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Summary. We extend recent work on nonlinear optimal control problems with
integer restrictions on some of the control functions (mixed-integer optimal control
problems, MIOCP). We improve a theorem [25] that states that the solution of a
relaxed and convexified problem can be approximated with arbitrary precision by a
solution fulfilling the integer requirements. Unlike in previous publications the new
proof avoids the usage of the Krein-Milman theorem, which is undesirable as it only
states the existence of a solution that may switch infinitely often.

We present a constructive way to obtain an integer solution with a guaranteed
bound on the performance loss in polynomial time. We prove that this bound de-
pends linearly on the control discretization grid. A numerical benchmark example
illustrates the procedure.

As a byproduct, we obtain an estimate of the Hausdorff distance between reach-
able sets. We improve the approximation order to linear grid size h instead of the
previously known result with order

√
h [14]. We are able to include a Special Or-

dered Set condition which will allow for a transfer of the results to a more general,
multi-dimensional and nonlinear case compared to the Theorems in [20].

1 Introduction

The main motivation for this paper are mixed-integer optimal control prob-
lems (MIOCPs) in ordinary differential equations (ODE) of the following form.
We want to minimize a Mayer term

min
x,u,v

Φ(x(tf)) (1a)

over the differential states x(·) and the control functions (u, v)(·) subject to
the nx-dimensional ODE system

ẋ(t) = f(t, x(t), u(t), v(t)), t ∈ [0, tf], (1b)

fixed initial values
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x(0) = x0, (1c)

a feasible domain for the measurable controls

u(t) ∈ U , t ∈ [0, tf], (1d)

and integrality of the control function v(·)

v(t) ∈ Ω := {v1, v2, . . . , vnω}, t ∈ [0, tf]. (1e)

Additionally, nonlinear path and control constraints of the form

0 ≤ c(x(t), u∗(t)), t ∈ [0, tf] (1f)

may need to be considered. The main focus of this paper lies on the control
function v(·) that needs to take a value vi from a finite set Ω ⊂ R

nv at all
times. While the formulation is quite generic with respect to the integer control
function (e.g., switched systems are included as a special case), we focus on
a rather specific control problem formulation for the sake of the argument. A
discussion of extensions to include different objective functionals, multi-point
constraints, algebraic variables, time-independent integer control values, and
more general hybrid systems can be found in [23, 25]. In the following all
functions are assumed to be sufficiently often continuously differentiable, and
‖ · ‖ will denote the maximum norm ‖ · ‖∞.

We will also use the term integer control for (1e), while binary control
refers to

ω(t) ∈ {0, 1}nω . (2a)

We use the expression relaxed, whenever a restriction v(·) ∈ Ω is relaxed to
a convex control set with a recently proposed convex relaxation [22] that we
define as follows. For every element vi of Ω a binary control function ωi(·) is
introduced. The ODE (1b) can then be written as

ẋ(t) =

nω∑

i=1

f(t, x(t), u(t), vi) ωi(t), t ∈ [0, tf]. (2b)

If we impose the Special Ordered Set of Type 1 (SOS1) condition

nω∑

i=1

ωi(t) = 1, t ∈ [0, tf], (2c)

there is obviously a bijection between every feasible integer function v(·) ∈ Ω

and an appropriately chosen binary function ω(·) ∈ {0, 1}nω , compare Section
4. The relaxation of ω(t) ∈ {0, 1}nω is given by ω(t) ∈ [0, 1]nω . We will
use the expression outer convexification or partial outer convexification for
the formulation (2b,2c). Note that the resulting problem is only convex if
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f(·) is convex also in the arguments x(·) and u(·). Hence, the expression
convexification only addresses the integer component.

Typical examples for the problem class (1) are the choice of gears in trans-
port, [28, 12, 24, 25], or processes involving on-off valves, [15, 4, 19]. An open
online benchmark library of MIOCPs is available, [21].
MIOC approaches in the literature. MIOCPs include features related
to different mathematical disciplines. Hence, it is not surprising that very
different approaches have been proposed to analyze and solve them, rang-
ing from theoretical discussions based on variations of the maximum princi-
ple to mixed-integer linear programming on piecewise linearly approximated
discretizations of the control problem. A literature review including refer-
ences to hybrid maximum principles, convexification in the context of global
optimization, mixed-integer nonlinear programming (MINLP), piecewise lin-
earizations, and to disjunctive programming can be found in [25] and in the
survey article [23].

Interesting recent developments include problem-specific reformulations
and decompositions, as in [5] for drinking water networks. The authors re-
formulate the MIOCP as a large-scale, structured nonlinear program (NLP)
and solve a small scale integer program on a second level to approximate the
calculated continuous aggregated output of all pumps in a water works.

Powerful commercial MILP solvers and advances in MINLP solvers, [1, 3],
make the usage of general purpose MILP/MINLP solvers more and more
attractive. The MIOCP may be discretized by a direct method and results in
MILP, e.g., [19], or a MINLP, e.g., [10], with a finite number of mixed-integer
variables. However, due to the high complexity of MINLPs and the increase
in the number of integer variables, whenever the discretization grid is refined,
this only works for small problems with limited time horizons, see [29] for a
discussion.

The approach to optimize the time-points for a given switching structure
has been proposed by several authors, e.g., [16, 12, 25]. It is well known that
such a formulation introduces nonconvexities (see, e.g., an example in [22]).
Hence, this approach should be combined with a proper initialization of the
switching points and the calculation of an accurate lower bound, as pointed
out in [25]. Another interesting technique is the method of Monotone Struc-
tural Evolution proposed in [27]. This method uses knowledge from the max-
imum principle to obtain criteria for an adaptive refinement of discretization
structures, unfortunately at the price of having to solve the adjoint equations.

All named approaches to MIOCPs and in particular to the treatment of in-
teger control functions are limited in their applicability. Indirect methods are
not appropriate for generic large-scale optimal control problems with under-
lying nonlinear differential algebraic equation systems, and have problems to
deal with path-constrained arcs. It is important to stress, however, that func-
tional analysis yields important insight into solution structures. Reformulation
into switching time optimization problems suffer from the intrinsic nonconvex-
ity of this approach. Heuristic approaches, such as rounding or penalization
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of non-integrality yield solutions with the strong property of integrality, but
cannot provide exact estimates of the performance loss. And generic, possi-
bly global, integer programming methods applied to a discretization of the
control problem suffer from excessive computing times. Especially brute-force
approaches that apply techniques like Nonlinear Branch and Bound or Outer
Approximation on models that have been discretized in time, will fail because
of the high number of integer variables. This high number again is necessary
as an adequate representation of the dynamics of the processes requires a fine
discretization in the control functions, see [29].
Relation to own work. In [25] a different path was proposed. Based on
insight from functional analysis, the exact lower bound for the nonlinear in-
teger control problem is determined by solving a relaxed, continuous control
problem. Integer solutions are obtained by a combination of grid adaptivity
and the Sum Up Rounding Strategy described later on in this paper.

We extend this work in two ways. First, a theorem stating that the solution
of a relaxed and convexified problem can be approximated arbitrarily close
by a solution fulfilling the integer requirements is improved. Unlike before,
a new short and self-contained proof avoids the usage of the Krein-Milman
theorem, which is undesirable as it only states the existence of a solution that
may switch infinitely often.

Second, the Sum Up Rounding strategy to obtain integer controls from
continuous, relaxed ones, is analyzed. Previously, it has been described as a
heuristic, similar to rounding methods in integer programming. However, it
is used in the above proof. It yields a constructive way to obtain an inte-
ger solution with a guaranteed bound on the performance loss in polynomial
time. We prove that this tolerance depends on the control discretization grid.
The rounded solution will be arbitrarily close to the relaxed one, if only the
underlying grid is chosen fine enough.

The complete algorithm to solve MIOCPs has been described in the survey
article [23]. In there, the most important part of the proof for the algorithm’s
termination in a finite number of steps is missing, however. To fill this gap is
the main contribution of this paper.
Related work in error estimation for switched systems. In his PhD
thesis [14] Gerhard Häckl estimated the Hausdorff distance between the reach-
able sets cl(R+(x0)) of a continuous time system and cl(R+(h, x0)) of a dis-
crete time system with piecewise constant controls and grid size h. Parts of
this dissertation entered in the book [7], the convergence result and approxi-
mation order are discussed in Section C.1. In comparison our results show that
the approximation order is of order h instead of a constant multiple of

√
h as

claimed in [14, Corollary 2.4.8]. Also our estimation does hold for all values of
h, and not only as h → 0. The reason seems to be that Häckl and coworkers
do not make use of the Sum Up Rounding strategy which is needed for the
better approximation order. Also the extension from control-affine systems to
nonlinear ones is not discussed.
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A related result on error bounds has recently been obtained independently
of this work by [20], building on work of [8, 13, 30, 31]. The authors give an
upper bound of order h on the Hausdorff distance between the reachable set
of relaxed controls and controls that are restricted to the space of piecewise
constant functions that may only take the values 0 and 1 on a finite time
grid. The mathematical approach is based on differential inclusions and Lie
brackets. They use the Sum Up Rounding [22] strategy as well within their
proof. Their study is restricted to the one-dimensional linear case, while we
consider integer controls in arbitrary dimension and allow for nonlinearities.

To our knowledge, the approximation order h was first postulated in [31],
for a locally Lipschitz continuous right-hand side. Veliov writes: “However,
the author was able so far to prove this only in some special cases and the
problem is still open.” We will refer to this as “Veliov’s conjecture” in the
following.

More remotely related is the question of the maximum number of switches
for equivalent reachable sets. For a special case of a switched system it is
shown in [26] that 4 switches are enough. A counterexample based on Fuller’s
phenomenon is given in [18].
Outline of the paper. We will first consider the case where v(·) = ω(·) en-
ters linearly in the optimization problem. This is the case for which theoretical
results can be obtained, and we see later on that the nonlinearity with respect
to the integer control function will vanish by a partial outer convexification
using the reformulation (2b). We show that for any feasible relaxed solution
we obtain a binary solution by the presented rounding strategy that is feasible
and reaches the objective function value, both up to a given tolerance that
depends on the control discretization grid size.

For this we will deduce theoretical results concerning the difference be-
tween differential states that are obtained by integration with different con-
trol functions in Section 2. In Section 3 we will present the rounding strategy
and give an upper bound on the difference between the integral over the re-
laxed and the rounded control. In Section 5 we will bring together the results
and connect them to the optimization problem. In Section 4 we extend the
results to the case in which the integer function v(·) enters in a nonlinear
way. The partial outer convexification leads to additional Special Ordered Set
constraints on the resulting binary control functions ω(·) that we take into
account in an extended Sum Up Rounding Strategy. In Section 6 we investi-
gate a benchmark example to illustrate the procedure. We sum up the results
in Section 7.

2 Approximating differential states

We want to show how the difference of the integrals of two differential states
depends on the difference of the integrals of their corresponding control func-
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tions. Before we come to the main theorem of this section, we need the fol-
lowing lemma that can also be found, e.g., in [11, Lemma 1.3, page 4].

Lemma 1 (A variant of the Gronwall Lemma) Let [t0, tf] be an inter-
val and w, z : [t0, tf] 7→ R real-valued integrable functions. If for constant
L ≥ 0 it holds for t ∈ [t0, tf] almost everywhere that

w(t) ≤ z(t) + L

∫ t

t0

w(τ) dτ

then also

w(t) ≤ z(t) + L

∫ t

t0

eL(t−τ)z(τ) dτ

for t ∈ [t0, tf] almost everywhere. If z(·) in addition belongs to L∞([t0, tf],R)
then it holds

w(t) ≤ ‖ z(·) ‖∞ eL(t−t0)

for t ∈ [t0, tf] almost everywhere.

Proof. According to the assumption we may write

w(t) = a(t) + z(t) + δ(t) (3)

with the absolutely continuous function

a(t) := L

∫ t

t0

w(τ) dτ (4)

and a non-positive function δ(·) ∈ L1([t0, tf],R). Using (3) in (4) yields

a(t) = L

∫ t

t0

a(τ) dτ + L

∫ t

t0

z(τ) + δ(τ) dτ.

Hence, a(·) solves the inhomogeneous linear differential equation

da

dt
(t) = La(t) + L(z(t) + δ(t))

for t ∈ [t0, tf] almost everywhere and initial value a(t0) = 0. The well-known
solution formula for linear differential equations yields

a(t) = L

∫ t

t0

eL(t−τ) (z(τ) + δ(τ)) dτ

respectively
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w(t) = z(t) + δ(t) + L

∫ t

t0

eL(t−τ) (z(τ) + δ(τ)) dτ.

Since δ(t) ≤ 0 the first assertion holds. If z(·) is essentially bounded we find

w(t) ≤ ‖ z(·) ‖
(

1 + L

∫ t

t0

eL(t−τ) dτ

)

= ‖ z(·) ‖ eL(t−t0),

completing the proof.
Assume now we are given an initial value problem that is of the form

ẋ(t) = A(t, x(t)) α(t), x(0) = x0. (5)

Here A(t, x(t)) is a matrix in R
nx×nω with entries depending on t and x(t). We

assume in the following that the function A(·) is differentiable with respect
to time and fulfills certain requirements with respect to its argument x. Note
that we leave away a term independent of α(·), as it may be included easily
by fixing one additional component of α to 1. The following theorem states
how the difference of solutions to this initial value problem depends on the
integrated difference between control functions and the difference between the
initial values.

Theorem 2 Let x(·) and y(·) be solutions of the initial value problems

ẋ(t) = A(t, x(t)) · α(t), x(0) = x0, (6a)

ẏ(t) = A(t, y(t)) · ω(t), y(0) = y0, (6b)

with t ∈ [0, tf], for given measurable functions α, ω : [0, tf] → [0, 1]nω and a
differentiable A : Rnx+1 7→ R

nx×nω . If positive numbers C,L ∈ R
+ exist such

that for t ∈ [0, tf] almost everywhere it holds that

∥
∥
∥
∥

d

dt
A(t, x(t))

∥
∥
∥
∥
≤ C, (6c)

‖ A(t, y(t))−A(t, x(t)) ‖ ≤ L ‖ y(t)− x(t) ‖ , (6d)

and A(·, x(·)) is essentially bounded by M ∈ R
+ on [0, tf] , and it exists ǫ ∈ R

+

such that for all t ∈ [0, tf]

∥
∥
∥
∥

∫ t

0

α(τ) − ω(τ) dτ

∥
∥
∥
∥
≤ ǫ (6e)

then it also holds

‖ y(t)− x(t) ‖ ≤ (‖ x0 − y0 ‖+ (M + Ct)ǫ) eLt (6f)

for all t ∈ [0, tf].
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Proof. Because both α and ω map to [0, 1]nω we have

‖ α(t) ‖ ≤ 1, ‖ ω(t) ‖ ≤ 1 (7)

for all t ∈ [0, tf]. As ω and α are measurable and bounded functions, so is

∆ω := α − ω. We define ∆a as ∆a(t) :=
∫ t

0 ∆ω(τ) dτ . Note that it holds

∆a(0) =
∫ 0

0
∆ω(τ) dτ = 0 and ‖ ∆a(t) ‖ ≤ ǫ. Because of (6a,6b) we can write

x(t) = x0 +

∫ t

0

A(τ, x(τ)) α(τ) dτ, y(t) = y0 +

∫ t

0

A(τ, y(τ)) ω(τ) dτ

and obtain

‖ x(t)− y(t) ‖ ≤ ‖ x0 − y0 ‖+
∥
∥
∥
∥

∫ t

0

A(τ, x(τ)) α(τ) −A(τ, y(τ)) ω(τ) dτ

∥
∥
∥
∥

≤ ‖ x0 − y0 ‖+
∥
∥
∥
∥

∫ t

0

A(τ, x(τ)) ω(τ) −A(τ, y(τ)) ω(τ) dτ

∥
∥
∥
∥

+

∥
∥
∥
∥

∫ t

0

A(τ, x(τ)) α(τ) −A(τ, x(τ)) ω(τ) dτ

∥
∥
∥
∥

= ‖ x0 − y0 ‖+
∥
∥
∥
∥

∫ t

0

(A(τ, x(τ)) −A(τ, y(τ))) ω(τ) dτ

∥
∥
∥
∥

+

∥
∥
∥
∥

∫ t

0

A(τ, x(τ)) ∆ω(τ) dτ

∥
∥
∥
∥

= ‖ x0 − y0 ‖+
∥
∥
∥
∥

∫ t

0

(A(τ, x(τ)) −A(τ, y(τ))) ω(τ) dτ

∥
∥
∥
∥

+

∥
∥
∥
∥
A(t, x(t))∆a(t) −

∫ t

0

d

dτ
A(τ, x(τ)) ∆a(τ) dτ

∥
∥
∥
∥

≤ ‖ x0 − y0 ‖+ L

∫ t

0

‖ x(τ) − y(τ) ‖ ‖ ω(τ) ‖ dτ

+ ‖ A(t, x(t)) ‖ ǫ+
∫ t

0

∥
∥
∥
∥

d

dt
A(τ, x(τ))

∥
∥
∥
∥
‖ ∆a(τ) ‖ dτ

≤ ‖ x0 − y0 ‖+ L

∫ t

0

‖ x(τ) − y(τ) ‖ dτ

+(‖ A(t, x(t)) ‖+ Ct)ǫ.

The functions

w(t) := ‖ x(t)− y(t) ‖ , z(t) := ‖ x0 − y0 ‖+ (‖ A(t, x(t)) ‖+ Ct)ǫ

are integrable and z(·) is in L∞([t0, tf],R). Applying Lemma 1 yields the claim

‖ y(t)− x(t) ‖ ≤ (‖ x0 − y0 ‖+ (M + Ct)ǫ) eLt

for all t ∈ [0, tf].
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Note that assumptions (6c) and (6d) do not require global constants, but
only for the two trajectories x(·) and y(·) under consideration. In our con-
text the initial values x0 and y0 will be identical. From the monotonicity
eLt ≤ eLtf it follows that Theorem 2 states that we have an upper bound
‖ y(t)− x(t) ‖ ≤ c · ǫ with constant c ≥ 0 on the difference between differen-
tial states that depends linearly on the integrated difference between the two
control functions. In the next section we will investigate this term closer.

3 Approximating the integral over the controls by Sum

Up Rounding

We consider given measurable functions αj : [0, tf] 7→ [0, 1] with j = 1 . . . nω

and a time grid 0 = t0 < t1 < · · · < tm = tf on which we want to approximate
the control α(·). We write ∆ti := ti+1 − ti and ∆t for the maximum distance
between two time points,

∆t := max
i=0...m−1

∆ti = max
i=0...m−1

{ti+1 − ti}. (8)

Let then a function ω(·) : [0, tf] 7→ {0, 1}nω be defined by

ωj(t) = pj,i, t ∈ [ti, ti+1) (9)

where for i = 0 . . .m− 1 the pj,i are binary values given by

pj,i =

{

1 if
∫ ti+1

0
αj(τ)dτ −∑i−1

k=0 pj,k∆tk ≥ 0.5∆ti
0 else

. (10)

See Figure 1 for an example. We have the following estimate on the integral
over the difference between the control functions α(·) and ω(·).

Theorem 3 Let a measurable function α : [0, tf] 7→ [0, 1]nω and a function
ω : [0, tf] 7→ {0, 1}nω defined by (9, 10) be given. Then it holds

∥
∥
∥
∥

∫ t

0

α(τ) − ω(τ) dτ

∥
∥
∥
∥
≤ 0.5 ∆t.

Proof. Let 0 ≤ r ≤ m−1 be the index such that tr ≤ t < tr+1. First observe
that maximum or minimum values of the integrals

∫ t

0

αj(τ) − ωj(τ) dτ =

∫ tr

0

αj(τ) − ωj(τ) dτ +

∫ t

tr

αj(τ) − pj,r dτ

are obtained on the time grid, as either αj(τ) ≤ pj,r or αj(τ) ≥ pj,r on
[tr, tr+1]. Therefore it suffices to show the claim for all t = tr. For r = 0 . . .m
we show by induction that
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∥
∥
∥
∥

∫ tr

0

α(τ) − ω(τ) dτ

∥
∥
∥
∥
= max

j

∣
∣
∣
∣
∣

∫ tr

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti

∣
∣
∣
∣
∣
≤ 0.5 ∆t. (11)

For r = 0 the claim follows trivially. So let us assume

max
j

∣
∣
∣
∣
∣

∫ tr

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti

∣
∣
∣
∣
∣
≤ 0.5 ∆t (12)

and show that also

max
j

∣
∣
∣
∣
∣

∫ tr+1

0

αj(τ)dτ −
r∑

i=0

pj,i∆ti

∣
∣
∣
∣
∣
≤ 0.5 ∆t.

For all j = 1, . . . , nω it holds that if pj,r = 1, then because of (10) we have

∫ tr+1

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti ≥ 0.5∆tr

and by adding −pj,r∆tr = −∆tr on both sides

∫ tr+1

0

αj(τ)dτ −
r∑

i=0

pj,i∆ti ≥ −0.5∆tr ≥ −0.5∆t.

By induction hypothesis we also have

∫ tr

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti

︸ ︷︷ ︸

≤0.5∆t

+

∫ tr+1

tr

αj(τ) − 1 dτ

︸ ︷︷ ︸

≤0

≤ 0.5∆t.

If pj,r = 0, then because of (10) we have

∫ tr+1

0

αj(τ)dτ −
r∑

i=0

pj,i∆ti =

∫ tr+1

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti

< 0.5∆tr ≤ 0.5∆t.

By induction hypothesis we also have

∫ tr

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti

︸ ︷︷ ︸

≥−0.5∆t

+

∫ tr+1

tr

αj(τ) dτ

︸ ︷︷ ︸

≥0

≥ −0.5∆t,

for all j = 1, . . . , nω, completing the proof.
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4 Extension to the nonlinear case

To apply the above results to the more general nonlinear case, we convexify
problem (1) with respect to the integer control functions v(·) as first suggested
in [22]. We replace (1b) and (1e) by the partially convexified right hand side
(2b) and the SOS1 constraint (2c). This Outer Convexification has shown
very efficient in practice [17]. It allows us to generate a tight relaxation of
the integer control problem - very similar as before for the affinely entering
binary controls, but with one important modification, namely an additional
linear constraint to ensure the controls form a Special Ordered Set (2c) at
each instant in time.

There is obviously a bijection v(t) = vi ↔ ωi(t) = 1 between solutions
of problems (1a,1b,1c,1d,1e,1f) and (1a,2b,1c,1d,2a,2c,1f), compare [22]. This
means that we can find a solution to the convexified problem that is affine
in ω(·) by applying the proposed Sum Up Rounding strategy to a solution of
its relaxation and then deduce the optimal solution to the nonlinear binary
problem (1) from it.

However, the Sum Up Rounding strategy (10) does not work for problems
with the additional Special Ordered Set property (2c), as can be seen by the
easy example of two functions with constant α1(t) = α2(t) = 0.5.

Remark 4 The SOS1 constraint (2c) can be used to eliminate one control,
e.g., ωnω

(·). One replaces

ωnω
(t) = 1−

nω−1∑

i=1

ωi(t)

for t ∈ [0, tf]. Constraint (2c) is then always fulfilled. However, now the con-
straint 0 ≤ ωnω

(t) ≤ 1 may be violated if the SUR strategy is applied (ex-
ample: α1(t) = α2(t) = 0.5 and α3(t) = 0, substitute α3). Furthermore, if
αi(t) < 0.5 for all i = 1 . . . nω − 1 then ωnω

will be (implicitly) rounded up,

even if ωnω
(t) = 1−∑nω−1

i=1 ωi(t) is small.
Substituting controls typically makes a difference concerning computational

efficiency and is an interesting aspect to study. Whereas in linear programming
this substitution is usually avoided to maintain sparsity, for control functions
there might be good reasons for a substitution. However, for our theoretical
considerations we do not consider this case separately.

Therefore we propose a different technique for functions that have to fulfill
this equality. Let us assume we are given a measurable function α(·) that
fulfills (2c). Again we define ω(·) via (9), but with pj,i given by

p̂j,i =

∫ ti+1

0

αj(τ)dτ −
i−1∑

k=0

pj,k∆tk (13a)

pj,i =

{
1 if p̂j,i ≥ p̂k,i ∀ k 6= j and j < k ∀ k : p̂j,i = p̂k,i
0 else

(13b)
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and not by (10). Again we have an estimation of the integral over α−ω that
depends on ∆t of the underlying grid, compare (8).

Theorem 5 Let a measurable function α : [0, tf] 7→ [0, 1]nω that fulfills equa-
tion (2c) and a function ω : [0, tf] 7→ {0, 1}nω defined by (9, 13) be given for
nω ≥ 2. Then it holds

∥
∥
∥
∥

∫ t

0

α(τ) − ω(τ) dτ

∥
∥
∥
∥
≤ (nω − 1) ∆t

and also ω(·) fulfills (2c).

Proof. Note that ω(t) fulfills the Special Ordered Set type one property (2c)
by construction, as exactly one entry is set to 1 and all others to 0. This is
important for the proof, because it implies

nω∑

j=1

∫ t

0

αj(τ)− ωj(τ) dτ =

∫ t

0

nω∑

j=1

(αj(τ) − ωj(τ)) dτ = 0 (14)

for all t ∈ [0, tf]. As above we can restrict our proof to the case that t = tr.
For the sake of notational simplicity we define

k := arg max
j=1...nω

∣
∣
∣
∣
∣

∫ tr

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti

∣
∣
∣
∣
∣
,

observing that
∫ tr

0
ωj(τ)) dτ =

∑r−1
i=0 pj,i∆ti. We assume that there exists an

r ∈ {0 . . .m} such that the claim does not hold, i.e.,
∣
∣
∣
∣
∣

∫ tr

0

αk(τ)dτ −
r−1∑

i=0

pk,i∆ti

∣
∣
∣
∣
∣
≥ (nω − 1) ∆t

and will contradict this assumption. We distinguish two cases. Let us first
assume that

∫ tr

0

αk(τ)dτ −
r−1∑

i=0

pk,i∆ti < −(nω − 1)∆t. (15)

Let î be the highest index for which the control k has been rounded up,

î := arg max
0≤i≤r−1

{i : pk,i = 1 and pk,l = 0 ∀ l : i < l ≤ r − 1}.

Note that î is well defined, as there must be at least two i such that pk,i = 1.
Then it holds by assumption (15)

î∑

i=0

pk,i∆ti =

r−1∑

i=0

pk,i∆ti >

∫ tr

0

αk(τ)dτ + (nω − 1)∆t

≥
∫ t

î+1

0

αk(τ)dτ + (nω − 1)∆t
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and as k had the maximum value on interval î,

∫ t
î+1

0

αj(τ)dτ −
î∑

i=0

pj,i∆ti < −(nω − 1)∆t

for all j = 1, . . . , nω. Summing up over all controls j yields

nω∑

j=1





∫ t
î+1

0

αj(τ)dτ −
î∑

i=0

pj,i∆ti



 < −
nω∑

j=1

(nω − 1)∆t

and because of (14) we have the contradiction 0 < nω − n2
ω.

Let us now assume that

∫ tr

0

αk(τ)dτ −
r−1∑

i=0

pk,i∆ti > (nω − 1)∆t. (16)

Because of (14) it holds

nω∑

1=j 6=k

(
∫ tr

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti

)

+

∫ tr

0

αk(τ)dτ −
r−1∑

i=0

pk,i∆ti = 0

and with assumption (16)

nω∑

1=j 6=k

(
∫ tr

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti

)

+ (nω − 1)∆t < 0.

We can write the left hand side as the sum of nω − 1 terms

∆t+

∫ tr

0

αj(τ)dτ −
r−1∑

i=0

pj,i∆ti.

Obviously at least one of them has to be negative, thus there exists an index
ĵ such that

∆t+

∫ tr

0

αĵ(τ)dτ −
r−1∑

i=0

pĵ,i∆ti < 0.

Let î be the highest index for which the control ĵ has been rounded up,

î := arg max
0≤i≤r−1

{i : pĵ,i = 1 and pĵ,l = 0 ∀ l : i < l ≤ r − 1}.

Note that î is well defined, as there must be at least two i such that pĵ,i = 1.
Then it holds
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∫ t
î+1

0

αĵ(τ)dτ −
î−1∑

i=0

pĵ,i∆ti ≤ ∆t+

∫ tr

0

αĵ(τ)dτ −
r−1∑

i=0

pĵ,i∆ti < 0

and with

ĵ = arg max
1≤j≤nω







∫ t
î+1

0

αj(τ)dτ −
î−1∑

i=0

pj,i∆ti







which must hold because of the rounding decision at time î we have

∫ t
î+1

0

αj(τ)dτ −
î∑

i=0

pj,i∆ti ≤
∫ t

î+1

0

αj(τ)dτ −
î−1∑

i=0

pj,i∆ti < 0

for all j = 1, . . . , nω in contradiction to (14).

5 Connection to the optimization problem

We connect the results to the optimization problem (1).

Corollary 6 Let (x, α, u∗)(·) be a feasible trajectory of the relaxed problem
(1c,1d,2b,2c) with the measurable function α : [0, tf] → [0, 1]nω replacing ω in
(2b,2c).

Consider the trajectory (y, ω, u∗)(·) which consists of a control ω(·) deter-
mined via (9, 13) on a given time grid from α(·) and differential states y(·)
that are obtained by solving the initial value problem (1c,2b).

Assume that constants C,L,M ∈ R
+ exist for the fixed measurable control

u∗ ∈ U and all vi ∈ Ω such that the function f(t, x(t), u∗(t), vi) be differen-
tiable with respect to time and it holds

∥
∥
∥
∥

d

dt
f(t, x(t), u∗(t), vi)

∥
∥
∥
∥
≤ C, (17)

∥
∥ f(t, y(t), u∗(t), vi)− f(t, x(t), u∗(t), vi)

∥
∥ ≤ L ‖ y(t)− x(t) ‖ (18)

for t ∈ [0, tf] almost everywhere and f(·, x((·), u∗(·), vi) is essentially bounded
by M . Then (y, ω, u∗)(·) is a feasible trajectory for (1c,1d,2b,2c) and it holds

‖ y(t)− x(t) ‖ ≤ ((M + Ct) c(nω) ∆t) eLt (19)

for all t ∈ [0, tf] with constant c(nω).

Proof. We define the function A : R
nx+1 7→ R

nx×nω as a matrix with
column i given by f(t, x, u∗, vi) for i = 1, . . . , nω. Here both u∗ and the feasible
integer controls vi are fixed. The ODE (1b) is then of the form (6a). Because
f(·) is assumed to be differentiable with respect to time, bounded and fulfills a
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Lipschitz condition, this holds for A(·) as well. All assumptions of Theorem 2
and of either Theorem 3 or 5 are fulfilled. The constant c(nω) is given by
c(nω) = nω − 1 if nω ≥ 2 and (2c) holds and c(nω) = 0.5, else.

The differentiability assumption on f(·) in Corollary 6 is quite strong, as it
implies that the optimal control u∗(·) must be differentiable as well. However,
this holds only almost everywhere, hence the important case of controls u∗

with finitely many discontinuities is included.

Remark 7 The important result of Corollary 6 is the linear convergence or-
der with respect to ∆t. However, also the constants may be interesting from a
practical point of view.

In Theorem 3 the estimation is sharp, as can be seen by investigating the
constant function α(·) = 0.5.

In Theorem 5 we think the constant (nω − 1) can be improved. Without
proof: Assume [0, tf] is partitioned in nω equidistant time intervals. The devi-
ation from the constructed control ω(·) and the control α(·) is maximal, when
the nω controls α(·) are piecewise constant functions defined as

αj(t) =

{
1

nω−i
j ≥ i

0 j < i
t ∈ [ti, ti+1], i = 0, . . . , nω − 1, j = 1, . . . , nω

Applying (9, 13) results in

pnω ,i =

{
0 i < nω − 1
1 i = nω − 1

The maximal deviation at time tnω−1 is then the harmonic number

nω−2∑

i=0

αnω
(ti) =

nω−2∑

i=0

1

nω − i
=

nω∑

i=2

1

i

which is approximately ln(nω).

Corollary 8 Let the assumptions and definitions of Corollary 6 hold. Assume
that the objective function Φ(·) in (1a) and all constraints ci(· · · ) in (1f) are
continuous functions. Then for any δ > 0 there exists a grid size ∆t such that

|Φ(x(tf))− Φ(y(tf))| ≤ δ, (20)

|ci(x(t), u∗(t))− ci(y(t), u
∗(t))| ≤ δ, i = 1, . . . , nc. (21)

Proof. Follows directly from the definition of continuity, eLt ≤ eLtf for all
t ∈ [0, tf], and (19).

Remark 9 For “first discretize, then optimize” methods that discretize α(·)
and u(·) by means of differentiable basis functions the assumptions of Corol-
lary 8 are fulfilled. In particular there are only finitely many discontinuities
in the optimal control u∗(·). The results can be transfered to more general
problems than (1). This is discussed in [25, 23].
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Remark 10 Note that Corollary 8 is not related to the issue of local or global
optima. In fact, it holds for all feasible trajectories (x, α, u), hence also for
globally and locally optimal trajectories. Naturally, the global lower bound for
the integer problem can only be obtained when the relaxed problem is solved to
global optimality, as discussed, e.g., in [6].

The motivation for the estimation (19) was to obtain the exact lower bound
for an optimal integer solution. But the result can also be interpreted in the
sense of the Hausdorff distance between reachability sets.

Definition 11 We define the Hausdorff distance between sets X and Y as

dH(X,Y ) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

.

The reachable set Y is defined as the set of all differential states z ∈ R
nx for

which a control function ω : [0, tf] 7→ {0, 1}nω exists such that (2c) holds and
for a given function u∗(·) and initial value x0 the solution y(·) of the ordinary
differential equation (2b, 1b) fulfills y(tf) = z. The set X is defined accordingly
by taking the convex hull of the feasible control values, α : [0, tf] 7→ [0, 1]nω .

Corollary 12 Let the assumptions of Corollary 6 hold. Then a positive con-
stant c exists such that

dH(X,Y ) ≤ c∆t.

Proof. [0, 1]nω is a relaxation of {0, 1}nω , hence Y ⊆ X . For any given
trajectory (x, u∗, α)(·) corresponding to a point in X , a trajectory (y, u∗, ω)(·)
can be found such that

‖ y(tf)− x(tf) ‖ ≤ c∆t,

as was shown in Corollary 6.
Corollary 12 improves the results in [14] in two ways. First it provides the
better order ∆t instead of

√
∆t. Secondly, it allows the inclusion of the SOS1

constraint (2c), which allows the application to more general functions that
are nonlinear in the control function v(·).

6 Numerical example

The Sum Up Rounding Strategy has been successfully applied to various ap-
plications by now. See [23] for a recent list, or [21] for an online description of
most of them. To illustrate theoretical properties and the effect of the round-
ing strategy we investigate an academic example. In the following we will
simplify notation by leaving the argument (t) away, where convenient.

We want to solve the following nonlinear MIOCP,
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min
x,v

x2(tf)

s.t. ẋ0 = − x0

sin(1)
sin(v1) + (x0 + x1) v

2
2 + (x0 − x1) v

3
3 ,

ẋ1 = (x0 + 2x1) v1 + (x0 − 2x1) v2 + (x0 + x1) v3

+ (x0x1 − x2) v
2
2 − (x0x1 − x2) v

3
2 ,

ẋ2 = x2
0 + x2

1,

x(0) = (0.5, 0.5, 0)T ,

x1 ≥ 0.4,

v ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(22)

with t ∈ [t0, tf] = [0, 1]. This problem can be relaxed by requiring

ω1, ω2, ω3 ∈ [0, 1],

3∑

i=1

ωi = 1

instead of
v ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

We will denote the solution of this relaxed problem with (xN, ωN) to stress the
nonlinear character. This relaxation naturally gives a lower bound, however
the gap between this bound and integer solutions may be quite large.

The tightest relaxation is obtained, if an outer convexification of the integer
components is applied. This results in the optimization problem

min
x,ω

x2(tf)

s.t. ẋ0 = −x0 ω1 + (x0 + x1) ω2 + (x0 − x1) ω3,

ẋ1 = (x0 + 2x1) ω1 + (x0 − 2x1) ω2 + (x0 + x1) ω3,

ẋ2 = x2
0 + x2

1,

x(0) = (0.5, 0.5, 0)T ,

x1 ≥ 0.4,

ωi ∈ {0, 1},
3∑

i=1

ωi = 1

(23)

with t ∈ [t0, tf] = [0, 1]. Note that this problem is (by construction) identical
to the one investigated in [27] and originally in [9]. The only difference is the
path constraint

x1(t) ≥ 0.4 t ∈ [t0, tf] (24)

that has been added to make the problem more interesting for our pur-
poses. The relaxation of optimization problem (23) is obtained by replacing
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ωi ∈ {0, 1} by its convex hull ωi ∈ [0, 1]. We will denote the solution of this
relaxation by (xR, ωR) and the solution obtained with Sum Up Rounding by
(xSUR, ωSUR).

We solve all relaxed problems using the direct multiple shooting [2] based
software package MUSCOD-II for different equidistant control discretization
intervals. Figure 1 shows trajectories (xN, ωN) as the solution of the relaxed
nonlinear problem, (xR, ωR) as the solution of the relaxed convexified problem,
and (xSUR, ωSUR) of the Sum Up Rounding solution obtained from ωR. All
depicted solutions are based on a control discretization with 80 equidistant
time intervals.

In Table 1 objective function and infeasibility values for different grid sizes
are given. The number of equidistant intervals m listed in the first column
determines the interval length ∆t as tf = 1 divided by m. The second and
third columns show the objective function values of the relaxations of (22)
and (23), denoted by xN

2 (tf) and xR
2 (tf), respectively.

The fourth column shows the objective function value xSUR
2 (tf) obtained

by applying the Sum Up Rounding strategy (9, 13) to the relaxed solution
ωR. The fifth column “infeasibility” contains the norm of the constraint vio-
lation of xSUR(·), which is the norm of the discretized path constraint vector
corresponding to constraint (24).

The relaxed problems are only solved until a certain criterion on the
progress in objective function values is fulfilled, in our case at m = 80. For all
finer discretizations this solution is used for the SUR strategy (9, 13) in the
interest of comparability of the objective function values. We define x∗

2(tf) to
be the value of xR

2 (tf) = 0.995569 for m = 80, as a sufficiently fine approxi-
mation of the infinite dimensional control problem. In the right-most column
we list the deviation of xSUR

2 (tf) from this value.
As can be observed, there is a linear dependence of both constraints and

objective function value on the control grid size, as stated by Corollary 8. The
deviation is not deterministic and especially for small m outliers are possible
within the range of the bounds, but the assymptotic behavior can be clearly
seen as m doubles from row to row. It can also be seen the gap between
xN
2 (tf) and the SUR integer solutions (which of course give the same objective

function value for problem (22) as for problem (23)) is large, whereas it goes
to zero with respect to xR

2 (tf).
Looking again at Figure 1 we would like to stress that the SUR strategy

needs to be applied to the solution of the relaxation of the (partially) convex-
ified problem (23) and not of (22). If we apply it to the latter for m = 80 the
objective function value would only be 1.108835 instead of 1.011600, and no
theoretical guarantee can be given.

The discretization has been bisected for illustrative purposes. In practice
more advanced adaptive schemes are used that neglect bang-bang arcs and
take the goal to obtain approximate integral values into account, see [22].
The computational effort is low compared to enumerative schemes, such as
Branch and Bound. In every step only a relaxed optimization problem has
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Fig. 1. Different trajectories for m = 80 equidistant control intervals. First row:
controls ωN

1 , ω
N
2 , ω

N
3 . Second row: states xN

0 , x
N
1 , x

N
2 as the solution of the relaxation

of problem (22). Third row: ωR
1 , ω

R
2 , ω

R
3 . Fourth row: xR

0 , x
R
1 , x

R
2 as the solution of

the relaxation of convexified problem (23). Fifth row: ωSUR
1 , ωSUR

2 , ωSUR
3 . Sixth row:

xSUR
0 , xSUR

1 , xSUR
2 as the Sum Up Rounding solution, identical for both problems

(22) and (23). Note the path-constrained arc for x1 ≥ 0.4 in row 4 at t ≈ [0.3, 0.5]
and the constraint violation in row 6.
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Table 1. Numerical results for Egerstedt example.

m xN
2 (tf) xR

2 (tf) xSUR
2 (tf) infeasibility xSUR

2 (tf)− x∗

2(tf)

10 0.782278 0.999869 1.120181 6.30E-02 0.124612

20 0.782219 0.997646 1.132580 3.72E-02 0.137011

40 0.782204 0.995621 1.028741 1.45E-02 0.033172

80 0.782200 0.995569 1.011600 6.49E-03 0.016031

160 - - 1.004031 3.26E-03 0.008462

320 - - 1.000119 1.75E-03 0.004550

640 - - 0.997933 8.19E-04 0.002364

1280 - - 0.996706 4.61E-04 0.001137

2560 - - 0.996154 2.03E-04 0.000585

to be solved. The rounding procedure is almost for free and then a simple
forward simulation has to be performed. The relaxed solution on a coarse grid
is used to initialize the optimization variables on the finer grid, leading to
fast convergence. An additional benefit of this approach is the fact that all
previously calculated solutions can be stored and compared a posteriori to
compare the trade off between frequent switching and a loss in the objective
function.

7 Conclusions

We presented theoretical results with applications in mixed-integer nonlinear
optimal control.

First, a novel proof was given that a trajectory with the strong property
of integer feasibility exists that approximates the optimal relaxed solution
arbitrarily close. Compared to previous studies it could be shown that a finite
number of switches suffices.

Second, the role of the Sum Up Rounding strategy to obtain integer con-
trols from continuous, relaxed ones, has been clarified. Previously, it has been
described as a heuristic, similar to rounding methods in integer programming.
We showed that it yields a constructive way to obtain an integer solution with
a guaranteed bound on the performance loss, depending on the control dis-
cretization grid.

Third, we obtain an estimate of the Hausdorff distance between reachable
sets. We improved previously known results in the sense that the approxi-
mation order is linear in the grid size ∆t instead of the previously known
result with order

√
∆t [14], that we are able to include an SOS1 condition

which allows for a transfer of the results to a more general, multi-dimensional
and nonlinear case compared to the Theorems in [14, 20]. Hence, we proved
Vladimir Veliov’s conjecture [31], however with the additional assumption of
differentiability.
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