1.1. ODE model. This category includes all problems constrained
by the solution of explicit ordinary differential equations (ODE). In par-
ticular, no algebraic variables and derivatives with respect to one indepen-
dent variable only (typically time) are present in the mathematical model.
Equation (2.2) reads as

ẋ(t) = f(x(t), u(t), v(t)), t ∈ [0, tf], (2.3)

for t ∈ [t0, tf ] almost everywhere. We will often leave the argument (t)
away for notational convenience.

2.1.2. DAE model. If the model includes algebraic constraints and
variables, for example from conversation laws, a problem will be categorized
as a DAE model. Equality (2.2) will then include both differential equations
and algebraic constraints that determine the algebraic states in dependence
of the differential states and the controls. A more detailed classification
includes the index of the algebraic equations.
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2.1.3. PDE model. If d > 1 the model equation (2.2) becomes a par-
tial differential equation (PDE). Depending on whether convection or dif-
fusion prevails, a further classification into hyperbolic, elliptic, or parabolic
equations is necessary. A more elaborate classification will evolve as more
PDE constrained MIOCPs are described on http://mintoc.de. In this
work one PDE-based instance is presented in Section 11.

2.1.4. Outer convexification. For time-dependent and space- inde-
pendent integer controls often another formulation is beneficial, e.g., [36].
For every element vi of Ω a binary control function ωi(·) is introduced.
Equation (2.2) can then be written as

0 =
nω∑
i=1

F [x, u, vi] ωi(t), t ∈ [0, tf]. (2.4)

If we impose the special ordered set type one condition

nω∑
i=1

ωi(t) = 1, t ∈ [0, tf], (2.5)

there is a bijection between every feasible integer function v(·) ∈ Ω and an
appropriately chosen binary function ω(·) ∈ {0, 1}nω , compare [58]. The
relaxation of ω(t) ∈ {0, 1}nω is given by ω(t) ∈ [0, 1]nω . We will refer to
(2.4) and (2.5) as outer convexification of (2.2). This characteristic applies
to the control problems in Sections 3, 6, 9, 10, and 11.

2.1.5. State-dependent switches. Many processes are modelled by
means of state-dependent switches that indicate, e.g., model changes due to
a sudden ground contact of a foot or a weir overflow in a chemical process.
Mathematically, we write

0 = Fi[x, u, v] if σi(x(t)) ≥ 0. (2.6)

with well defined switching functions σi(·) for t ∈ [0, tf]. This characteristic
applies to the control problems in Sections 6 and 8.

2.1.6. Boolean variables. Discrete switching events can also be ex-
pressed by means of Boolean variables and logical implications. E.g., by in-
troducing logical functions δi : [0, tf] 7→ {true, false} that indicate whether
a model formulation Fi[x, u, v] is active at time t, both state-dependent
switches and outer convexification formulations may be written as disjunc-
tive programs, i.e., optimization problems involving Boolean variables and
logical conditions. Using disjunctive programs can be seen as a more natu-
ral way of modeling discrete events and has the main advantage of resulting
in tighter relaxations of the discrete dicisions, when compared to integer
programming techniques. More details can be found in [28, 46, 47].
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2.1.7. Multistage processes. Processes of interest are often mod-
elled as multistage processes. At transition times the model can change,
sometimes in connection with a state-dependent switch. The equations
read as

0 = Fi[x, u, v] t ∈ [ti, ti+1] (2.7)

on a time grid {ti}i. With smooth transfer functions also changes in the
dimension of optimization variables can be incorporated, [42].

2.1.8. Unstable dynamics. For numerical reasons it is interesting
to keep track of instabilities in process models. As small changes in inputs
lead to large changes in outputs, challenges for optimization methods arise.
This characteristic applies to the control problems in Sections 3 and 7.

2.1.9. Network topology. Complex processes often involve an un-
derlying network topology, such as in the control of gas or water networks
[44, 11] . The arising structures should be exploited by efficient algorithms.

2.2. Classification of the optimization problem. The optimiza-
tion problem (2.1) is described by means of an objective functional Φ[·] and
inequality constraints C[·] and equality constraints Γ[·]. The constraints
come in form of multipoint constraints that are defined on a time grid
t0 ≤ t1 ≤ · · · ≤ tm = tf , and of path-constraints that need to hold almost
everywhere on the time horizon. The equality constraints Γ[·] will often fix
the initial values or impose a periodicity constraint. In this classification
we assume all functions to be sufficiently often differentiable.

In the future, the classification will also include problems with non-
differentiable objective functions, multiple objectives, online control tasks
including feedback, indication of nonconvexities, and more characteristics
that allow for a specific choice of test instances.

2.2.1. Minimum time. This is a category with all control problems
that seek for time-optimal solutions, e.g., reaching a certain goal or com-
pleting a certain process as fast as possible. The objective function is of
Mayer type, Φ[·] = tf. This characteristic applies to the control problems
in Sections 3, 9, and 10.

2.2.2. Minimum energy. This is a category with all control prob-
lems that seek for energy-optimal solutions, e.g., reaching a certain goal or
completing a certain process with a minimum amount of energy. The objec-
tive function is of Lagrange type and sometimes proportional to a minimiza-
tion of the squared control (e.g., acceleration) u(·), e.g., Φ[·] =

∫ tf
t0
u2 dt.

Almost always an upper bound on the free end time tf needs to be specified.
This characteristic applies to the control problems in Sections 6 and 8.
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2.2.3. Tracking problem. This category lists all control problems
in which a tracking type Lagrange functional of the form

Φ[·] =
∫ tf

t0

||x(τ)− xref ||22 dτ. (2.8)

is to be minimized. This characteristic applies to the control problems in
Sections 4, 5, and 7.

2.2.4. Periodic processes. This is a category with all control prob-
lems that seek periodic solutions, i.e., a condition of the kind

Γ[x] = P (x(tf ))− x(t0) = 0, (2.9)

has to hold. P (·) is an operation that allows, e.g., for a perturbation
of states (such as needed for the formulation of Simulated Moving Bed
processes, Section 11, or for offsets of angles by a multiple of 2π such as
in driving on closed tracks, Section 10). This characteristic applies to the
control problems in Sections 8, 10, and 11.

2.2.5. Equilibrium constraints. This category contains mathemat-
ical programs with equilibrium constraints (MPECs). An MPEC is an op-
timization problem constrained by a variational inequality, which takes for
generic variables / functions y1, y2 the following general form:

min
y1,y2

Φ(y1, y2)

s.t. 0 = F (y1, y2),
0 ≤ C(y1, y2),

0 ≤ (µ− y2)T φ(y1, y2), y2 ∈ Y (y1), ∀µ ∈ Y (y1)

(2.10)

where Y (y1) is the feasible region for the variational inequality and given
function φ(·). Variational inequalities arise in many domains and are gen-
erally referred to as equilibrium constraints. The variables y1 and y2 may
be controls or states.

2.2.6. Complementarity constraints. This category contains opti-
mization problems with complementarity constraints (MPCCs), for generic
variables / functions y1, y2, y3 in the form of

min
y1,y2,y3

Φ(y1, y2, y3)

s.t. 0 = F (y1, y2, y3),
0 ≤ C(y1, y2, y3),
0 ≤ y1 ⊥ y2 ≥ 0

(2.11)

The complementarity operator ⊥ implies the disjunctive behavior

y1,i = 0 OR y2,i = 0 ∀ i = 1 . . . ny.
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MPCCs may arise from a reformulation of a bilevel optimization problem
by writing the optimality conditions of the inner problem as variational
constraints of the outer optimization problem, or from a special treatment
of state-dependent switches, [5]. Note that all MPCCs can be reformulated
as MPECs.

2.2.7. Vanishing constraints. This category contains mathematical
programs with vanishing constraints (MPVCs). The problem

min
y

Φ(y)

s.t. 0 ≥ gi(y)hi(y), i ∈ {1, . . . ,m}
0 ≤ h(y)

(2.12)

with smooth functions g, h : Rny 7→ Rm is called MPVC. Note that every
MPVC can be transformed into an MPEC [2, 32]. Examples for vanishing
constraints are engine speed constraints that are only active if the corre-
sponding gear control is nonzero. This characteristic applies to the control
problems in Sections 9, and 10.

2.3. Solution classification. The classification that we propose for
switching decisions is based on insight from Pontryagin’s maximum princi-
ple, [49], applied here only to the relaxation of the binary control functions
ω(·), denoted by α(·) ∈ [0, 1]nω . In the analysis of linear control problems
one distinguishes three cases: bang-bang arcs, sensitivity-seeking arcs, and
path-constrained arcs, [61], where an arc is defined to be a nonzero time-
interval. Of course a problem’s solution can show two or even all three
behaviors at once on different time arcs.

2.3.1. Bang-bang arcs. Bang-bang arcs are time intervals on which
the control bounds are active, i.e., αi(t) ∈ {0, 1} ∀ t. The case where the
optimal solution contains only bang-bang arcs is in a sense the easiest. The
solution of the relaxed MIOCP will be integer feasible, if the control dis-
cretization grid is a superset of the switching points of the optimal control.
Hence, the main goal will be to adapt the control discretization grid such
that the solution of the relaxed problem is already integer. Also on fixed
time grids good solutions are easy to come up with, as rounded solutions
approximate the integrated difference between relaxed and binary solution
very well.

A prominent example of this class is time-optimal car driving, see
Section 9 and see Section 10. Further examples of “bang-bang solutions”
include free switching of ports in Simulated Moving Bed processes, see
Section 11, unconstrained energy-optimal operation of subway trains see
Section 6, a simple F-8 flight control problem see Section 3, and phase
resetting in biological systems, such as in Section 7.

2.3.2. Path–constrained arcs. Whenever a path constraint is ac-
tive, i.e., it holds ci(x(t)) = 0 ∀ t ∈ [tstart, tend] ⊆ [0, tf], and no continuous
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control u(·) can be determined to compensate for the changes in x(·), nat-
urally α(·) needs to do so by taking values in the interior of its feasible
domain. An illustrating example has been given in [58], where velocity
limitations for the energy-optimal operation of New York subway trains
are taken into account, see Section 6. The optimal integer solution does
only exist in the limit case of infinite switching (Zeno behavior), or when
a tolerance is given. Another example is compressor control in supermar-
ket refrigeration systems, see Section 8. Note that all applications may
comprise path-constrained arcs, once path constraints need to be added.

2.3.3. Sensitivity–seeking arcs. We define sensitivity–seeking (also
compromise–seeking) arcs in the sense of Srinivasan and Bonvin, [61], as
arcs which are neither bang–bang nor path–constrained and for which the
optimal control can be determined by time derivatives of the Hamiltonian.
For control–affine systems this implies so-called singular arcs.

A classical small-sized benchmark problem for a sensitivity-seeking
(singular) arc is the Lotka-Volterra Fishing problem, see Section 4. The
treatment of sensitivity–seeking arcs is very similar to the one of path–
constrained arcs. As above, an approximation up to any a priori specified
tolerance is possible, probably at the price of frequent switching.

2.3.4. Chattering arcs. Chattering controls are bang–bang controls
that switch infinitely often in a finite time interval [0, tf]. An extensive an-
alytical investigation of this phenomenon can be found in [63]. An example
for a chattering arc solution is the famous example of Fuller, see Section 5.

2.3.5. Sliding Mode. Solutions of model equations with state-de-
pendent switches as in (2.6) may show a sliding mode behavior in the sense
of Filippov systems [20]. This means that at least one of the functions σi(·)
has infinetely many zeros on the finite time interval [0, tf]. In other words,
the right hand side switches infinetely often in a finite time horizon.

The two examples with state-dependent switches in this paper in Sec-
tions 6 and 8 do not show sliding mode behavior.

3. F-8 flight control. The F-8 aircraft control problem is based on
a very simple aircraft model. The control problem was introduced by Kaya
and Noakes [35] and aims at controlling an aircraft in a time-optimal way
from an initial state to a terminal state. The mathematical equations form
a small-scale ODE model. The interior point equality conditions fix both
initial and terminal values of the differential states. The optimal, relaxed
control function shows bang bang behavior. The problem is furthermore
interesting as it should be reformulated equivalently. Despite the reformu-
lation the problem is nonconvex and exhibits multiple local minima.

3.1. Model and optimal control problem. The F-8 aircraft con-
trol problem is based on a very simple aircraft model in ordinary differential
equations, introduced by Garrard [23]. The differential states consist of x0

as the angle of attack in radians, x1 as the pitch angle, and x2 as the pitch
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rate in rad/s. The only control function w = w(t) is the tail deflection angle
in radians. The control objective is to control the airplane from one point
in space to another in minimum time. For t ∈ [0, T ] almost everywhere the
mixed-integer optimal control problem is given by

min
x,w,T

T

s.t. ẋ0 = − 0.877 x0 + x2 − 0.088 x0 x2 + 0.47 x2
0 − 0.019 x2

1

− x2
0 x2 + 3.846 x3

0

− 0.215 w + 0.28 x2
0 w + 0.47 x0 w

2 + 0.63 w3

ẋ1 = x2

ẋ2 = − 4.208 x0 − 0.396 x2 − 0.47 x2
0 − 3.564 x3

0

− 20.967 w + 6.265 x2
0 w + 46 x0 w

2 + 61.4 w3

x(0) = (0.4655, 0, 0)T , x(T ) = (0, 0, 0)T ,
w(t) ∈ {−0.05236, 0.05236}, t ∈ [0, T ].

(3.1)

In the control problem, both initial and terminal values of the differential
states are fixed. The control w(t) is restricted to take values from a finite
set only. Hence, the control problem can be reformulated equivalently to

min
x,w,T

T

s.t. ẋ0 = − 0.877 x0 + x2 − 0.088 x0 x2 + 0.47 x2
0 − 0.019 x2

1

− x2
0 x2 + 3.846 x3

0

+ 0.215 ξ − 0.28 x2
0 ξ + 0.47 x0 ξ

2 − 0.63 ξ3

−
(
0.215 ξ − 0.28 x2

0 ξ − 0.63 ξ3
)

2w
ẋ1 = x2

ẋ2 = − 4.208 x0 − 0.396 x2 − 0.47 x2
0 − 3.564 x3

0

+ 20.967 ξ − 6.265 x2
0 ξ + 46 x0 ξ

2 − 61.4 ξ3

−
(
20.967 ξ − 6.265 x2

0 ξ − 61.4 ξ3
)

2w

x(0) = (0.4655, 0, 0)T , x(T ) = (0, 0, 0)T ,
w(t) ∈ {0, 1}, t ∈ [0, T ]

(3.2)

with ξ = 0.05236. Note that there is a bijection between optimal solu-
tions of the two problems, and that the second formulation is an outer
convexification, compare Section 2.1.

3.2. Results. We provide in Table 1 a comparison of different solu-
tions reported in the literature. The numbers show the respective lengths
ti − ti−1 of the switching arcs with the value of w(t) on the upper or lower
bound (given in the second column). The infeasibility shows values ob-
tained by a simulation with a Runge-Kutta-Fehlberg method of 4th/5th
order and an integration tolerance of 10−8.
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Arc w(t) Lee[41] Kaya[35] Sager[53] Schlüter Sager
1 1 0.00000 0.10292 0.10235 0.0 1.13492
2 0 2.18800 1.92793 1.92812 0.608750 0.34703
3 1 0.16400 0.16687 0.16645 3.136514 1.60721
4 0 2.88100 2.74338 2.73071 0.654550 0.69169
5 1 0.33000 0.32992 0.32994 0.0 0.0
6 0 0.47200 0.47116 0.47107 0.0 0.0

Infeasibility 1.75E-3 1.64E-3 5.90E-6 3.29E-6 2.21E-7
Objective 6.03500 5.74218 5.72864 4.39981 3.78086

Table 1
Results for the F-8 flight control problem. The solution in the second last column

is a personal communication by Martin Schlüter and Matthias Gerdts.

The best known optimal objective value of this problem given is given
by T = 3.78086. The corresponding solution is shown in Figure 1 (right),
another local minimum is plotted in Figure 1 (left). The solution of bang-
bang type switches three resp. five times, starting with w(t) = 1.

Fig. 1. Trajectories for the F-8 flight control problem. Left: corresponding to the
Sager[53] column in Table 1. Right: corresponding to the rightmost column in Table 1.

4. Lotka Volterra Fishing Problem. The Lotka Volterra fishing
problem seeks an optimal fishing strategy to be performed on a fixed time
horizon to bring the biomasses of both predator as prey fish to a prescribed
steady state. The problem was set up as a small-scale benchmark problem
in [55] and has since been used for the evaluation of algorithms, e.g., [62].

The mathematical equations form a small-scale ODE model. The inte-
rior point equality conditions fix the initial values of the differential states.
The optimal integer control shows chattering behavior, making the Lotka
Volterra fishing problem an ideal candidate for benchmarking of algorithms.

4.1. Model and optimal control problem. The biomasses of two
fish species — one predator, the other one prey — are the differential
states of the model, the binary control is the operation of a fishing fleet.
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The optimization goal is to penalize deviations from a steady state,

min
x,w

tf∫
t0

(x0 − 1)2 + (x1 − 1)2 dt

s.t. ẋ0 = x0 − x0x1 − c0x0 w

ẋ1 = −x1 + x0x1 − c1x1 w,

x(0) = (0.5, 0.7)T ,
w(t) ∈ {0, 1}, t ∈ [0, tf],

(4.1)

with tf = 12, c0 = 0.4, and c1 = 0.2.

4.2. Results. If the problem is relaxed, i.e., we demand that w(·)
be in the continuous interval [0, 1] instead of the binary choice {0, 1}, the
optimal solution can be determined by means of Pontryagin’s maximum
principle [49]. The optimal solution contains a singular arc, [55].

The optimal objective value of this relaxed problem is Φ = 1.34408.
As follows from MIOC theory [58] this is the best lower bound on the
optimal value of the original problem with the integer restriction on the
control function. In other words, this objective value can be approximated
arbitrarily close, if the control only switches often enough between 0 and
1. As no optimal solution exists, a suboptimal one is shown in Figure 2,
with 26 switches and an objective function value of Φ = 1.34442.

Fig. 2. Trajectories for the Lotka Volterra Fishing problem. Top left: optimal
relaxed solution on grid with 52 intervals. Top right: feasible integer solution. Bottom:
corresponding differential states, biomass of prey and of predator fish.

4.3. Variants. There are several alternative formulations and vari-
ants of the above problem, in particular

• a prescribed time grid for the control function [55],
• a time-optimal formulation to get into a steady-state [53],
• the usage of a different target steady-state, as the one correspond-

ing to w(·) = 1 which is (1 + c1, 1− c0),
• different fishing control functions for the two species,
• different parameters and start values.

5. Fuller’s problem. The first control problem with an optimal chat-
tering solution was given by [22]. An optimal trajectory does exist for all
initial and terminal values in a vicinity of the origin. As Fuller showed, this
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optimal trajectory contains a bang-bang control function that switches in-
finitely often. The mathematical equations form a small-scale ODE model.
The interior point equality conditions fix initial and terminal values of the
differential states, the objective is of tracking type.

5.1. Model and optimal control problem. The MIOCP reads as

min
x,w

∫ 1

0

x2
0 dt

s.t. ẋ0 = x1

ẋ1 = 1− 2 w

x(0) = (0.01, 0)T , x(T ) = (0.01, 0)T ,
w(t) ∈ {0, 1}, t ∈ [0, 1].

(5.1)

5.2. Results. The optimal trajectories for the relaxed control prob-
lem on an equidistant grid G0 with nms = 20, 30, 60 are shown in the top
row of Figure 3. Note that this solution is not bang–bang due to the dis-
cretization of the control space. Even if this discretization is made very
fine, a trajectory with w(·) = 0.5 on an interval in the middle of [0, 1] will
be found as a minimum.

The application of MS MINTOC [54] yields an objective value of Φ =
1.52845 · 10−5, which is better than the limit of the relaxed problems,
Φ20 = 1.53203 · 10−5, Φ30 = 1.53086 · 10−5, and Φ60 = 1.52958 · 10−5.

Fig. 3. Trajectories for Fuller’s problem. Top row and bottom left: relaxed optima
for 20, 30, and 60 equidistant control intervals. Bottom right: feasible integer solution.

5.3. Variants. An extensive analytical investigation of this problem
and a discussion of the ubiquity of Fuller’s problem can be found in [63].

6. Subway ride. The optimal control problem we treat in this section
goes back to work of [9] for the city of New York. In an extension, also
velocity limits that lead to path–constrained arcs appear. The aim is to
minimize the energy used for a subway ride from one station to another,
taking into account boundary conditions and a restriction on the time.



A BENCHMARK LIBRARY OF MIOCPs 15

6.1. Model and optimal control problem. The MIOCP reads as

min
x,w

∫ tf

0

L(x,w) dt

s.t. ẋ0 = x1

ẋ1 = f1(x,w)

x(0) = (0, 0)T , x(tf) = (2112, 0)T ,
w(t) ∈ {1, 2, 3, 4}, t ∈ [0, tf].

(6.1)

The terminal time tf = 65 denotes the time of arrival of a subway train in
the next station. The differential states x0(·) and x1(·) describe position
and velocity of the train, respectively. The train can be operated in one of
four different modes, w(·) = 1 series, w(·) = 2 parallel, w(·) = 3 coasting, or
w(·) = 4 braking that accelerate or decelerate the train and have different
energy consumption. Acceleration and energy comsumption are velocity-
dependent. Hence, we will need switching functions σi(x1) = vi − x1 for
given velocities vi, i = 1..3. The Lagrange term reads as

L(x, 1) =


e p1 if σ1 ≥ 0
e p2 else if σ2 ≥ 0

e
∑5
i=0 ci(1)

(
1
10γ x1

)−i else
(6.2)

L(x, 2) =


∞ if σ2 ≥ 0
e p3 else if σ3 ≥ 0

e
∑5
i=0 ci(2)

(
1
10γ x1 − 1

)−i else
(6.3)

L(x, 3) = L(x, 4) = 0. (6.4)

The right hand side function f1(x,w) reads as

f1(x, 1) =


f1A

1 := g e a1
Weff

if σ1 ≥ 0
f1B

1 := g e a2
Weff

else if σ2 ≥ 0
f1C

1 := g (e T (x1,1)−R(x1)
Weff

else
(6.5)

f1(x, 2) =


0 if σ2 ≥ 0

f2B
1 := g e a3

Weff
else if σ3 ≥ 0

f2C
1 := g (e T (x1,2)−R(x1)

Weff
else

(6.6)

f1(x, 3) = −g R(x1)
Weff

− C, (6.7)

f1(x, 4) = −u = −umax. (6.8)

The braking deceleration u(·) can be varied between 0 and a given umax. It
can be shown that for problem (6.1) only maximal braking can be optimal,
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Symbol Value Unit Symbol Value Unit
W 78000 lbs v1 0.979474 mph
Weff 85200 lbs v2 6.73211 mph
S 2112 ft v3 14.2658 mph
S4 700 ft v4 22.0 mph
S5 1200 ft v5 24.0 mph
γ 3600

5280
sec
h / ft

mile a1 6017.611205 lbs
a 100 ft2 a2 12348.34865 lbs
nwag 10 - a3 11124.63729 lbs
b 0.045 - umax 4.4 ft / sec2

C 0.367 - p1 106.1951102 -
g 32.2 ft

sec2 p2 180.9758408 -
e 1.0 - p3 354.136479 -

Table 2
Parameters used for the subway MIOCP and its variants.

hence we fixed u(·) to umax without loss of generality. Occurring forces are

R(x1) = ca γ2x1
2 + bWγx1 +

1.3
2000

W + 116, (6.9)

T (x1, 1) =
5∑
i=0

bi(1)
(

1
10
γx1 − 0.3

)−i
, (6.10)

T (x1, 2) =
5∑
i=0

bi(2)
(

1
10
γx1 − 1

)−i
. (6.11)

Parameters are listed in Table 2, while bi(w) and ci(w) are given by

b0(1) −0.1983670410E02,
b1(1) 0.1952738055E03,
b2(1) 0.2061789974E04,
b3(1) −0.7684409308E03,
b4(1) 0.2677869201E03,
b5(1) −0.3159629687E02,
b0(2) −0.1577169936E03,
b1(2) 0.3389010339E04,
b2(2) 0.6202054610E04,
b3(2) −0.4608734450E04,
b4(2) 0.2207757061E04,
b5(2) −0.3673344160E03,

c0(1) 0.3629738340E02,
c1(1) −0.2115281047E03,
c2(1) 0.7488955419E03,
c3(1) −0.9511076467E03,
c4(1) 0.5710015123E03,
c5(1) −0.1221306465E03,
c0(2) 0.4120568887E02,
c1(2) 0.3408049202E03,
c2(2) −0.1436283271E03,
c3(2) 0.8108316584E02,
c4(2) −0.5689703073E01,
c5(2) −0.2191905731E01.

Details about the derivation of this model and the assumptions made
can be found in [9] or in [37].

6.2. Results. The optimal trajectory for this problem has been cal-
culated by means of an indirect approach in [9, 37], and based on the
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direct multiple shooting method in [58]. The resulting trajectory is listed
in Table 3.

Time t w(·) f1 = x0 [ft] x1 [mph] x1 [ftps] Energy
0.00000 1 f1A

1 0.0 0.0 0.0 0.0
0.63166 1 f1B

1 0.453711 0.979474 1.43656 0.0186331
2.43955 1 f1C

1 10.6776 6.73211 9.87375 0.109518
3.64338 2 f2B

1 24.4836 8.65723 12.6973 0.147387
5.59988 2 f2C

1 57.3729 14.2658 20.9232 0.339851
12.6070 1 f1C

1 277.711 25.6452 37.6129 0.93519
45.7827 3 f1(3) 1556.5 26.8579 39.3915 1.14569
46.8938 3 f1(3) 1600 26.5306 38.9115 1.14569
57.1600 4 f1(4) 1976.78 23.5201 34.4961 1.14569
65.0000 - − 2112 0.0 0.0 1.14569

Table 3
Optimal trajectory for the subway MIOCP as calculated in [9, 37, 58].

6.3. Variants. The given parameters have to be modified to match
different parts of the track, subway train types, or amount of passengers.
A minimization of travel time might also be considered.

The problem becomes more challenging, when additional point or path
constraints are considered. First we consider the point constraint

x1 ≤ v4 if x0 = S4 (6.12)

for a given distance 0 < S4 < S and velocity v4 > v3. Note that the state
x0(·) is strictly monotonically increasing with time, as ẋ0 = x1 > 0 for all
t ∈ (0, T ).

The optimal order of gears for S4 = 1200 and v4 = 22/γ with the ad-
ditional interior point constraints (6.12) is 1, 2, 1, 3, 4, 2, 1, 3, 4. The stage
lengths between switches are 2.86362, 10.722, 15.3108, 5.81821, 1.18383,
2.72451, 12.917, 5.47402, and 7.98594 with Φ = 1.3978. For different pa-
rameters S4 = 700 and v4 = 22/γ we obtain the gear choice 1, 2, 1, 3, 2, 1,
3, 4 and stage lengths 2.98084, 6.28428, 11.0714, 4.77575, 6.0483, 18.6081,
6.4893, and 8.74202 with Φ = 1.32518.

A more practical restriction are path constraints on subsets of the
track. We will consider a problem with additional path constraints

x1 ≤ v5 if x0 ≥ S5. (6.13)

The additional path constraint changes the qualitative behavior of the re-
laxed solution. While all solutions considered this far were bang–bang and
the main work consisted in finding the switching points, we now have a
path–constraint arc. The optimal solutions for refined grids yield a series
of monotonically decreasing objective function values, where the limit is
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Optimal solution with 1 touch point Optimal solution with 3 touch points

Fig. 4. The differential state velocity of a subway train over time. The dotted ver-
tical line indicates the beginning of the path constraint, the horizontal line the maximum
velocity. Left: one switch leading to one touch point. Right: optimal solution for three
switches. The energy-optimal solution needs to stay as close as possible to the maximum
velocity on this time interval to avoid even higher energy-intensive accelerations in the
start-up phase to match the terminal time constraint tf ≤ 65 to reach the next station.

the best value that can be approximated by an integer feasible solution. In
our case we obtain

1.33108, 1.31070, 1.31058, 1.31058, . . . (6.14)

Figure 4 shows two possible integer realizations, with a trade-off between
energy consumption and number of switches. Note that the solutions ap-
proximate the optimal driving behavior (a convex combination of two op-
eration modes) by switching between the two and causing a touching of the
velocity constraint from below as many times as we switch.

7. Resetting calcium oscillations. The aim of the control prob-
lem is to identify strength and timing of inhibitor stimuli that lead to a
phase singularity which annihilates intra-cellular calcium oscillations. This
is formulated as an objective function that aims at minimizing the state
deviation from a desired unstable steady state, integrated over time. A
calcium oscillator model describing intra-cellular calcium spiking in hep-
atocytes induced by an extracellular increase in adenosine triphosphate
(ATP) concentration is described. The calcium signaling pathway is initi-
ated via a receptor activated G-protein inducing the intra-cellular release of
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inositol triphosphate (IP3) by phospholipase C. The IP3 triggers the open-
ing of endoplasmic reticulum and plasma membrane calcium channels and
a subsequent inflow of calcium ions from intra-cellular and extracellular
stores leading to transient calcium spikes.

The mathematical equations form a small-scale ODE model. The inte-
rior point equality conditions fix the initial values of the differential states.
The problem is, despite of its low dimension, very hard to solve, as the
target state is unstable.

7.1. Model and optimal control problem. The MIOCP reads as

min
x,w,wmax

∫ tf

0

||x(t)− x̃||22 + p1w(t) dt

s.t. ẋ0 = k1 + k2x0 −
k3x0x1

x0 +K4
− k5x0x2

x0 +K6

ẋ1 = k7x0 −
k8x1

x1 +K9

ẋ2 =
k10x1x2x3

x3 +K11
+ k12x1 + k13x0 −

k14x2

w · x2 +K15

− k16x2

x2 +K17
+
x3

10

ẋ3 = −k10x1x2x3

x3 +K11
+

k16x2

x2 +K17
− x3

10
x(0) = (0.03966, 1.09799, 0.00142, 1.65431)T ,

1.1 ≤ wmax ≤ 1.3,
w(t) ∈ {1, wmax}, t ∈ [0, tf]

(7.1)

with fixed parameter values [t0, tf ] = [0, 22], k1 = 0.09, k2 = 2.30066,
k3 = 0.64, K4 = 0.19, k5 = 4.88, K6 = 1.18, k7 = 2.08, k8 = 32.24,
K9 = 29.09, k10 = 5.0, K11 = 2.67, k12 = 0.7, k13 = 13.58, k14 = 153.0,
K15 = 0.16, k16 = 4.85, K17 = 0.05, p1 = 100, and reference values
x̃0 = 6.78677, x̃1 = 22.65836, x̃2 = 0.384306, x̃3 = 0.28977.

The differential states (x0, x1, x2, x3) describe concentrations of acti-
vated G-proteins, active phospholipase C, intra-cellular calcium, and intra-
ER calcium, respectively. The external control w(·) is a temporally varying
concentration of an uncompetitive inhibitor of the PMCA ion pump.

Modeling details can be found in [38]. In the given equations that
stem from [40], the model is identical to the one derived there, except
for an additional first-order leakage flow of calcium from the ER back to
the cytoplasm, which is modeled by x3

10 . It reproduces well experimental
observations of cytoplasmic calcium oscillations as well as bursting behavior
and in particular the frequency encoding of the triggering stimulus strength,
which is a well known mechanism for signal processing in cell biology.
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7.2. Results. The depicted optimal solution in Figure 5 consists of a
stimulus of wmax = 1.3 and a timing given by the stage lengths 4.6947115,
0.1491038, and 17.1561845. The optimal objective function value is Φ =
1610.654. As can be seen from the additional plots, this solution is ex-
tremely unstable. A small perturbation in the control, or simply rounding
errors on a longer time horizon lead to a transition back to the stable
limit-cycle oscillations.

The determination of the stimulus by means of optimization is quite
hard for two reasons. First, the unstable target steady-state. Only a stable
all-at-once algorithm such as multiple shooting or collocation can be applied
successfully. Second, the objective landscape of the problem in switching
time formulation (this is, for a fixed stimulus strength and modifying only
beginning and length of the stimulus) is quite nasty, as the visualizations
in [53] and on the web page [52] show.

Fig. 5. Trajectories for the calcium problem. Top left: optimal integer solution.
Top right: corresponding differential states with phase resetting. Bottom left: slightly
perturbed control: stimulus 0.001 too early. Bottom right: long time behavior of optimal
solution: numerical rounding errors lead to transition back from unstable steady-state
to stable limit-cycle.

7.3. Variants. Alternatively, also the annihilation of calcium oscilla-
tions with PLC activation inhibition, i.e., the use of two control functions is
possible, compare [40]. Of course, results depend very much on the scaling
of the deviation in the objective function.
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8. Supermarket refrigeration system. This benchmark problem
was formulated first within the European network of excellence HYCON,
[45] by Larsen et. al, [39]. The formulation lacks however a precise defi-
nition of initial values and constraints, which are only formulated as “soft
constraints”. The task is to control a refrigeration system in an energy op-
timal way, while guaranteeing safeguards on the temperature of the show-
cases. This problem would typically be a moving horizon online optimiza-
tion problem, here it is defined as a fixed horizon optimization task.

The mathematical equations form a periodic ODE model.

8.1. Model and optimal control problem. The MIOCP reads as

min
x,w,tf

1
tf

∫ tf

0

(w2 + w3) · 0.5 · ηvol · Vsl · fdt

s.t. ẋ0 =

(
x4

(
x2 − Te(x0)

)
+ x8

(
x6 − Te(x0)

))
Vsuc · dρsuc

dPsuc
(x0)

· UAwrm
Mrm ·∆hlg(x0)

+
Mrc − ηvol · Vsl · 0.5 (w2 + w3) ρsuc(x0)

Vsuc · dρsuc

dPsuc
(x0)

ẋ1 = −UAgoods−air (x1 − x3)
Mgoods · Cp,goods

ẋ2 =
UAair−wall (x3 − x2)− UAwrm

Mrm
x4

(
x2 − Te(x0)

)
Mwall · Cp,wall

ẋ3 =
UAgoods−air (x1 − x3) + Q̇airload − UAair−wall (x3 − x2)

Mair · Cp,air

ẋ4 =
(
Mrm − x4

τfill

)
w0 −

UAwrm(1− w0)
Mrm ·∆hlg(x0)

x4

(
x2 − Te(x0)

)
ẋ5 = −UAgoods−air (x5 − x7)

Mgoods · Cp,goods

ẋ6 =
UAair−wall (x7 − x6)− UAwrm

Mrm
x8

(
x6 − Te(x0)

)
Mwall · Cp,wall

ẋ7 =
UAgoods−air (x5 − x7) + Q̇airload − UAair−wall (x7 − x6)

Mair · Cp,air

ẋ8 =
(
Mrm − x8

τfill

)
w1 −

UAwrm(1− w1)
Mrm ·∆hlg(x0)

x8

(
x6 − Te(x0)

)
x(0) = x(tf),
650 ≤ tf ≤ 750,
x0 ≤ 1.7, 2 ≤ x3 ≤ 5, 2 ≤ x7 ≤ 5

w(t) ∈ {0, 1}4, t ∈ [0, tf].
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Symbol Value Unit Description
Q̇airload 3000.00 J

s Disturbance, heat transfer
ṁrc 0.20 kg

s Disturbance, constant mass flow
Mgoods 200.00 kg Mass of goods
Cp,goods 1000.00 J

kg·K Heat capacity of goods
UAgoods−air 300.00 J

s·K Heat transfer coefficient
Mwall 260.00 kg Mass of evaporator wall
Cp,wall 385.00 J

kg·K Heat capacity of evaporator wall
UAair−wall 500.00 J

s·K Heat transfer coefficient
Mair 50.00 kg Mass of air in display case
Cp,air 1000.00 J

kg·K Heat capacity of air
UAwrm 4000.00 J

s·K Maximum heat transfer coefficient
τfill 40.00 s Filling time of the evaporator
TSH 10.00 K Superheat in the suction manifold
Mrm 1.00 kg Maximum mass of refrigerant
Vsuc 5.00 m3 Total volume of suction manifold
Vsl 0.08 m3

s Total displacement volume
ηvol 0.81 − Volumetric efficiency

Table 4
Parameters used for the supermarket refrigeration problem.

The differential state x0 describes the suction pressure in the suction mani-
fold (in bar). The next three states model temperatures in the first display
case (in C). x1 is the goods’ temperature, x2 the one of the evaporator
wall and x3 the air temperature surrounding the goods. x4 then models
the mass of the liquefied refrigerant in the evaporator (in kg). x5 to x8

describe the corresponding states in the second display case. w0 and w1

describe the inlet valves of the first two display cases, respectively. w2 and
w3 denote the activity of a single compressor.

The model uses the parameter values listed in Table 4 and the poly-
nomial functions obtained from interpolations:

Te(x0) = −4.3544x2
0 + 29.224x0 − 51.2005,

∆hlg(x0) = (0.0217x2
0 − 0.1704x0 + 2.2988) · 105,

ρsuc(x0) = 4.6073x0 + 0.3798,
dρsuc

dPsuc
(x0) = −0.0329x0

3 + 0.2161x0
2 − 0.4742x0 + 5.4817.

8.2. Results. For the relaxed problem the optimal solution is Φ =
12072.45. The integer solution plotted in Figure 6 is feasible, but yields an
increased objective function value of Φ = 12252.81, a compromise between
effectiveness and a reduced number of switches.

8.3. Variants. Since the compressors are parallel connected one can
introduce a single control w2 ∈ {0, 1, 2} instead of two equivalent controls.
The same holds for scenarios with n parallel connected compressors.
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Fig. 6. Periodic trajectories for optimal relaxed (left) and integer feasible controls
(right), with the controls w(·) in the first row and the differential states in the three
bottom rows.

In [39], the problem was stated slightly different:
• The temperature constraints weren’t hard bounds but there was a

penalization term added to the objective function to minimize the
violation of these constraints.

• The differential equation for the mass of the refrigerant had another
switch, if the valve (e.g. w0) is closed. It was formulated as ẋ4 =
Mrm − x4

τfill
if w0 = 1, ẋ4 = − UAwrm

Mrm ·∆hlg(x0)
x4

(
x2 − Te(x0)

)
if

w0 = 0 and x4 > 0, or ẋ4 = 0 if w0 = 0 and x4 = 0. This
additional switch is redundant because the mass itself is a factor
on the right hand side and so the complete right hand side is 0 if
x4 = 0.

• A night scenario with two different parameters was given. At night
the following parameters change their value to Q̇airload = 1800.00Js
and ṁrc = 0.00kgs . Additionally the constraint on the suction
pressure x0(t) is softened to x0(t) ≤ 1.9.

• The number of compressors and display cases is not fixed. Larsen
also proposed the problem with 3 compressors and 3 display cases.
This leads to a change in the compressor rack’s performance to
Vsl = 0.095m

3

s . Unfortunately this constant is only given for these
two cases although Larsen proposed scenarios with more compres-
sors and display cases.

9. Elchtest testdrive. We consider a time-optimal car driving ma-
neuver to avoid an obstacle with small steering effort. At any time, the car
must be positioned on a prescribed track. This control problem was first
formulated in [24] and used for subsequent studies [25, 36].

The mathematical equations form a small-scale ODE model. The in-
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terior point equality conditions fix initial and terminal values of the differ-
ential states, the objective is of minimum-time type.

9.1. Model and optimal control problem. We consider a car
model derived under the simplifying assumption that rolling and pitch-
ing of the car body can be neglected. Only a single front and rear wheel is
modelled, located in the virtual center of the original two wheels. Motion
of the car body is considered on the horizontal plane only.

The MIOCP reads as

min
tf,x(·),u(·)

tf +
∫ tf

0

w2
δ(t) dt (9.1a)

s.t. ċx = v cos
(
ψ − β

)
(9.1b)

ċy = v sin
(
ψ − β

)
(9.1c)

v̇ =
1
m

(
(Fµlr − FAx) cosβ + Flf cos

(
δ + β

)
(9.1d)

− (Fsr − FAy) sinβ − Fsf sin
(
δ + β

))
δ̇ = wδ (9.1e)

β̇ = wz −
1
m v

(
(Flr − FAx) sinβ + Flf sin

(
δ + β

)
(9.1f)

+ (Fsr − FAy) cosβ + Fsf cos
(
δ + β

))
ψ̇ = wz (9.1g)

ẇz =
1
Izz

(
Fsf lf cos δ − Fsr lr − FAy eSP + Flf lf sin δ

)
(9.1h)

cy(t) ∈
[
Pl(cx(t)) + B

2 , Pu(cx(t))− B
2

]
(9.1i)

wδ(t) ∈ [−0.5, 0.5], FB(t) ∈ [0, 1.5 · 104], φ(t) ∈ [0, 1] (9.1j)
µ(t) ∈ {1, . . . , 5} (9.1k)

x(t0) =
(
−30, free, 10, 0, 0, 0, 0

)ᵀ
, (cx, ψ)(tf) = (140, 0) (9.1l)

for t ∈ [t0, tf] almost everywhere. The four control functions contained in
u(·) are steering wheel angular velocity wδ, total braking force FB, the ac-
celerator pedal position φ and the gear µ. The differential states contained
in x(·) are horizontal position of the car cx, vertical position of the car cy,
magnitude of directional velocity of the car v, steering wheel angle δ, side
slip angle β, yaw angle ψ, and the y aw angle velocity wz.

The model parameters are listed in Table 5, while the forces and ex-
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pressions in (9.1b) to (9.1h) are given for fixed µ by

Fsf,sr(αf,r) := Df,r sin
(
Cf,r arctan

(
Bf,r αf,r

− Ef,r(Bf,r αf,r − arctan(Bf,r αf,r))
))
,

αf := δ(t)− arctan

(
lf ψ̇(t)− v(t) sinβ(t)

v(t) cosβ(t)

)

αr := arctan

(
lr ψ̇(t) + v(t) sinβ(t)

v(t) cosβ(t)

)
,

Flf := −FBf − FRf,

Fµlr :=
iµg it

R
Mµ

mot(φ)− FBr − FRr,

Mµ
mot(φ) := f1(φ) f2(wµmot) + (1− f1(φ)) f3(wµmot),
f1(φ) := 1− exp(−3 φ),

f2(wmot) := −37.8 + 1.54 wmot − 0.0019 w2
mot,

f3(wmot) := −34.9− 0.04775 wmot,

wµmot :=
iµg it

R
v(t),

FBf :=
2
3
FB, FBr :=

1
3
FB,

FRf(v) := fR(v)
m lr g

lf + lr
, FRr(v) := fR(v)

m lf g

lf + lr
,

fR(v) := 9 · 10−3 + 7.2 · 10−5 v + 5.038848 · 10−10 v4,

FAx :=
1
2
cw ρ A v2(t), FAy := 0.

The test track is described by setting up piecewise cubic spline func-
tions Pl(x) and Pr(x) modeling the top and bottom track boundary, given
a horizontal position x.

Pl(x) :=



0 if x ≤ 44,
4 h2 (x− 44)3 if 44 < x ≤ 44.5,
4 h2 (x− 45)3 + h2 if 44.5 < x ≤ 45,
h2 if 45 < x ≤ 70,
4 h2 (70− x)3 + h2 if 70 < x ≤ 70.5,
4 h2 (71− x)3 if 70.5 < x ≤ 71,
0 if 71 < x.

(9.2)



26 SEBASTIAN SAGER

Value Unit Description

m 1.239 · 103 kg Mass of the car
g 9.81 m

s2
Gravity constant

lf 1.19016 m Front wheel distance to c.o.g.
lr 1.37484 m Rear wheel distance to c.o.g.
R 0.302 m Wheel radius
Izz 1.752 · 103 kg m2 Moment of inertia
cw 0.3 – Air drag coefficient

ρ 1.249512 kg
m3 Air density

A 1.4378946874 m2 Effective flow surface
i1g 3.09 – Gear 1 transmission ratio
i2g 2.002 – Gear 2 transmission ratio
i3g 1.33 – Gear 3 transmission ratio
i4g 1.0 – Gear 4 transmission ratio
i5g 0.805 – Gear 5 transmission ratio
it 3.91 – Engine torque transmission
Bf 1.096 · 101 – Pacejka coeff. (stiffness)
Br 1.267 · 101 –
Cf,r 1.3 – Pacejka coefficients (shape)
Df 4.5604 · 103 – Pacejka coefficients (peak)
Dr 3.94781 · 103 –
Ef,r −0.5 – Pacejka coefficients (curv.)

Table 5
Parameters used in the car model.

Pu(x) :=



h1 if x ≤ 15,
4 (h3 − h1) (x− 15)3 + h1 if 15 < x ≤ 15.5,
4 (h3 − h1) (x− 16)3 + h3 if 15.5 < x ≤ 16,
h3 if 16 < x ≤ 94,
4 (h3 − h4) (94− x)3 + h3 if 94 < x ≤ 94.5,
4 (h3 − h4) (95− x)3 + h4 if 94.5 < x ≤ 95,
h4 if 95 < x.

(9.3)

where B = 1.5 m is the car’s width and

h1 := 1.1 B + 0.25, h2 := 3.5, h3 := 1.2 B + 3.75, h4 := 1.3 B + 0.25.

9.2. Results. In [24, 25, 36] numerical results for the benchmark
problem have been deduced. In [36] one can also find an explanation why
a bang-bang solution for the relaxed and convexified gear choices has to
be optimal. Table 6 gives the optimal gear choice and the resulting ob-
jective function value (the end time) for different numbers N of control
discretization intervals, which were also used for a discretization of the
path constraints.
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N µ = 1 µ = 2 µ = 3 µ = 4 µ = 5 tf
10 0.0 0.435956 2.733326 – – 6.764174
20 0.0 0.435903 2.657446 6.467723 – 6.772046
40 0.0 0.436108 2.586225 6.684504 – 6.782052
80 0.0 0.435796 2.748930 6.658175 – 6.787284

Table 6
Gear choice depending on discretization in time N . Times when gear becomes active.

10. Elliptic track testdrive. This control problem is very similar to
the one in Section 9. However, instead of a simple lane change maneuver the
time-optimal driving on an elliptic track with periodic boundary conditions
is considered, [57].

10.1. Model and optimal control problem. With the notation of
Section 9 the MIOCP reads as

min
tf,x(·),u(·)

tf

s.t. (9.1b− 9.1h), (9.1j), (9.1k),
(cx, cy) ∈ X ,
x(t0) = x(tf)− (0, 0, 0, 0, 0, 2π, 0)T ,
cy(t0) = 0,

0 ≤ reng(v, µ),

(10.1a)

for t ∈ [t0, tf] almost everywhere.
The set X describes an elliptic track with axes of a = 170 meters and

b = 80 meters respectively, centered in the origin. The track’s width is
W = 7.5 meters, five times the car’s width B = 1.5 meters,

X =
{[

(a+ r) cos η, (b+ r) sin η
]∣∣∣ r ∈ [−W/2,W/2] ⊂ R

}
,

with η = arctan cy
cx

. Note that the special case cx = 0 leading to η = ±π2
requires separate handling.

The model in Section 9 has a shortcoming, as switching to a low gear is
possible also at high velocities, although this would lead to an unphysically
high engine speed. Therefore we extend it by additional constraints on the
car’s engine speed

800 =: nMIN
eng ≤ neng ≤ nMAX

eng := 8000, (10.2)

in the form of equivalent velocity constraints

πnMIN
eng R

30iti
µ
g
≤v≤

πnMAX
eng R

30iti
µ
g

(10.3)

for all t ∈ [0, tf] and the active gear µ. We write this as reng(v, µ) ≥ 0.
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10.2. Results. Parts of the optimal trajectory from [57] are shown in
Figures 7 and 8. The order of gears is (2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2). The
gear switches take place after 1.87, 5.96, 10.11, 11.59, 12.21, 12.88, 15.82,
19.84, 23.99, 24.96, 26.10, and 26.76 seconds, respectively. The final time
is tf = 27.7372 s.

Fig. 7. The steering angle velocity (control), and some differential states of the
optimal solution: directional velocity, side slip angle β, and velocity of yaw angle wz

plotted over time. The vertical lines indicate gear shifts.

As can be seen in Fig. 8, the car uses the track width to its full extent,
leading to active path constraints. As was expected, the optimal gear
increases in an acceleration phase. When the velocity has to be reduced, a
combination of braking, no acceleration, and engine brake is used.

The result depends on the engine speed constraint reng(v, µ) that be-
comes active in the braking phase. If the constraint is omitted, the optimal
solution switches directly from the fourth gear into the first one to maxi-
mize the effect of the engine brake. For nMAX

eng = 15000 braking occurs in
the gear order 4, 2, 1.

Although this was left as a degree of freedom, the optimizer yields a
symmetric solution with respect to the upper and lower parts of the track
for all scenarios we considered.

10.3. Variants. By a more flexible use of Bezier patches more general
track constraints can be specified, e.g., of formula 1 race courses.

11. Simulated moving bed. We consider a simplified model of a
Simulated Moving Bed (SMB) chromatographic separation process that
contains time–dependent discrete decisions. SMB processes have been gain-
ing increased attention lately, see [17, 33, 56] for further references. The
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Fig. 8. Elliptic race track seen from above with optimal position and gear choices
of the car. Note the exploitation of the slip (sliding) to change the car’s orientation as
fast as possible, when in first gear. The gear order changes when a different maximum
engine speed is imposed.

related optimization problems are challenging from a mathematical point of
view, as they combine periodic nonlinear optimal control problems in par-
tial differential equations (PDE) with time–dependent discrete decisions.

11.1. Model and optimal control problem. SMB chromatogra-
phy finds various industrial applications such as sugar, food, petrochemical
and pharmaceutical industries. A SMB unit consists of multiple columns
filled with solid absorbent. The columns are connected in a continuous
cycle. There are two inlet streams, desorbent (De) and feed (Fe), and two
outlet streams, raffinate (Ra) and extract (Ex). The continuous counter-
current operation is simulated by switching the four streams periodically
in the direction of the liquid flow in the columns, thereby leading to better
separation. This is visualized in Figure 9.

Feed, Desorbent

Extract, Raffinate
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1 2 3 4 5 6

6 1 2 3 4 5

Fig. 9. Scheme of SMB process with 6 columns.



30 SEBASTIAN SAGER

Due to this discrete switching of columns, SMB processes reach a cyclic
or periodic steady state, i.e., the concentration profiles at the end of a
period are equal to those at the beginning shifted by one column ahead in
direction of the fluid flow. A number of different operating schemes have
been proposed to further improve the performance of SMB.

The considered SMB unit consists of Ncol = 6 columns. The flow rate
through column i is denoted by Qi, i ∈ I := {1, . . . , Ncol}. The raffinate,
desorbent, extract and feed flow rates are denoted by QRa, QDe, QEx and
QFe, respectively. The (possibly) time–dependent value wiα(t) ∈ {0, 1}
denotes if the port of flow α ∈ {Ra,De,Ex,Fe} is positioned at column
i ∈ I. As in many practical realizations of SMB processes only one pump
per flow is available and the ports are switched by a 0–1 valve, we obtain
the additional special ordered set type one restriction∑

i∈I
wiα(t) = 1, ∀ t ∈ [0, T ], α ∈ {Ra,De,Ex,Fe}. (11.1)

The flow rates Q1, QDe, QEx and QFe enter as control functions u(·) resp.
time–invariant parameters p into the optimization problem, depending on
the operating scheme to be optimized. The remaining flow rates are derived
by mass balance as

QRa = QDe −QEx +QFe (11.2)

Qi = Qi−1 −
∑

α∈{Ra,Ex}

wiαQα +
∑

α∈{De,Fe}

wiαQα (11.3)

for i = 2, . . . Ncol. The feed contains two components A and B dissolved in
desorbent, with concentrations cAFe = cBFe = 0.1. The concentrations of A
and B in desorbent are cADe = cBDe = 0.

A simplified equilibrium model is described in Diehl and Walther [16].
It can be derived from an equilibrium assumption between solid and liquid
phases along with a simple spatial discretization. The mass balance in the
liquid phase for K = A,B is given by:

εb
∂cKi (x, t)

∂t
+ (1− εb)

∂qKi (x, t)
∂t

+ ui(t)
∂cKi (x, t)

∂x
= 0 (11.4)

with equilibrium between the liquid and solid phases given by a linear
isotherm:

qKi (x, t) = CKc
K
i (x, t). (11.5)

Here εb is the void fraction, cKi (x, t) is the concentration in the liquid phase
of component K in column i, qKi is the concentration in the solid phase.
Also, i is the column index and NColumn is the number of columns. We can
combine (11.4) and (11.5) and rewrite the model as:

∂cKi (x, t)
∂t

= −(ui(t)/K̄K)
∂cKi (x, t)

∂x
(11.6)
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where K̄K = εb + (1 − εb)CK . Dividing the column into NFEX compart-
ments and applying a simple backward difference with ∆x = L/NFEX
leads to:

dcKi,j
dt

=
ui(t)NFEX
K̄KL

[cKi,j−1(t)− cKi,j(t)] = kK [cKi,j−1(t)− cKi,j(t)] (11.7)

for j = 1, . . . , NFEX , with kA = 2NFEX , kB = NFEX , and cKi,j(t) is a
discretization of cKi (j∆x, t) for j = 0, . . . , NFEX .

This simplified model for the dynamics in each column considers axial
convection and axial mixing introduced by dividing the respective column
into Ndis perfectly mixed compartments. Although this simple discretiza-
tion does not consider all effects present in the advection–diffusion equation
for the time and space dependent concentrations, the qualitative behavior
of the concentration profiles moving at different velocities through the re-
spective columns is sufficiently well represented. We assume that the com-
partment concentrations are constant. We denote the concentrations of A
and B in the compartment with index i by cAi , cBi and leave away the time
dependency. For the first compartment j = (i− 1)Ndis + 1 of column i ∈ I
we have by mass transfer for K = A,B

ċKj
kK

= Qi−c
K
j− −Qic

K
j −

∑
α∈{Ra,Ex}

wiαQαc
K
j− +

∑
α∈{De,Fe}

wiαQαC
K
α (11.8)

where i− is the preceding column, i− = Ncol if i = 1, i− = i − 1, else
and equivalently j− = N if j = 1, j− = j − 1, else. kK denotes the axial
convection in the column, kA = 2Ndis and kB = Ndis. Component A is
less adsorbed, thus travels faster and is prevailing in the raffinate, while B
travels slower and is prevailing in the extract. For interior compartments
j in column i we have

ċKj
kK

= Qi−c
K
j− −Qic

K
j . (11.9)

The compositions of extract and raffinate, α ∈ {Ex,Ra}, are given by

ṀK
α = Qα

∑
i∈I

wiαc
K
j(i) (11.10)

with j(i) the last compartment of column i−. The feed consumption is

ṀFe = QFe. (11.11)

These are altogether 2N +5 differential equations for the differential states
x = (xA, xB , xM ) with xA = (cA0 , . . . , c

A
N ), xB = (cB0 , . . . , c

B
N ), and finally

xM = (MA
Ex,M

B
Ex,M

A
Ra,M

B
Ra,MFe). They can be summarized as

ẋ(t) = f(x(t), u(t), w(t), p). (11.12)
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We define a linear operator P : Rnx → Rnx that shifts the concentration
profiles by one column and sets the auxiliary states to zero, i.e.,

x 7→ Px := (PAxA, PBxB , PMxM ) with

PAxA := (cANdis+1, . . . , c
A
N , c

A
1 , . . . , c

A
Ndis

),

PBxB := (cBNdis+1, . . . , c
B
N , c

B
1 , . . . , c

B
Ndis

),
PMxM := (0, 0, 0, 0, 0).

Then we can impose periodicity after the unknown cycle duration T by
requiring x(0) = Px(T ). The purity of component A in the raffinate at the
end of the cycle must be higher than pRa = 0.95 and the purity of B in
the extract must be higher than pEx = 0.95, i.e., we impose the terminal
purity conditions

MA
Ex(T ) ≤ 1− pEx

pEx
MB

Ex(T ), (11.13)

MB
Ra(T ) ≤ 1− pRa

pRa
MA

Ra(T ). (11.14)

We impose lower and upper bounds on all external and internal flow rates,

0 ≤ QRa, QDe, QEx, QFe, Q1, Q2, Q3, Q4, Q5, Q6 ≤ Qmax = 2.(11.15)

To avoid draining inflow into outflow streams without going through a
column,

Qi − wiDeQDe − wiFeQFe >= 0 (11.16)

has to hold for all i ∈ I. The objective is to maximize the feed throughput
MFe(T )/T . Summarizing, we obtain the following MIOCP

max
x(·),u(·),w(·),p,T

MFe(T )/T

s.t. ẋ(t) = f(x(t), u(t), w(t), p),
x(0) = Px(T ),

(11.13− 11.16),∑
i∈I wiα(t) = 1, ∀ t ∈ [0, T ],

w(t) ∈ {0, 1}4Ncol , ∀ t ∈ [0, T ].

(11.17)

with α ∈ {Ra,De,Ex,Fe}.

11.2. Results. We optimized different operation schemes that fit into
the general problem formulation (11.17): SMB fix. The wiα are fixed as
shown in Table 7. The flow rates Q· are constant in time, i.e., they enter
as optimization parameters p into (11.17). Optimal solution Φ = 0.7345.
SMB relaxed. As above. But the wiα are free for optimization and
relaxed to wiα ∈ [0, 1], allowing for a ”splitting” of the ports. Φ = 0.8747.
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In PowerFeed the flow rates are modulated during one period, i.e., the Q·
enter as control functions u(·) into (11.17). Φ = 0.8452. VARICOL. The
ports switch asynchronically, but in a given order. The switching times
are subject to optimization. Φ = 0.9308. Superstruct. This scheme is
the most general and allows for arbitrary switching of the ports. The flow
rates enter as continuous control functions, but are found to be bang–bang
by the optimizer (i.e., whenever the port is given in Table 7, the respective
flow rate is at its upper bound). Φ = 1.0154.

Process Time 1 2 3 4 5 6
SMB fix 0.00 – 0.63 De Ex Fe Ra
SMB relaxed 0.00 – 0.50 De,Ex Ex Fe Ra
PowerFeed 0.00 – 0.56 De Ex Fe Ra
VARICOL 0.00 – 0.18 De Ex Fe Ra

0.18 – 0.36 De Ex Fe Ra
0.36 – 0.46 De,Ra Ex Fe
0.46 – 0.53 De,Ra Ex Fe

Superstruct 0.00 – 0.10 Ex De
0.10 – 0.18 De,Ex
0.18 – 0.24 De Ra
0.24 – 0.49 De Ex Fe Ra
0.49 – 0.49 De,Ex

Table 7
Fixed or optimized port assignment wiα and switching times of the process strategies.

12. Discretizations to MINLPs. In this section we provide AMPL
code for two discretized variants of the control problems from Sections 3
and 4 as an illustration of the discretization of MIOCPs to MINLPs. More
examples will be collected in the future on http://mintoc.de.

12.1. General AMPL code. In Listings 1 and 2 we provide two AMPL
input files that can be included for MIOCPs with one binary control w(t).

Listing 1
Generic settings AMPL model file to be included

param T > 0 ; # End time
param nt > 0 ; # Number of d i s c r e t i z a t i on points in time
param nu > 0 ; # Number of contro l d i s c r e t i z a t i o n points
param nx > 0 ; # Dimension of d i f f e r e n t i a l s t a t e vector
param ntperu > 0 ; # nt / nu
set I := 0 . . nt ;
set U:= 0 . . nu−1;
param uidx { I } ; param f ix w; param f ix w;

var w {U} >= 0 , <= 1 binary ; # contro l funct ion
var dt {U} >= 0 , <= T; # stage l eng th vector

Listing 2
Generic settings AMPL data file to be included

i f ( f ix w > 0 ) then { for { i in U} { f ix w[ i ] ; } }
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i f ( f ix dt > 0 ) then { for { i in U} { f ix dt [ i ] ; } }

# Set ind ices of con t ro l s corresponding to time points
for { i in 0 . . nu−1} {

for { j in 0 . . ntperu−1} { l e t uidx [ i ∗ntperu+j ] := i ; }
}
l e t uidx [ nt ] := nu−1;

12.2. Lotka Volterra Fishing Problem. The AMPL code in List-
ings 3 and 4 shows a discretization of the problem(4.1) with piecewise
constant controls on an equidistant grid of length T/nu and with an im-
plicit Euler method. Note that for other MIOCPs, especially for unstable
ones as in Section 7, more advanced integration methods such as Backward
Differentiation Formulae need to be applied.

Listing 3
AMPL model file for Lotka Volterra Fishing Problem

var x { I , 1 . . nx} >= 0 ;
param c1 > 0 ; param c2 > 0 ; param r e f 1 > 0 ; param r e f 2 > 0 ;

minimize Deviat ion :
0 .5 ∗ ( dt [ 0 ] /ntperu ) ∗ ( ( x [0 ,1 ]− r e f 1 )ˆ2 + (x [0 ,2]− r e f 2 )ˆ2 )
+ 0 .5 ∗ ( dt [ nu−1]/ntperu ) ∗ ( ( x [ nt ,1]− r e f 1 )ˆ2 + (x [ nt ,2]− r e f 2 )ˆ2)
+ sum { i in I d i f f {0 , nt} } ( ( dt [ uidx [ i ] ] /ntperu ) ∗

( ( x [ i , 1 ] − r e f 1 )ˆ2 + (x [ i , 2 ] − r e f 2 )ˆ2 ) ) ;

subj to ODE DISC 1 { i in I d i f f {0}} :
x [ i , 1 ] = x [ i −1 ,1] + ( dt [ uidx [ i ] ] /ntperu ) ∗

( x [ i , 1 ] − x [ i , 1 ] ∗x [ i , 2 ] − x [ i , 1 ] ∗c1∗w[ uidx [ i ] ] ) ;

subj to ODE DISC 2 { i in I d i f f {0}} :
x [ i , 2 ] = x [ i −1 ,2] + ( dt [ uidx [ i ] ] /ntperu ) ∗

( − x [ i , 2 ] + x [ i , 1 ] ∗x [ i , 2 ] − x [ i , 2 ] ∗c2∗w[ uidx [ i ] ] ) ;

subj to o v e r a l l s tage l ength :
sum { i in U} dt [ i ] = T;

Listing 4
AMPL dat file for Lotka Volterra Fishing Problem

# Algorithmic parameters
param ntperu := 100 ; param nu := 100 ; param nt := 10000;
param nx := 2 ; param f ix w := 0 ; param f ix dt := 1 ;

# Problem parameters
param T := 1 2 . 0 ; param c1 := 0 . 4 ; param c2 := 0 . 2 ;
param r e f 1 := 1 . 0 ; param r e f 2 := 1 . 0 ;

# In i t i a l va lues d i f f e r e n t i a l s t a t e s
l e t x [ 0 , 1 ] := 0 . 5 ; l e t x [ 0 , 2 ] := 0 . 7 ;
f ix x [ 0 , 1 ] ; f ix x [ 0 , 2 ] ;

# In i t i a l va lues contro l
l e t { i in U} w[ i ] := 0 . 0 ;
for { i in 0 . . ( nu−1) / 2} { l e t w[ i ∗ 2 ] := 1 . 0 ; }
l e t { i in U} dt [ i ] := T / nu ;

Note that the constraint overall stage length is only necessary,
when the value for fix dt is zero, a switching time optimization.

The solution calculated by Bonmin (subversion revision number 1453,
default settings, 3 GHz, Linux 2.6.28-13-generic, with ASL(20081205)) has
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an objective function value of Φ = 1.34434, while the optimum of the
relaxation is Φ = 1.3423368. Bonmin needs 35301 iterations and 2741 nodes
(4899.97 seconds). The intervals on the equidistant grid on which w(t) = 1
holds, counting from 0 to 99, are 20–32, 34, 36, 38, 40, 44, 53.

12.3. F-8 flight control. The main difficulty in calculating a time-
optimal solution for the problem in Section 3 is the determination of the
correct switching structure and of the switching points. If we want to
formulate a MINLP, we have to slightly modify this problem. Our aim is
not a minimization of the overall time, but now we want to get as close
as possible to the origin (0, 0, 0) in a prespecified time tf = 3.78086 on an
equidistant time grid. As this time grid is not a superset of the one used
for the time-optimal solution in Section 3, one can not expect to reach the
target state exactly. Listings 5 and 6 show the AMPL code.

Listing 5
AMPL model file for F-8 Flight Control Problem

var x { I , 1 . . nx } ;
param x i > 0 ;

minimize Deviat ion : sum { i in 1 . . 3} x [ nt , i ] ∗x [ nt , i ] ;

subj to ODE DISC 1 { i in I d i f f {0}} :
x [ i , 1 ] = x [ i −1 ,1] + ( dt [ uidx [ i ] ] /ntperu ) ∗ (
− 0 .877∗x [ i , 1 ] + x [ i , 3 ] − 0 .088∗x [ i , 1 ] ∗x [ i , 3 ] + 0 .47∗x [ i , 1 ] ∗x [ i , 1 ]
− 0 .019∗x [ i , 2 ] ∗x [ i , 2 ]
− x [ i , 1 ] ∗x [ i , 1 ] ∗x [ i , 3 ] + 3.846∗x [ i , 1 ] ∗x [ i , 1 ] ∗x [ i , 1 ]
+ 0.215∗x i − 0 .28∗x [ i , 1 ] ∗x [ i , 1 ] ∗x i + 0.47∗x [ i , 1 ] ∗x i ˆ2 − 0 .63∗x i ˆ2
− 2∗w[ uidx [ i ] ] ∗ (0 . 215∗x i − 0 .28∗x [ i , 1 ] ∗x [ i , 1 ] ∗x i − 0 .63∗x i ˆ 3 ) ) ;

subj to ODE DISC 2 { i in I d i f f {0}} :
x [ i , 2 ] = x [ i −1 ,2] + ( dt [ uidx [ i ] ] /ntperu ) ∗ x [ i , 3 ] ;

subj to ODE DISC 3 { i in I d i f f {0}} :
x [ i , 3 ] = x [ i −1 ,3] + ( dt [ uidx [ i ] ] /ntperu ) ∗ (
− 4 .208∗x [ i , 1 ] − 0 .396∗x [ i , 3 ] − 0 .47∗x [ i , 1 ] ∗x [ i , 1 ]
− 3 .564∗x [ i , 1 ] ∗x [ i , 1 ] ∗x [ i , 1 ]
+ 20.967∗x i − 6 .265∗x [ i , 1 ] ∗x [ i , 1 ] ∗x i + 46∗x [ i , 1 ] ∗x i ˆ2 − 61 .4∗x i ˆ3
− 2∗w[ uidx [ i ] ] ∗ (20 .967∗x i − 6 .265∗x [ i , 1 ] ∗x [ i , 1 ] ∗x i − 61 .4∗x i ˆ 3 ) ) ;

Listing 6
AMPL dat file for F-8 Flight Control Problem

# Parameters
param ntperu := 500 ; param nu := 60 ; param nt := 30000;
param nx := 3 ; param f ix w := 0 ; param f ix dt := 1 ;
param x i := 0 . 05236 ; param T := 8 ;

# In i t i a l va lues d i f f e r e n t i a l s t a t e s
l e t x [ 0 , 1 ] := 0 . 46 55 ;
l e t x [ 0 , 2 ] := 0 . 0 ;
l e t x [ 0 , 3 ] := 0 . 0 ;
for { i in 1 . . 3} { f ix x [ 0 , i ] ; }

# In i t i a l va lues contro l
l e t { i in U} w[ i ] := 0 . 0 ;
for { i in 0 . . ( nu−1) / 2} { l e t w[ i ∗ 2 ] := 1 . 0 ; }
l e t { i in U} dt [ i ] := 3.78086 / nu ;

The solution calculated by Bonmin has an objective function value of
Φ = 0.023405, while the optimum of the relaxation is Φ = 0.023079. Bonmin
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needs 85702 iterations and 7031 nodes (64282 seconds). The intervals on
the equidistant grid on which w(t) = 1 holds, counting from 0 to 59, are 0,
1, 31, 32, 42, 52, and 54. This optimal solution is shown in Figure 10.

Fig. 10. Trajectories for the discretized F-8 flight control problem. Left: optimal
integer control. Right: corresponding differential states.

13. Conclusions and outlook. We presented a collection of mixed-
integer optimal control problem descriptions. These descriptions comprise
details on the model and a specific instance of control objective, con-
straints, parameters, and initial values that yield well-posed optimization
problems that allow for reproducibility and comparison of solutions. Fur-
thermore, specific discretizations in time and space are applied with the
intention to supply benchmark problems also for MINLP algorithm devel-
opers. The descriptions are complemented by references and best known
solutions. All problem formulations are or will be available for download
at http://mintoc.de in a suited format, such as optimica or AMPL.

The author hopes to achieve at least two things. First, to provide a
benchmark library that will be of use for both MIOC and MINLP algorithm
developers. Second, to motivate others to contribute to the extension of
this library. For example, challenging and well-posed instances from water
or gas networks [11, 44], traffic flow [30, 21], supply chain networks [26],
submarine control [51], distributed autonomous systems [1], and chemical
engineering [34, 60] would be highly interesting for the community.
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http://mintoc.de by Alexander Buchner, Michael Engelhart, Christian
Kirches, and Martin Schlüter are gratefully acknowledged.
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[26] S. Göttlich, M. Herty, C. Kirchner, and A. Klar, Optimal control for con-
tinuous supply network models, Networks and Heterogenous Media, 1 (2007),
pp. 675–688.

[27] N. Gould, D. Orban, and P. Toint, CUTEr testing environment for optimiza-
tion and linear algebra solvers. http://cuter.rl.ac.uk/cuter-www/.

[28] I. Grossmann, Review of nonlinear mixed-integer and disjunctive programming
techniques, Optimization and Engineering, 3 (2002), pp. 227–252.

[29] I. Grossmann, P. Aguirre, and M. Barttfeld, Optimal synthesis of complex
distillation columns using rigorous models, Computers and Chemical Engi-
neering, 29 (2005), pp. 1203–1215.

[30] M. Gugat, M. Herty, A. Klar, and G. Leugering, Optimal control for traffic
flow networks, Journal of Optimization Theory and Applications, 126 (2005),
pp. 589–616.

[31] T. O. Inc., Propt - matlab optimal control software (dae, ode).
http://tomdyn.com/.

[32] A. Izmailov and M. Solodov, Mathematical programs with vanishing constraints:
Optimality conditions, sensitivity, and a relaxation method, Journal of Opti-
mization Theory and Applications, 142 (2009), pp. 501–532.

[33] Y. Kawajiri and L. Biegler, A nonlinear programming superstructure for opti-
mal dynamic operations of simulated moving bed processes, I&EC Research,
45 (2006), pp. 8503–8513.

[34] , Optimization strategies for Simulated Moving Bed and PowerFeed pro-
cesses, AIChE Journal, 52 (2006), pp. 1343–1350.

[35] C. Kaya and J. Noakes, A computational method for time-optimal control, Jour-
nal of Optimization Theory and Applications, 117 (2003), pp. 69–92.

[36] C. Kirches, S. Sager, H. Bock, and J. Schlöder, Time-optimal control of auto-
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