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Abstract

In model-based nonlinear optimal control switching decisions that can be
optimized often play an important role. Prominent examples of such hybrid
systems are gear switches for transport vehicles or on/off valves in chemical
engineering. Optimization algorithms need to take the discrete nature of
the variables that model these switching decisions into account. Unnecessar-
ily, for many applications still an equidistant time discretization and either
rounding or standard mixed–integer solvers are used. In this article we sur-
vey recent progress in theoretical bounds, reformulations, and algorithms for
this problem class and show how process control can benefit from them. We
propose a comprehensive algorithm based on the solution of a sequence of
purely continuous problems and simulations, and provide a new and more
compact proof for its well-posedness. Instead of focusing on a particular ap-
plication, we classify different solution behaviors in the applications section.
We provide references to respective case studies with prototype character
and cite newly emerging benchmark libraries. We conclude by pointing out
future challenges for process control with switching decisions.
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1. Introduction

We are interested in model-based nonlinear optimal control including
switching decisions that are to be optimized together with continuous con-
trols. For the sake of readability, we proceed as follows. We focus on a spe-
cific, simple case of such a mixed–integer optimal control problem (MIOCP)
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in ordinary differential equations (ODE) of the following form. Later on, in
Section 7, we will discuss extensions to include different objective function-
als, multi-point constraints, algebraic variables, more general hybrid systems,
and the like. For now, we want to minimize a Mayer term

min
x,u,v

Φ(x(tf)) (1a)

over the differential states x(·) and the control functions (u, v)(·) subject to
the nx-dimensional ODE system

ẋ(t) = f(x(t), u(t), v(t)), t ∈ [0, tf], (1b)

fixed initial values

x(0) = x0, (1c)

a connected feasible domain for the continuous controls

u(t) ∈ U , t ∈ [0, tf], (1d)

and integrality of the control function v(·)

v(t) ∈ Ω := {v1, v2, . . . , vnω}, t ∈ [0, tf]. (1e)

The main focus of this paper lies on the control function v(·) that needs to
take a value vi from a finite set Ω ⊂ R

nv at all times. In the following all
functions are assumed to be sufficiently often continuously differentiable, and
‖ · ‖ will denote the maximum norm ‖ · ‖

∞
.

We will use the term integer control for (1e), while binary control refers to
the special case ω(t) ∈ {0, 1}nω . We use the expression relaxed, whenever a
restriction v(·) ∈ Ω is relaxed to a convex control set with a recently proposed
outer convex relaxation [32] that we define as follows. For every element vi

of Ω a binary control function ωi(·) is introduced. The ODE (1b) can then
be written as

ẋ(t) =
nω
∑

i=1

f(x(t), u(t), vi) ωi(t), t ∈ [0, tf]. (2)

If we impose the special ordered set type one condition

nω
∑

i=1

ωi(t) = 1, t ∈ [0, tf], (3)
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there is obviously a bijection between every feasible integer function v(·) ∈
Ω and an appropriately chosen binary function ω(·) ∈ {0, 1}nω , compare
Section 5.4. The relaxation of ω(t) ∈ {0, 1}nω is given by ω(t) ∈ [0, 1]nω .
The main focus of this paper lies on the control function v(·) that needs to
take a value vi ∈ Ω ⊂ R

nv. From another point of view, order and timing of
switching between the vi are to be determined.

Typical examples are the choice of gears in transport, [44], or processes
with on/off valve positioning instead of pumps, [34, 18]. Note that an equiv-
alent formulation that is sometimes used, especially in the hybrid systems
community, is to write (1b, 1e) as

ẋ(t) = f̃i(x(t), u(t)), t ∈ [0, tf], 1 ≤ i ≤ nω (4)

as the choice of a model i to use.
There are three generic approaches to solve model-based optimal control

problems, compare [5]. With its explicit approach, Dynamic Programming
seems to be suited for a treatment of integer variables, but suffers in general
from the so-called curse of dimensionality and is therefore not the method
of choice for generic large–scale optimal control problems with underlying
nonlinear differential (algebraic) equation systems. The same holds true for
indirect methods, also known as the first optimize, then discretize approach,
see Section 2. A main challenge stems from the complex intrinsic switching
of the adjoint variables in the case of path constraints. However, to our
knowledge the first MIOCPs ever were solved in the early eighties with this
approach, [7]. Also, hybrid maximum principles have become an active field
of research lately. Therefore we will present the basic ideas of Pontryagin’s
maximum principle and references in Section 2. The third generic approach,
direct methods and in particular all–at–once approaches, have become the
methods of choice for most practical problems, see [5]. We base most of
the reformulations and algorithms on direct algorithms, hence we give an
overview in Section 3.

Tackling generic problems of the form (1) is difficult because of the com-
bined nonlinear and discrete nature. Several algorithms are capable of pro-
ducing a sub-optimal solution with the strong property of integer feasibility.
For these approaches a bound on the performance loss is of utmost impor-
tance. This will be addressed in Section 4. We first consider the case of
linearly entering binary controls. In Sections 5.3 and 5.4 we will see how to
obtain an equivalent formulation of this control-affine structure for (1).
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Sections 5 and 6 list different approaches to overcome the intrinsic prob-
lem of direct approaches with integer variables, cumulating into a comprehen-
sive algorithm in Section 6.4. As stated before, in Section 7 generalizations
of the simple control problem (1) will be discussed. Instead of focusing on
a particular application, we classify different solution behaviors in Section 8.
We provide references to respective case studies with prototype character
and cite newly emerging benchmark libraries. We conclude by pointing out
future challenges for process control with switching decisions in Section 9.

2. Indirect approach to optimal control

The basic idea of indirect approaches is optimize, then discretize. In other
words, first necessary conditions for optimality are applied to the optimiza-
tion problem in function space, and in a second step the resulting bound-
ary value problem is solved by an adequate discretization, such as multiple
shooting. The necessary conditions for optimality are given by the famous
Pontryagin’s maximum principle. Assume we want to solve the following
optimal control problem.

min
x,w

Φ(x(tf))

subject to
ẋ(t) = f(x(t), w(t)), t ∈ [0, tf],
w(t) ∈ W, t ∈ [0, tf],
x(0) = x0,

(5)

with an arbitrary, essentially bounded feasible set W for control w(·). To
state the maximum principle we will need the concept of the Hamiltonian.

Definition 2.1. (Hamiltonian, adjoint states)
The Hamiltonian of optimal control problem (5) is given by

H(x(t), w(t), λ(t)) := λ(t)T f(x(t), w(t))

with variables λ : [t0, tf] → R
nx called adjoint variables. The end–point La-

grangian function ψ is defined as ψ(x(tf)) := Φ(x(tf)).

The maximum principle in its basic form, also sometimes referred to as min-
imum principle, goes back to the early fifties and the works of Hestenes,
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Boltyanskii, Gamkrelidze, and of course Pontryagin. Precursors of the max-
imum principle as well as of the Bellman equation can already be found in
Carathéodory’s book of 1935, compare [28] for details.

The maximum principle states the existence of adjoint variables λ∗(·)
that satisfy adjoint differential equations and transversality conditions. The
optimal control w∗(·) is characterized as an implicit function of the states
and the adjoint variables — a minimizer w∗(·) of problem (5) also minimizes
the Hamiltonian subject to additional constraints.

Theorem 2.2. (Maximum principle)
Let problem (5) have a feasible optimal solution w∗(·) with a system response
x∗(·). Then there exist adjoint variables λ∗(·) such that for t ∈ [0, tf] it holds
almost everywhere

ẋ∗(t) = Hλ(x
∗(t), w∗(t), λ∗(t)) = f(x∗(t), w∗(t)), (6a)

λ̇∗T (t) = −Hx(x
∗(t), w∗(t), λ∗(t)), (6b)

x∗(t0) = x0, (6c)

λ∗T (tf) = −ψx(x
∗(tf)), (6d)

w∗(t) = arg min
w∈W

H(x∗(t), w(t), λ∗(t)). (6e)

For a proof of the maximum principle and further references see, e.g., [9, 29].
The interesting part about the maximum principle is that the constraint
w(t) ∈ W has been transferred towards the inner minimization problem
(6e). This is done on purpose, so no assumptions need to be made on the
feasible control domain W. The maximum principle also applies to nonconvex
and disjoint sets W. Hence, if we write w(·) = (u, v)(·) and W = U × Ω,
the maximum principle also covers problem (1) and the inner minimization
problem (6e) reads as

(u∗, v∗)(t) = arg min
u∈U ,v∈Ω

H(x∗(t), u(t), v(t), λ∗(t)). (7)

For a disjoint set Ω of moderate size the pointwise minimization of (7) can
be performed by enumeration between the nω different choices, implemented
as switching functions that determine changes in the minimum. This ap-
proach, the Competing Hamiltonians approach, has to our knowledge first
been successfully applied to the optimization of operation of subway trains
with discrete acceleration stages in New York by Bock and Longman [7].
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Recently, additional work has been done on the formulation of more gen-
eral results, in particular the hybrid maximum principle, [42], and a hybrid
necessary principle, [15]. Furthermore, the proofs were simplified by making
a direct connection to the classical maximum principle, [13]. Based on hy-
brid maximum principles or extensions of Bellman’s equation approaches to
treat switched systems have been proposed that extend indirect methods or
dynamic programming, e.g., in [39, 1]. While the maximum principle and
knowledge about solution behavior keeps being important for analytical rea-
sons, see Section 8, direct methods have become the methods of choice for
larger control problems of practical relevance in ordinary differential equa-
tions. It is interesting to observe, however, that this might be different in the
case of partial differential equations (PDE). In the PDE constraint optimiza-
tion community the two approaches first optimize, then discretize and first
discretize, then optimize are still competing. One reasons for this is proba-
bly the fact that adjoints need to be determined for an efficient calculation
of derivatives, which involves a second discretization grid for the backward
solve. In higher dimensions the question which grid to choose becomes more
important and favors an indirect approach. Also there is a tendency to treat
spatial phenomena like shock waves rather in function space than by dis-
cretization, e.g., [12].

3. Direct approach to optimal control

The main idea of direct approaches is first discretize, then optimize. The
control problem in a function space is discretized by means of parametric
functions with local support, and then the resulting nonlinear program (NLP)
in finitely many optimization variables is solved. There are basically three
different approaches: single shooting, Bock’s direct multiple shooting, and
collocation. Details on these methods and how they relate to one another
can be found, e.g., in [5, 2].

There are important differences between the approaches, mainly in the
parameterization of the underlying differential equations and the respective
connections to the optimization algorithm by means of derivative informa-
tion. There are also good reasons why collocation and multiple shooting,
both dating back to the early eighties, [6, 8, 3], are most often superior to
the single shooting approach. However, all further algorithms and reformu-
lations yet to be presented can be equally applied to any one of the three.
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We restrict ourselves to a short presentation of the discretization of the
respective functions in time, common to all three methods. Generally, any
appropriate set of basis functions will do, e.g., splines or piecewise linear
functions, if they can be described by means of finitely many values that will
become the optimization variables. For the following it will be sufficient to
assume a piecewise constant discretization of the form

û(t, qu
i ) := qu

i , v̂(t, qv
i ) := qv

i , t ∈ [ti, ti+1] (8)

on an appropriate time grid 0 = t0 < t1 < . . . < tm = tf and with control
values qu

i ∈ R
nu and qv

i ∈ R
nv. The control space is hence reduced to functions

that can be written as in (8), depending on finitely many controls (qu, qv).
If present, also the path constraints c(·) ≥ 0 ∀ t ∈ [0, tf], compare Sec-

tion 7, are discretized on an appropriately chosen grid. From this discretiza-
tion and the (algorithm specific) parameterization of the differential states
results a highly structured NLP that is usually solved by either an interior
point or an active set based algorithm. For details on an efficient implemen-
tation and further references see, e.g., [24, 4].

If switching decisions or disjoint feasible sets are present as in (1e), the
discretization (8) leads to control variables that inherit this integrality con-
dition. For a piecewise constant discretization qv

i ∈ Ω needs to hold for all
0 ≤ i < m. Formally a mixed–integer nonlinear program is obtained.

4. Theory for control-affine systems

Most of the algorithms that have been applied to solve problem (1) cannot
provide a rigorous lower bound on the optimal solution value. Even if global
MINLP methods are applied, one does not know how good the solution really
is, as the underlying control discretization grid might be too coarse in some
regions or simply not hit the optimal switching points. Only recently the
connection between rigorous bounds on the optimal integer solution value
and results of relaxed, continuous control problems has been made, [32, 36].
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Let us, for now, consider a binary-control-affine problem of the form

min
x,u,ω

Φ(x(tf))

subject to

ẋ(t) = f̃(x(t), u(t)) · ω(t), t ∈ [0, tf],
u(t) ∈ U , t ∈ [0, tf],
ω(t) ∈ {0, 1}nω , t ∈ [0, tf],
C(ω(t)) = 0, t ∈ [0, tf],
x(0) = x0,

(9)

with f̃ : R
nx × R

nu → R
nx×nω and C : R

nω → R
nC an arbitrary constraint

on the binary control. We will see later how the special case (9) relates
to the more general problem (1) that we are really interested in. One of
the observations in [32, 36] was that the optimal solution of the relaxation
of control problem (9) yields the exact lower bound for (1), i.e., the value
that can either be reached or be approximated arbitrarily close by an integer
control. However, the proof used arguments from functional analysis and
hence this result does not apply to a finite number of switches.

In [33] the statement was extended: for any δ > 0 it holds that if the
control discretization grid is chosen fine enough, then there exists a binary
solution with a finite number of switches that yields an objective value closer
than δ to the one of the relaxed problem. The basis for this is

Theorem 4.1. Let x(·) and y(·) be solutions of the initial value problems

ẏ = A(y) · α(t), y(0) = y0, (10a)

ẋ = A(x) · ω(t), x(0) = x0 = y0 (10b)

with t ∈ [0, tf], for given functions α : [0, tf] → R
nω and ω : [0, tf] → R

nω . If
positive numbers L,M, ǫ ∈ R

+ exist such that for all t ∈ [0, tf] it holds that

‖ α(t) ‖ ≤ 1, ‖ ω(t) ‖ ≤ 1, (10c)

‖ A(x) ‖ ≤ M ∀ x ∈ R
nx, (10d)

‖ A(y) −A(x) ‖ ≤ L ‖ y − x ‖ ∀ x, y ∈ R
nx, (10e)

∥

∥

∥

∥

∫ t

0

α(τ) − ω(τ) dτ

∥

∥

∥

∥

≤ ǫ, (10f)

then it also holds

‖ y(t) − x(t) ‖ ≤ M̂ǫ (10g)

with constant M̂ = 2MeLtf −M .
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The relation between problem (9) and Theorem 4.1 is obvious. Let us assume
we have found the feasible and optimal trajectory (x∗, u∗, α∗) of the relaxation
of problem (9). We fix the continuous control functions u∗(·) and write the
right hand side f(x(·), u(·))ω(·) as a function A(y(·); u∗(·))ω(·) of y(·) and
ω(·) only. The ODE in (9) is then in the form of (10b). We will see in
Section 6.3 a constructive way to determine a binary control ω(·) from α∗(·)
in a way that ǫ is a mere multiple of the control discretization grid size, and
can hence be made arbitrarily small. This is done for two cases of interest:
the one when there are no constraints, C(ω) = 0, and when a special ordered
set property C(ω) =

∑

ωi − 1 has to hold that stems from an equivalent
reformulation of the general nonlinear case.

Theorem 4.1 now helps to estimate the performance loss between the op-
timal relaxed control α∗(·) and the binary control ω(·). As assumptions (10c)
hold for both relaxed and binary controls, and assumptions (10d) and (10f)
follow from a boundedness of the variable range for the differential states and
from an assumed Lipschitz continuity, respectively, the difference between
the differential states is determined from (10g), if (10f) holds. The Mayer
function Φ(·) is assumed to be differentiable, hence continuous. Therefore
the difference between the objective function values of the original, binary
control problem (9) and of its relaxation are bounded by a constant times ǫ.

The most interesting assumption of Theorem 4.1 is (10f). At first sight
the condition is somewhat unusual, as one might expect an L∞ norm,

∫ tf

0

‖ ω(τ) − α(τ) dτ ‖ ≤ ǫ. (11)

This condition is far too strong, however. While one direction is obvious,
∥

∥

∥

∥

∫ t

0

ω(τ) − α(τ) dτ

∥

∥

∥

∥

≤

∫ t

0

‖ ω(τ) − α(τ) dτ ‖ ≤

∫ tf

0

‖ ω(τ) − α(τ) dτ ‖

one can construct an example for which the gap between the two expressions
(10f) and (11) becomes as large as it can get. Assume an equidistant time
grid 0 = t0 < t1 < · · · < tm = tf, with ti+1 − ti = tf

m
. Define

α(τ) :=
1

2
, ω(τ) :=

{

1 τ ∈ [ti, ti+1], i even
0 τ ∈ [ti, ti+1], i odd

We obtain
∫ tf

0

‖ ω(τ) − α(τ) dτ ‖ =
tf

2
and

∥

∥

∥

∥

∫ t

0

ω(τ) − α(τ) dτ

∥

∥

∥

∥

≤
tf

m
,
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where the second term vanishes for m→ ∞ for all t ∈ [0, tf].

5. Reformulations

In the previous sections we developed both general methodology and the-
ory that guarantees performance loss bounds for binary-control-affine sys-
tems. In this section we survey different reformulations. The first two, a
switching time optimization approach in 5.1 and penalization strategies in
5.2, aim at producing sub-optimal integer feasible solutions. In subsections
5.3 and 5.4 the target is to reformulate the nonlinear problem equivalently
to obtain a binary-control-affine system.

5.1. Switching Time Optimization

One possibility to solve problem (1) is motivated by the idea to optimize
the switching times directly, and to take the values of the integer controls
fixed on given intervals. This concept is old and well known from a) indirect
approaches, where switching functions (derivatives of the Hamiltonian with
respect to the controls) are used to determine switching times, from b) hybrid
systems, where switching functions determine phase transitions, and from
c) multi-stage processes, such as batch processes in chemical engineering,
consisting of several phases with open duration, e.g., [23].

The main idea consists of a reformulation. The control v(t) is fixed to a
value vij ∈ Ω on each interval [tj , tj +1], with an (a priori) fixed order of the
vij . The control problem to be solved reads as

min
x,u,tj

Φ(x(tf))

subject to
ẋ(t) = f(x(t), u(t), vij), t ∈ [tj, tj+1],
u(t) ∈ U , t ∈ [0, tf],
x(0) = x0.

(12)

In practice one will not optimize the switching points tj directly, but the
scaled vector h of model stage lengths hj := tj+1 − tj , see [23, 17]. This
approach is visualized in Figure 1 for a one-dimensional binary control.
Although the algorithm looks very promising at first sight, it has some se-
vere disadvantages. First, a nonregular situation that may occur when stage
lengths are reduced to zero. Assume the length of an intermediate stage, say
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Figure 1: Switching time optimization, one–dimensional example.

h2, has been reduced to zero by the optimizer. Then the sensitivity of the op-
timal control problem with respect to h1 and h3 is given by the value of their
sum h1 + h3 only. Thus special care has to be taken to treat the case where
stage lengths diminish during the optimization procedure. In [19], [20] and
[25] an algorithm to eliminate such stages is proposed. This is possible, still
the stage cannot be reinserted, as the time when to insert it is undetermined.

The second drawback is that the number of switches is typically not
known, left alone the precise switching structure. Some authors propose to
iterate on the maximum number of intervals until there is no further decrease
in the objective function of the corresponding optimal solution, [19, 20, 25].
But it should be stressed that this can only be applied to more complex
systems, if very good initial values for the location of all switching points
are available. This is closely connected to the third and most important
drawback of the switching time approach. The reformulation yields addi-
tional nonconvexities in the optimization space. Even if the optimization
problem is convex in the optimization variables resulting from a constant
discretization of the control function v(·), the reformulated problem may be
nonconvex, compare[32].

The mentioned drawbacks of the switching time optimization approach
can be overcome, though, if it is combined with a bunch of other concepts,
compare [32, 17]. This includes good initial values, a strategy to deal with
diminishing stage lengths and a direct all–at–once approach like direct multi-
ple shooting that helps when dealing with nonconvexities as discussed in [32].
Also, making use of the theoretical results of Section 4, termination criteria
for an iterative refinement of the switching structure need to be determined.
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5.2. Reformulations to avoid integrality

The first idea to replace a binary variable y ∈ {0, 1} by a continuous
variable y ∈ [0, 1] is to add the constraint y (1 − y) = 0 to the problem for-
mulation. Unfortunately this equality constraint is nonconvex with a disjoint
feasible set and optimization solvers perform badly on such equations, as the
necessary constraint qualification is violated.

Penalization strategies have the same aim as switching time optimization:
working with continuous variables only, but obtaining an integer feasible
solution. To do so for, say, the binary case ω(t) ∈ {0, 1}nω , we first relax
towards ω(t) ∈ [0, 1]nω for all t ∈ [0, tf]. To enforce a binary solution, we have
two possibilities. One is to add a concave penalty function, e.g.,

min
x,u,ω

Φ(x(tf)) +
nω
∑

i=1

ǫi

∫ tf

t0

(1 − ωi(t)) ωi(t) dt

for ǫi ≥ 0. The other one would be to impose additional constraints,

(1 − ωi(t)) ωi(t) ≤ ǫi ∀ t ∈ [0, tf].

An extension is to use a penalty term homotopy, by solving a series of con-
tinuous optimal control problems with relaxed ω(·). One initializes problem
P k+1 with the solution of P k and raises ǫki until all ωi(t) are 0 or 1.

Both approaches depend very much on the choice of ǫ and impose bad
numerical behavior by either making the objective nonconvex, or splitting the
feasible region into disjoint parts. Either approach may work well for special
cases, but is generally not to be recommended. Details and a numerical case
study can be found, e.g., in [32].

A clever problem-specific reformulation is proposed in [10, 11]. For the
optimal operation of a water network the authors propose to decompose the
problem in the sense that a pure NLP is solved for the overall network with
a (continuous) aggregated output of the discrete-valued pumps in each wa-
terworks. In a second step this optimal continuous output is approximated
by solving a small-scale integer program for every waterworks in the system.

5.3. Reformulations to avoid nonlinearity

Another target for reformulations are the nonlinearities. We consider
general linear approximations and products containing binary variables.

The basic idea to use underestimating and overestimating linear functions
is best exemplified by replacing a bilinear term xy by a new variable z and
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additional constraints. This reformulation was proposed by [26]. For the new
variable z we obtain the linear constraints

ylox+ xloy − xloylo ≤ z ≤ ylox+ xupy − xupylo,

yupx+ xupy − xupyup ≤ z ≤ yupx+ xloy − xloyup,
(13)

for given bounds on x and y, i.e., x ∈ [xlo, xup] and y ∈ [ylo, yup]. The inequal-
ities follow from (x−xlo)(y− ylo) ≥ 0 and three similar equations. The snag
is of course that very tight bounds are needed for a successful optimization,
which is not the case in the presence of strong nonlinearities. See [43] or
[14] for references on general under– and overestimation of functions. When
binary variables enter in a nonlinear way into the right hand side function
f(·), often simplifications are possible. All higher exponents can be skipped,
as it holds ωi(t) · ωi(t) = ωi(t) for ωi(t) ∈ {0, 1}. Also for mixed products
of binary variables a reduction of nonlinearity is possible. We introduce an
additional variable, e.g., for ωi(t) · ωj(t):

ωij(t) :=

{

1 if ωi(t) = ωj(t) = 1
0 else

The new binary variables can be incorporated into the optimization problem
by adding the constraints

ωij(t) ≤ ωi(t), ωij(t) ≤ ωj(t), ωi(t) + ωj(t) ≤ 1 + ωij(t).

5.4. Outer convexification

We saw in Section 4 that for binary-control-affine models we get an es-
timate of the performance loss of any feasible binary solution by solving a
relaxed problem. If nonlinearities with respect to the v(·) in (1) occur, they
can sometimes be transformed as in Section 5.3. If this is not the case, a
partial outer convexification with respect to the integer functions has been
proposed in [32, 36]. Consider the following reformulation of problem (1),

min
x,u,ω

Φ(x(tf))

subject to
ẋ(t) =

∑nω

i=1 f(x(t), u(t), vi) · ωi(t), t ∈ [0, tf],
u(t) ∈ U , t ∈ [0, tf],
ω(t) ∈ {0, 1}nω , t ∈ [0, tf],
∑nω

i=1 ωi(t) = 1, t ∈ [0, tf],
x(0) = x0,

(14)
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with fixed vi ∈ Ω, 1 ≤ i ≤ nω. Problem (14) has two important properties:
first, there is a bijection between solutions of (14) and of (1), hence any
optimal solution is also optimal for the other problem. Second, it fits into
the context of Section 4, as the binary controls enter linearly. In fact, as
all vi are fixed, problem (14) can be written in the form (9) with a matrix
f̃(·) that contains f(x(t), u(t), vi) as its nω columns. There is one important
modification: the additional linear constraint 0 = C(ω) =

∑

ωi−1 to ensure
the controls form a special ordered set at each instant in time. This constraint
needs to be taken into account whenever a binary solution is constructed from
a relaxed one, compare Section 6.3.

Problem (14) yields a tight relaxation of the original problem (1). This
reformulation comes at the price of additional control functions, as v(·) is
replaced by nω controls ωi(·) (one less, if the linear equality constraint is
used to eliminate one of them).

Note that depending on f(·), integer controls may decouple, leading to a
reduced number nω. Assume we have

ẋ(t) = g(·, v1(t)) + h(·, v2(t)),

v1(t) ∈ Ω1, v2(t) ∈ Ω2.

Then an equivalent reformulation is given by

ẋ(t) =

(

nω1
∑

i=1

g(·, vi
1) ω1,i(t)

)

+

(

nω2
∑

i=1

h(·, vi
2) ω2,i(t)

)

,

nω1
∑

i=1

ω1,i(t) = 1, t ∈ [t0, tf ],

nω2
∑

i=1

ω2,i(t) = 1, t ∈ [t0, tf ],

ω1 ∈ {0, 1}nω1 , ω2 ∈ {0, 1}nω2 ,

leading to nω = nω1
+ nω2

controls instead of nω = nω1
nω2

. The proof is
straightforward. As in most practical applications the binary control func-
tions enter linearly (such as valves that indicate whether a certain term is
present or not), or nω increases linearly with the number of choices (e.g., the
gears), or integer controls decouple, the drawback of an increased number nω

of control functions is clearly out-weighted by the advantages.
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6. Algorithms

We present algorithms to solve problems of the form (1) and (14).

6.1. Rounding

One idea to solve problem (14) is to solve its relaxation (hence, ω(t) ∈
[0, 1]nω) and to round all ωi(t) (alternatively their finite-dimensional param-
eterization qω

i ) to the nearest binary value. In general mixed–integer pro-
gramming this approach is not a good idea, rounded solutions are often very
poor solutions or even infeasible. However, for control problems the optimal
solution in function space is often of bang-bang type, i.e., the optimal control
only takes values at its bounds. For these cases rounding performs well, if it
is combined with an adaptive control discretization grid.

As follows from the results of Sections 4 and 5.4, we do have the exact
lower bound from the solution of the relaxation of problem (14) and can hence
estimate the performance loss associated with rounding. This is an important
difference and advantage compared to general integer programming.

6.2. MI(N)LP algorithms

In the last 20 years important contributions in the field of algorithms
for mixed–integer nonlinear programs (MINLPs) have been achieved. Of
course both the classical algorithms Branch&Bound, Outer Approximation,
and Bender’s decomposition as newer developments including cutting planes
and treatment of nonconvexities can be applied to the MINLP that stems
from a discretization with a direct approach of problem (14).

If switching decisions or disjoint feasible sets are present as in (1e), dis-
cretization (8) leads to control variables that inherit this integrality condition.
For a piecewise constant discretization qω

i ∈ {0, 1} needs to hold for all i. The
drawback of direct methods with integer control functions is obviously that
they lead to high–dimensional vectors of binary/integer variables.

For many practical applications a fine control discretization is required.
Therefore MINLP techniques will work only on limited and small time hori-
zons because of the exponentially growing complexity of the problem, [45].

We recommend to use global MINLP algorithms only in two cases: first,
when the control discretization grid is fixed and a global solution on this grid
is of importance, and second, in an outer loop, when both integer control
functions and non-time-dependent combinatorial decisions have to be made.
In this case the problem can be decoupled, treating combinatorial decisions in
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an outer loop, and working with a relaxation of the integer control functions
in the inner loop, compare Section 7.

6.3. Sum Up Rounding

A novel rounding strategy that is especially tailored to minimize expres-
sion (10f) on page 8 has first been proposed in the context of mixed-integer
optimal control in [32]. We consider a piecewise constant control function

αj(t) = qα
j,i ∈ [0, 1], t ∈ [ti, ti+1] (15)

with j = 1 . . . nω and i = 0 . . .m− 1 on a fixed time grid 0 = t0 < t1 < · · · <
tm = tf , as introduced in Section 3. Such a function could be the result of
an optimization with a direct approach that discretizes the control functions
by piecewise constant functions. We write ∆ti := ti+1 − ti and ∆t for the
maximum distance between two time points,

∆t := max
i=0...m−1

∆ti = max
i=0...m−1

{ti+1 − ti}. (16)

Let then a function ω(·) : [0, tf ] 7→ {0, 1}nω be defined by

ωj(t) = pj,i, t ∈ [ti, ti+1] (17)

where the pj,i are binary values given by

pj,i =

{

1 if
∑i

k=0 q
α
j,k∆tk −

∑i−1
k=0 pj,k∆tk ≥ 0.5∆ti

0 else
. (18)

See Figure 2 for an example. We have the following estimate on the integral
over the difference between the control functions α(·) and ω(·).

Theorem 6.1. (Sum Up Rounding Integral Deviation)
Let the functions α : [0, tf ] 7→ [0, 1]nω and ω : [0, tf ] 7→ {0, 1}nω be given by
(15) and (17, 18), respectively. Then it holds

∥

∥

∥

∥

∫ t

0

ω(τ) − α(τ) dτ

∥

∥

∥

∥

≤ 0.5 ∆t.

For a proof see [33]. In combination with Theorem 4.1 this theorem allows us
to relate the difference between differential states corresponding to any (re-
laxed) solution and a specific integer solution obtained by Sum Up Rounding
to the size of the control discretization grid.

16



Figure 2: Relaxed and Sum Up Rounding binary controls for m = 64 time intervals.

Note that the Sum Up Rounding strategy (18) does not work for problems
with the additional special ordered set property

∑

ωi = 1 as in (14), as can
be seen by the easy example of two functions that have the constant value
α1(t) = α2(t) = 0.5. If we define pj,i to be

p̂j,i =

i
∑

k=0

qα
j,k∆tk −

i−1
∑

k=0

pj,k∆tk (19a)

pj,i =

{

1 if p̂j,i ≥ p̂k,i ∀ k 6= j and j < k ∀ k : p̂j,i = p̂k,i

0 else
(19b)

a similar result to Theorem 6.1 holds, compare [33]. A related estimation of
the discretization error can be found in the works of Veliov, e.g., [46].

6.4. MS MINTOC

We propose to use the following algorithm for the solution of (1). We
denote the control discretization grid in iteration k with Gk, and the optimal
trajectory of (9) with T k = (xk(·), uk(·), αk(·)). For the sake of notational
simplicity we use uk(·) and αk(·) and not the discretization variables qu, qα.

Algorithm 6.2. (MS MINTOC)

1. k = 0. Input: initial control discretization grid G0, tolerance TOL ∈ R
+.

2. If necessary, reformulate and convexify (Sections 5.3, 5.4) problem (1).
Obtain problem of type (9). Relax this problem to α(·) ∈ [0, 1]nω .

3. REPEAT

(a) Solve relaxed problem on Gk. Obtain T k = (xk(·), uk(·), αk(·)) and
the grid–dependent optimal value ΦREL

Gk .
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(b) If T k on Gk fulfills ωk(·) := αk(·) ∈ {0, 1}nω then STOP.
(c) Apply Sum Up Rounding (Section 6.3) to αk(·). Fix uk(·).

Obtain yk(·) and upper bound ΦBIN
Gk by simulation.

(d) If ΦBIN
Gk < ΦREL

Gk + TOL then STOP.

(e) Refine the control grid Gk.
(f) k = k + 1.

4. Bijection to obtain solution for problem (1) with objective Φ∗ = ΦBIN
Gk .

As for all algorithms we have to ask whether it is well-posed and will
terminate in a finite number of steps. The answer is given by the following

Theorem 6.3. (Well-posedness of MS MINTOC)
If the assumptions

1. On all grids Gk an optimal solution to the relaxed problem (9) is found
in a finite number of operations.

2. Bisection is used for the refinement of Gk.

3. After a finite number kmax of refinements we freeze the optimal relaxed
solution, T k = T kmax

and ΦREL
Gk = ΦREL

Gkmax ∀ k > kmax.

hold, then Algorithm 6.2 will terminate in a finite number of steps with a
feasible binary solution, for which Φ∗ < ΦREL

Gk + TOL holds.

Proof. By Assumption 1 all optimal control problems will be solved in finite
time, and so will be the simulation in 3.(c). If the algorithm stops in 3.(b),
a binary solution with Φ∗ = ΦREL

Gk has been found. It is left to show that

the algorithm will not loop infinitely often. Let ωk(·) be the control that we
obtain from applying Sum Up Rounding on grid Gk to αk(·), and yk(·) the
vector of corresponding differential states. From Theorem 6.1 we have

∥

∥

∥

∥

∫ tf

0

ωk(τ) − αk(τ) dτ

∥

∥

∥

∥

≤ 0.5 ∆t,

hence with Theorem 4.1 on page 8

∥

∥ yk(tf) − xk(tf)
∥

∥ ≤ M∆teLtf .

Due to Assumption 3, xk(·) stays constant for k ≥ kmax. Reducing ∆t by
bisection will cause a strictly monotonic decrease of this expression, and this
holds also for Φ(yk(tf)) − Φ(xk(tf)), as Φ(·) is a continuous function.
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Note that Algorithm 6.2 will be modified in practice for efficiency. Of
particular interest are solutions with a small number of switches, but good
performance. Therefore we recommend to include an intermediate switching
time optimization (Section 5.1), initialized with the ωk(·) in 3.(c) to improve
ΦBIN

Gk . It may also be advantageous to leave uk(·) open for optimization, to

compensate for the coarser grid. Also, adaptive refinements of the grid Gk,
based on control values αk(·) are preferable to bisection, see [32, 37].

7. More general problem classes

Problem (1) does not include all features that a mathematical model of
a control process might show. In this section we discuss some straightfor-
ward extensions of the aforementioned approach, plus two features at the
end, where special attention and further work is necessary.

Bolza type functionals. Every Lagrange term
∫

L(x(t), u(t), v(t))dt can
be transformed equivalently into a Mayer term, hence the objective can also
be of the more general Bolza type.
Multi-point constraints. Whenever multi-point constraints of the form

0 ≤ rieq(x(t0), x(t1), . . . , x(tf)),

0 = req(x(t0), x(t1), . . . , x(tf))

have to be fulfilled, the same argument as for the objective function can be
used: All differential states corresponding to a relaxed solution can be ap-
proximated arbitrarily close by the ones corresponding to an integer solution,
and rieq(·), req(·) are assumed to be at least continuous functions. Algorithm
6.2 needs to be extended in the sense that for all constraints an additional
tolerance has to be checked in step 3.(d).
Path constraints. Path constraints c(x(t), u(t)) ≥ 0 ∀ t ∈ [0, tf] are dis-
cretized in direct approaches, see Section 3, hence with a fixed u∗(·) the same
argument as for multi-point constraints applies.
Time-independent continuous and combinatorial variables. For many
processes also time-independent control values enter the problem formula-
tion, say of continuous type, pmin ≤ p ≤ pmax, and of integer type, such
as ρ ∈ {ρ1, ρ2, . . . , ρnρ}. These control values are optimized together with
the continuous controls u∗(·) and the relaxed binary controls α(·). Once de-
termined, (u∗(·), p∗, ρ∗) are fixed. In a second stage, the REPEAT loop of
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Algorithm 6.2, feasible binary controls are determined. Especially integer
control values ρ∗ are typically hard to compute. Our procedure allows thus
for a decoupling of the determination of optimal integer control values and
optimal binary control functions, resulting in a huge reduction of complexity.
Multi-stage processes. Often complex practical processes, such as batch
processes in chemical engineering or robot control, consist of several succes-
sive phases with different models and transition phases that may even change
the number of differential states, see, e.g., [23]. The main additional effect of
multiple stages that plays a role in Theorem 4.1 are the initial values of the
differential states on each model stage determined by a continuous transition
function. The expression ‖ yi

0 − xi
0 ‖ for model stage i is nothing else than

a function of the difference of the differential states on model stage i − 1.
Hence, also ‖ yi

0 − xi
0 ‖ depends on the control discretization grid size ∆t.

Global optimization. Algorithm 6.2 works for both global as local opti-
mization. If a global method is applied in step 3.(a), the integer solution
will approximate arbitrarily close the global optimum. If a local approach is
chosen, the result is an approximation of this local optimum.
Multi-objective optimization. There is an important implication in the
context of multi-objective optimization: whenever the Pareto front is to be
calculated, it suffices to solve the relaxed convexified problem. The Pareto
front of optimal control problems involving integer functions can hence be
calculated without actually solving a single integer problem.
State-dependent switches. In hybrid systems a second type of discrete
events may occur, namely state-dependent switches. Prominent examples
are overflows in chemical engineering or ground contact in robotics, both
dependent on a differential state (volume, vertical position) and triggering
a model change. Mathematically these systems can be modeled by means
of continuous switching functions. For all possible orderings of such events
Theorems 4.1 and 6.1 can be adapted.
Algebraic variables and conditions. Theory and algorithms have to be
extended for the case that algebraic equations involving the binary control
functions are present, e.g., in an explicit system of index 1,

ẋ(t) = f(x(t), z(t), u(t), ω(t)), t ∈ [0, tf],

0 = g(x(t), z(t), u(t), ω(t)), t ∈ [0, tf].

Formally, index 1 DAE systems can be transformed into an ODE, making
it possible to treat them within the proposed methodology. However, for
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many systems special DAE solvers have been developed, as the additional
derivation of the system is not beneficial from a numerical point of view.
Further analysis is needed on how to exploit occurring structures.
(Mixed Path-) Control constraints. For generic constraints of the type

c(x(t), u(t), v(t)) ≥ 0 ∀ t ∈ [0, tf]

no termination criterium for Algorithm 6.2 can be guaranteed (think about
a constraint that simply cuts off all binary solutions). Analysis must be
problem or problem class specific and is a hot topic for future research. One
general idea is to reformulate the constraints for t ∈ [0, tf ], j = 1, . . . , nω to

0 ≤ c(x(t), u(t), vj) ωj(t). (20)

Note that by constraint (20) only positive relaxed solutions are feasible, for
which also the corresponding binary vector is feasible. This makes it more
unlikely (although not impossible) that the index j corresponding to a value
qα
j,i = 0 is chosen as the maximum in (19), whenever c(x(t), u(t), vj) < 0

on [ti, ti+1]. Furthermore this constraint should be included in the rounding
decision to avoid infeasibilities. Investigating this approach more rigorously
is beyond the scope of this paper, however.

8. Applications

Instead of going into the details of a particular application involving
switching decisions to be optimized, we survey and classify already published
control problems. The intention is to provide modelers with an overview of
existing hybrid system models with switching decisions to ease the modeling
process, and to make a first step towards a benchmark library in the sense
of netlib, miplib, minlplib, and the like for MIOCPs. Several examples can
be found on the [27] website, although, unfortunately, most problems lack a
precisely defined scenario including initial values, exact objective function,
and all model parameters. A new effort in this direction is the MINTOC
webpage, [31], a benchmark library in Wiki form.

The classification we propose for switching decisions is based on insight
from Pontryagin’s maximum principle, see Section 2, applied here only to
the relaxed binary control functions α(·). In the analysis of linear control
problems one distinguishes three cases: bang-bang arcs, sensitivity-seeking
arcs, and path-constrained arcs, [41], where an arc is defined to be a nonzero
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time-interval. Of course a problem’s solution can show two or even all three
behaviors at the same time on different arcs.
Bang-bang arcs. The case where the optimal solution contains only bang-
bang arcs (time intervals on which αi(t) ∈ {0, 1} ∀ i) is in a sense the easiest.
The main goal will be to adapt the control discretization grid such that Al-
gorithm 6.2 finally terminates in step 3.(b). A prominent example of this
class is time-optimal car driving. In [16, 17, 21, 35] numerical results for ex-
tended benchmark problems have been deduced. The outer convexification
approach (Section 5.4) led to a tremendous speed-up compared to the pub-
lished reference benchmark solution for a fixed control discretization grid by
several orders of magnitude as shown in Table 1. In [21] one can also find an
explanation why a bang-bang solution for the relaxed and convexified gear
choices has to be optimal. Further examples of “bang-bang solutions” include

Inner convexification Outer convexification
and Branch&Bound and MS MINTOC

m tf CPU Time tf CPU Time
20 6.779751 00:23:52 6.779035 00:00:24
40 6.786781 232:25:31 6.786730 00:00:46
80 – – 6.789513 00:04:19

Table 1: Comparison of computational times for a Branch&Bound approach on a Pentium
III machine with 750 MHz, [16] (left), and for MS MINTOC on an AMD Athlon XP 3000+
with 2.166 GHz, [21] (right). m denotes the number of control discretization intervals, tf

is the optimal objective function value. The path constraints are discretized on the same
grid, hence the non-monotonicity of tf in m. CPU times are given in hh:min:sec. Note that
the results based on MS MINTOC were obtained on a computer that is approximately
4 times faster than the Pentium III machine, which would normally make a comparison
of computation times highly suspect. However, here the computation times vary by at
least 2 orders of magnitude with a difference growing in m, which is clearly a significant
improvement even with the difference in machines.

free switching of ports in Simulated Moving Bed processes, [18, 34], time-
dependent tray selection in batch distillation processes [32], unconstrained
energy-optimal operation of subway trains [36], a simple F-8 flight control
problem [20, 32], optimal transit path determination for a submarine vessel
[30], and phase resetting in biological systems [22, 40, 38].
Path–constrained arcs. Whenever a path constraint is active, i.e., it holds
ci(x(t)) = 0 ∀ t ∈ [tstart, tend] ⊆ [0, tf], and no continuous control u(·) can be
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Optimal solution with 1 touch point Optimal solution with 3 touch points

Figure 3: The differential state velocity of a subway train over time. The dotted vertical line
indicates the beginning of the path constraint, the horizontal line the maximum velocity.
Left: one switch leading to one touch point. Right: optimal solution for three switches.
The energy-optimal solution needs to stay as close as possible to the maximum velocity
on this time interval to avoid even higher energy-intensive accelerations in the start-up
phase to match the terminal time constraint tf ≤ 65 to reach the next station.

determined to compensate for the changes in x(·), naturally α(·) needs to
do so by taking values in the interior of its feasible domain. An illustrating
example has been given in [36], where velocity limitations for the energy-
optimal operation of New York subway trains are taken into account. The
optimal integer solution does only exist in the limit case of infinite switching
(Zeno behavior), or when a tolerance is given. Algorithm 6.2 will then ter-
minate in step 3.(d) with a solution that approximates the optimal driving
behavior (a convex combination of two operation modes) by switching be-
tween the two and causing a touching of the velocity constraint from below
as many times as we switch, see Figure 3. Another example is compressor
control in supermarket refrigeration systems, [27]. Note that all applications
may comprise path-constrained arcs, once path constraints need to be added.
Sensitivity–seeking arcs. A classical small-sized benchmark problem for
a sensitivity-seeking arc is the Lotka-Volterra Fishing problem, [32]. The
optimal relaxed control calculated with a direct approach and approximating
the solution on this arc is shown in Figure 2. As above, Algorithm 6.2 will
terminate in step 3.(d) once the a priori specified tolerance has been reached,
probably at the price of frequent switching. Further examples for sensitivity–
seeking arcs are sliding mode control and the famous example of Fuller, [32].
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9. Summary and Outlook

We presented a broad overview on recent mathematical developments in
the efficient algorithmic treatment of switching decisions in nonlinear op-
timal control, meant to redefine the state of the art in this active field of
research in process control. Theoretical foundations for error estimates are
given alongside a discussion of possible solution approaches. A comprehen-
sive algorithm is presented. Well-posedness of the algorithm is discussed, as
well as extensions to treat more general optimal control problems. For the
first time a classification of MIOCPs is presented based on analytical insight.

Future work in this field will focus on the efficient inclusion of algebraic
variables, on problem specific analysis of control constraints, and on ex-
tensions in the context of robust and online optimization. The benchmark
library [31] intends to deliver an open platform for algorithm developers,
participation and contributions are very welcome.
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