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SAMPLING DECISIONS IN OPTIMUM EXPERIMENTAL DESIGN
IN THE LIGHT OF PONTRYAGIN’S MAXIMUM PRINCIPLE∗

SEBASTIAN SAGER†

Abstract. Optimum experimental design (OED) problems are optimization problems in which
an experimental setting and decisions on when to measure—the so-called sampling design—are to be
determined such that a follow-up parameter estimation yields accurate results for model parameters.
In this paper we use the interpretation of OED as optimal control problems with a very particular
structure for the analysis of optimal sampling decisions. We introduce the information gain function,
motivated by an analysis of necessary conditions of optimality. We highlight differences between
problem formulations and propose to use a linear penalization of sampling decisions to overcome the
intrinsic ill-conditioning of OED. The results of this paper are independent from the actual numerical
method to compute the solution to the OED problem and of the question of local and global optima.
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1. Introduction. Modeling, simulation, and optimization has become an in-
dispensable tool in science, complementary to theory and experiment. It builds on
detailed mathematical models that are able to represent real world behavior of com-
plex processes. In addition to correct equations, problem specific model parameters,
such as masses, reaction velocities, or mortality rates, need to be estimated. The
methodology optimum experimental design (OED) helps to design experiments that
yield as much information on these model parameters as possible.

OED has a long tradition in statistics and practice; compare the textbook [18].
References to some algorithmic approaches are given, e.g., in [1, 23]. Algorithms for
OED of nonlinear dynamic processes are usually based on the works of [3, 11, 12]. As
investigated in [14], derivative based optimization strategies are state of the art. The
methodology has been extended in [12] to cope with the need for robust designs. In
[13] a reformulation is proposed that allows an application of Bock’s direct multiple
shooting method. An overview of model-based design of experiments can be found in
[6]. Applications of OED to process engineering are given in [2, 24].

OED of dynamic processes is a nonstandard optimal control problem in the sense
that the objective function is a function of either the Fisher information matrix, or
of its inverse, the variance-covariance matrix. The Fisher matrix can be formulated
as the time integral over derivative information. This results in an optimal control
problem with a very specific structure. In this paper we analyze this structure to shed
light on the question under which circumstances it is optimal to measure.

Notation. When analyzing OED problems with the maximum principle, one
encounters one notational challenge. We have an objective function that is a function
of a matrix; however, the necessary conditions are usually formulated for vector-valued
variables. We have two options: either we redefine matrix operations as the inverse,
trace or determinant for vectors, or we need to interpret matrices as vectors and
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define a scalar product for matrix-valued variables that allows us to multiply them
with Lagrange multipliers and obtain a map to the real numbers. We decided to use
the second option. In the interest of better readability we use bold symbols for all
matrices. (In)equalities are always meant to hold componentwise, also for matrices.

Definition 1.1 (scalar product of matrices). The map 〈·, ·〉 : (λ,A) �→ 〈λ,A〉 ∈
R with matrices λ and A ∈ R

m×n is defined as

〈λ,A〉 =
m∑
i=1

n∑
j=1

λi,j Ai,j .

Partial derivatives are often written as subscripts, e.g. Hλ = ∂H
∂λ . In our analysis

we encounter the necessity to calculate directional derivatives of matrix functions with
respect to matrices. In order to conveniently write them, we define a map analogously
to the case in R

n.
Definition 1.2 (matrix-valued directional derivatives). Let a differentiable map

Φ : Rn×n �→ R
n×n be given, and let A,ΔA ∈ R

n×n. Then the directional derivative
is denoted by(

∂Φ(A)

∂A
·ΔA

)
k,l

:=

m∑
i=1

n∑
j=1

∂Φ(A)k,l
∂Ai,j

ΔAi,j = lim
h→0

Φ(A+ hΔA)k,l − Φ(A)k,l
h

for 1 ≤ k, l ≤ n, hence ∂Φ(A)
∂A ·ΔA ∈ R

n×n.
Let a differentiable map φ : Rn×n �→ R be given, and let A,ΔA ∈ R

n×n. Then

the directional derivative limh→0
φ(A+hΔA)−φ(A)

h is denoted by〈
∂φ(A)

∂A
,ΔA

〉
=

∂φ(A)

∂A
·ΔA :=

m∑
i=1

n∑
j=1

∂φ(A)

∂Ai,j
ΔAi,j ,

hence 〈∂φ(A)
∂A ,ΔA〉 = ∂φ(A)

∂A ·ΔA ∈ R.
In the following we use the map Φ(·) for the inverse operation, and the map φ(·)

for either trace, determinant, or maximum eigenvalue function.
Outline. The paper is organized as follows. In section 2 we revise results from

optimal control theory. In section 3 we formulate the OED problem as an optimal
control problem. We apply the maximum principle to OED in section 4, and derive
conclusions from our analysis. Two numerical examples are presented in section 5,
before we summarize in section 6. Useful lemmas are provided for convenience in the
appendix.

2. Indirect approach to optimal control. The basic idea of indirect ap-
proaches is first optimize, then discretize. In other words, first necessary conditions
for optimality are applied to the optimization problem in function space, and in a
second step the resulting boundary value problem is solved by an adequate discretiza-
tion, such as multiple shooting. The necessary conditions for optimality are given by
the famous maximum principle of Pontryagin. Assume we want to solve the optimal
control problem of Bolza type

min
y,u

Φ(y(tf)) +
∫
T L(y(τ), u(τ)) dτ

subject to
ẏ(t) = f(y(t), u(t), p), t ∈ T ,
u(t) ∈ U , t ∈ T ,
0 ≤ c(y(tf)),
y(0) = y0

(2.1)
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on a fixed time horizon T = [0, tf ] with differential states y : T �→ R
ny , fixed model

parameters p ∈ R
np , a bounded feasible set U ∈ R

nu for the control functions u : T �→
R

nu , and sufficiently smooth functions Φ(·), L(·), f(·), c(·). To state the maximum
principle we need the concept of the Hamiltonian.

Definition 2.1 (Hamiltonian, adjoint states, end-point Lagrangian). The Hamil-
tonian of optimal control problem (2.1) is given by

H(y(t), u(t), λ0, λ(t), p) := −λ0L(x(t), u(t)) + λ(t)T f(y(t), u(t), p)(2.2)

with variables λ0 ∈ R and λ : T �→ R
ny called adjoint variables. The end–point

Lagrangian function ψ is defined as

ψ(y(tf), μ) := Φ(y(tf))− μT c(y(tf))(2.3)

with nonnegative Lagrange multipliers μ ∈ R
nc
+ .

The maximum principle in its basic form, also sometimes referred to as mini-
mum principle, goes back to the early fifties and the works of Hestenes, Boltyanskii,
Gamkrelidze, and of course Pontryagin. Although we refer to it as the maximum
principle for historic reasons, we chose to use a formulation with a minimization term
which is more standard in the optimization community. Precursors of the maximum
principle as well as of the Bellman equation can already be found in Carathéodory’s
book of 1935; compare [16] for details.

The maximum principle states the existence of adjoint variables λ∗(·) that satisfy
adjoint differential equations and transversality conditions. The optimal control u∗(·)
is characterized as an implicit function of the states and the adjoint variables—a
minimizer u∗(·) of problem (2.1) also minimizes the Hamiltonian subject to additional
constraints.

Theorem 2.2 (maximum principle). Let problem (2.1) have a feasible optimal
solution (y∗, u∗)(·). Then there exist λ∗0 ∈ R, adjoint variables λ∗(·), with (λ∗0, λ

∗(·)) �=
0, and Lagrange multipliers μ∗ ∈ R

nc
+ such that

ẏ∗(t) = Hλ(y
∗(t), u∗(t), λ∗0, λ

∗(t), p) = f(y∗(t), u∗(t), p),(2.4a)

λ̇∗T (t) = −Hy(y
∗(t), u∗(t), λ∗0, λ

∗(t), p),(2.4b)

y∗(0) = y0,(2.4c)

λ∗T (tf) = −ψy(y
∗(tf), μ

∗),(2.4d)

u∗(t) ∈ argmin
u∈U

H(y∗(t), u, λ∗0, λ
∗(t), p),(2.4e)

0 ≤ c(y∗(tf)),(2.4f)

0 ≤ μ∗,(2.4g)

0 = μ∗T c(y∗(tf))(2.4h)

for t ∈ T almost everywhere.
For a proof of the maximum principle see [17, 8]. Further references can be

found, e.g., in [5]. Although formulation (2.1) is not the most general formulation of
an optimal control problem, it covers the experimental design optimization task as
we formulate it in the next section. However, one may also be interested in the case
where measurements are not performed continuously over time, but rather at discrete
points in time. To include such discrete events on a given time grid, we need to extend
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(2.1) to

min
y,u,w

Φ(y(tf)) +
∫
T L(y(τ), u(τ)) dτ +

∑nm

k=1 L
tr(wk)

subject to
ẏ(t) = f(y(t), u(t), p), t ∈ T k,
y(t+k ) = f tr(y(t−k ), wk, p), k = 1 . . . nm,
u(t) ∈ U , t ∈ T ,
wk ∈ W , k = 1, . . . , nm,
0 ≤ c(y(tf)),
y(0) = y0

(2.5)

on fixed time horizons T k = [tk, tk+1], k = 0, . . . , nm − 1 with t0 = 0 and tnm = tf .
In addition to (2.1) we have variables w = (w1, . . . , wnm) with wk ∈ W ⊂ R, a second
smooth Lagrange term function Ltr(·), and a smooth transition function f tr(·) that
causes jumps in some of the differential states.

The boundary value problem (2.4) needs to be modified by additional jumps in
the adjoint variables, e.g., for k = 1 . . . nm,

λ∗T (t+k ) = λ∗T (t−k )−Htr
y (y

∗(t−k ), w
∗
k, p, λ

tr
0 , λ

∗(t+k )),(2.6)

w∗
k ∈ arg min

wk∈W
Htr(y(t−k ), wk, p, λ

tr
0 , λ

∗(t+k ))(2.7)

with the discrete time Hamiltonian

Htr(y(t−k ), wk, p, λ
∗(t+k )) := −λtr0 Ltr(wk) + λT (t+k ) f

tr(y(t−k ), wk, p).(2.8)

A derivation and examples for the (purely) discrete time maximum principle can be
found, e.g., in [25]. Please note that there are many different versions and proofs of
the maximum principle. Unfortunately, we are not aware of one that includes the
exact conditions with a proof for problem (2.5). As it is beyond the scope of this
paper to prove them, we assume the conditions and our choice of λ0 = 1 to be correct
on a heuristic basis.

One interesting aspect about the global maximum principle (2.4) is that the con-
straint u ∈ U has been transferred towards the inner minimization problem (2.4e).
This is done on purpose, so no assumptions need to be made on the feasible con-
trol domain U . The maximum principle also applies to nonconvex and disjoint sets
U , such as, e.g., U = {0, 1} in mixed-integer optimal control. For a disjoint set U
of moderate size the pointwise minimization of (2.4e) can be performed by enumera-
tion between the different choices, implemented as switching functions that determine
changes in the minimum. This approach, the competing Hamiltonians approach, has
to our knowledge first been successfully applied to the optimization of operation of
subway trains with discrete acceleration stages in New York by [4].

In this study we are not interested in applying the maximum principle directly to
the disjoint set U , but rather to its convex hull. We are interested in the question when
the solutions of the two problems coincide, and which exact problem formulations are
favorable in this sense. Having analyzed problem structures with the help of the
maximum principle, we switch to direct, first-discretize–then-optimize approaches to
actually solve OED problems. Using the convex hull simplifies the usage of modern
gradient-based optimization strategies.
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3. Optimum experimental design problems. In this section we formulate
the problem classes of experimental design problems we are interested in.

3.1. Problem formulation: Discrete time. We are interested in optimal
parameter values for a model-measurements fit. Assuming an experimental setup is
given by means of control functions ui(·) and sampling decisions wi that indicate
whether a measurement is performed or not for nexp experiments, we formulate this
parameter estimation problem as

min
x,p

1

2

nexp∑
i=1

ni
h∑

k=1

ni
t∑

j=1

wi
k,j

(ηik,j − hik(x
i(tij)))

2

σi
k,j

2

s.t. ẋi(t) = f(xi(t), ui(t), p), t ∈ T ,
xi(0) = xi0.

(3.1)

Here nexp, n
i
h, n

i
t indicate the number of independent experiments, number of different

measurement functions per experiment, and number of time points for possible mea-
surements per experiment, respectively. The nexp · nx dimensional differential state
vector (xi)(i=1,...,nexp) with x

i : T �→ R
nx is evaluated on a finite time grid {tij}. The

states xi(·) of experiment i enter the model response functions hik : Rnx �→ R
n
hi
k .

The variances are denoted by σi
k,j ∈ R, the sampling decisions wi

k,j ∈ Ω denote how

many measurements are taken at time tij . If only one measurement is possible then
Ω = {0, 1}. We are also interested in the possibility of multiple measurements, then
we have Ω = {0, 1, . . . , wmax}. The measurement errors leading to the measurement
values ηik,j are assumed to be random variables free of systematic errors, independent
from one another, attributed with constant variances, distributed around a mean of
zero, and distributed according to a common probability density function. All these
assumptions lead to this special form of least squares minimization.

In the interest of a clearer presentation we neglect time-independent control
values, such as initial values, consider only an unconstrained parameter estimation
problem, assume we only do have one single measurement function per experiment,
nh = ni

h = 1, and define all variances to be one, σi
k,j = 1. We need the following

definitions.
Definition 3.1 (solution of variational differential equations). The matrix-

valued maps Gi(·) = dxi

dp
(·) : T �→ R

nx×np are defined as the solutions of the varia-

tional differential equations

Ġi(t) = fx(x
i(t), ui(t), p)Gi(t) + fp(x

i(t), ui(t), p), Gi(0) = 0,(3.2)

obtained from differentiating xi(t) = xi0+
∫
T f(x

i(τ), ui(τ), p) dτ with respect to time
and parameters p ∈ R

np . As they denote the dependency of differential states upon
parameters, we also refer to Gi(·) as sensitivities. Note that throughout the paper the
ordinary differential equations are meant to hold componentwise for the matrices on
both sides of the equation.

Definition 3.2 (Fisher information matrix). The matrix F = F (tf) ∈ R
np×np

defined by

F (tf) =

nexp∑
i=1

ni
t∑

j=1

wi
j

(
hi
x(x

i(tij))G
i(tij)

)T
hi
x(x

i(tij))G
i(tij)

is called the (discrete) Fisher information matrix.
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Definition 3.3 (covariance matrix). The matrix C = C(tf) ∈ R
np×np defined

by

C(tf) = F−1(tf)

is called the (discrete) covariance matrix of the unconstrained parameter estimation
problem (3.1).

We assume that we have nexp experiments for which we can determine control
functions ui(·) and sampling decisions wi in the interest of optimizing a performance
index, which is related to information gain with respect to the parameter estimation
problem (3.1). As formulated in the groundbreaking work of [11], the optimum ex-
perimental design task is then to optimize over u(·) and w. The performance index
is a function φ(·) of either the Fisher information matrix F (tf) or of it’s inverse, the
covariance matrix C(tf).

Definition 3.4 (objective OED functions). We call
• φFA(F (tf)) := − 1

np
trace (F (tf)) the Fisher A-criterion,

• φFD(F (tf)) := −(det (F (tf)))
1

np the Fisher D-criterion,

• φFE(F (tf)) := −min{λ : λ is eigenval of F (tf)} the Fisher E-criterion,

• φCA(F (tf)) :=
1
np

trace (F−1(tf)) the A-criterion,

• φCD(F (tf)) := (det (F−1(tf)))
1

np the D-criterion,

• φCE(F (tf)) := max{λ : λ is eigenval of F (tf)} the E-criterion,
and write φ(F (tf)) for any one of them in the following. If φ ∈ {φFA, φFD, φFE} we
speak of a Fisher objective function; otherwise, if φ ∈ {φCA, φCD, φCE}, of a covariance
objective function.

Note that maximizing a function (which we want to do for the Fisher information
matrix) is equivalent to minimizing its negative. Additionally there are typically
constraints on state and control functions, plus restrictions on the sampling decisions,
such as a maximum number of measurements per experiment.

In this paper we follow the alternative formulation of [13], in which the sensitivities
Gi(·) and the Fisher information matrix function F (·) are included as states in one
structured optimal control problem. The performance index φ(·) then has the form
of a standard Mayer-type functional. The optimal control problem reads

min
xi,Gi,F ,zi,ui,wi

φ(F (tf))

subject to
ẋi(t) = f(xi(t), ui(t), p),

Ġi(t) = fx(x
i(t), ui(t), p)Gi(t) + fp(x

i(t), ui(t), p),

F (tij) = F (tij−1) +
nexp∑
i=1

wi
j

(
hi
x(x

i(tij))G
i(tij)

)T (
hi
x(x

i(tij))G
i(tij)

)
,

zi(tij) = zi(tij−1) + wi
j ,

xi(0) = x0,
Gi(0) = 0,
F (0) = 0,
zi(0) = 0,

ui(t) ∈ U ,
wi

j ∈ W ,
0 ≤M i − zi(tf)

(3.3)
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for experiment number i = 1 . . . nexp, time index j = 1 . . . ni
t, and t ∈ T almost

everywhere. Note that the Fisher information matrix F (tf) is calculated as a discrete
time state, just like the measurement counters zi(·). The values M i ∈ R give an
upper bound on the possible number of measurements per experiment. Of course
other problem formulations, e.g., a penalization of measurements via costs in the
objective function, are also possible. In our study we exemplarily treat the case of an
explicitly given upper bound.

The set W is either W = Ω or its convex hull W = conv Ω, i.e., either W =
{0, . . . , wmax} or W = [0, wmax]. In the first setting we refer to (3.3) as a mixed-
integer optimal control problem (MIOCP). In the second case we use the term relaxed
optimal control problem. It is the main aim of this paper to shed more light on
the question under which circumstances the optimal solution of the relaxed problem
(which is the outcome of most numerical approaches) is identical to the one of the
MIOCP.

3.2. Problem formulation: Continuous measurements. It is interesting to
also look at the case in which measurements are not performed at a single point in
time, but over a whole interval. The continuous data flow would result in a slightly
modified parameter estimation problem

min
x,p

1

2

nexp∑
i=1

∫ tf

0

wi(t) · (η
i(t)− hi(xi(t)))2

σi(t)2
dt

s.t. ẋi(t) = f(xi(t), ui(t), p), t ∈ T ,
xi(0) = xi0.

(3.4)

This results in a modified definition of the Fisher information matrix.
Definition 3.5 (Fisher information matrix). The matrix F = F (tf) ∈ R

np×np

defined by

F (tf) =

nexp∑
i=1

∫ tf

0

wi(t)
(
hi
x(x

i(t))Gi(t)
)T

hi
x(x

i(t))Gi(t) dt

is called the (continuous) Fisher information matrix.
All other definitions from section 3.1 are identical. This allows us to formulate

the OED problem as

min
xi,Gi,F ,zi,ui,wi

φ(F (tf))

subject to
ẋi(t) = f(xi(t), ui(t), p),

Ġi(t) = fx(x
i(t), ui(t), p)Gi(t) + fp(x

i(t), ui(t), p),

Ḟ (t) =
nexp∑
i=1

wi(t)
(
hi
x(x

i(t))Gi(t)
)T (

hi
x(x

i(t))Gi(t)
)
,

żi(t) = wi(t),

xi(0) = x0,
Gi(0) = 0,
F (0) = 0,
zi(0) = 0,

ui(t) ∈ U ,
wi(t) ∈ W ,

0 ≤M i − zi(tf).

(3.5)
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Comparing (3.5) to the formulation (3.3) with measurements on the discrete time
grid, one observes that now the states F (·) and zi(·) are specified by means of ordi-
nary differential equations instead of difference equations, and the finite-dimensional
control vector w now is a time-dependent integer control function w(·).

The two formulations have the advantage that they are separable, and hence
accessible for the direct multiple shooting method [13]. In addition, they fall into the
general optimal control formulations (2.5) and (2.1), respectively, and allow for an
application of the maximum principle.

4. Analyzing relaxed sampling decisions. An observation in practice is that
the optimized relaxed samplings wi(t) ∈ conv Ω are almost always wi(t) ∈ Ω. To get
a better understanding of what is going on, we apply the maximum principle from
Theorem (2.2). We proceed with the continuous case of the control problem (3.5).
The vector of differential states of the general problem (2.1) is then given by

y(·) =

⎛
⎜⎜⎜⎝

xi(·)
Gi(·)

V ECF (·)
zi(·)

⎞
⎟⎟⎟⎠

(i=1...nexp)

with i = 1 . . . nexp. Hence y(·) is a map y : T �→ R
ny with dimension ny =

nexpnx + nexpnxnp + npnp + nexp. Note that some components of this vector are
matrices that need to be “flattened” in order to write y as a vector. We define the
right-hand-side function f̃ : Rny×nexpnu×nexp×np �→ R

ny as

f̃(y(t), u(t), w(t), p) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

f(xi(t), ui(t), p)

fx(x
i(t), ui(t), p)Gi(t) + fp(x

i(t), ui(t), p)

nexp∑
i=1

wi(t)
(
hi
x(x

i(t))Gi(t)
)T (

hi
x(x

i(t))Gi(t)
)

wi(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.1)

again with multiple entries for all i = 1 . . . nexp. We define λxi ,λGi ,λF , λzi to be
corresponding adjoint variables with dimensions nx, nx × np, np × np, and 1, respec-
tively, and λ as the compound of these variables. Note that λGi and λF are treated
as matrices, just like their associated states Gi and F . The Hamiltonian is then given
as

H(y(t), u(t), w(t), λ(t), p) =
〈
λ(t), f̃(y(t), u(t), w(t), p)

〉

=

nexp∑
i=1

λTxif i(·) +
nexp∑
i=1

〈
λGi ,f i

x(·)G
i + f i

p(·)
〉

(4.2)

+

〈
λF ,

nexp∑
i=1

wi
(
hi
x(·)G

i
)T (

hi
x(·)G

i
)〉

+

nexp∑
i=1

λziwi,

where we are omitting the time arguments (t) and argument lists of f and h. Note
that Definition 1.1 of the scalar product allows us to use the matrices λGi ∈ R

nx×np

and λF ∈ R
np×np in a straightforward way.
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Corollary 4.1 (maximum principle for OED problems). Let problem (3.5) have
a feasible optimal solution (y∗, u∗, w∗). Then there exist adjoint variables λ∗(·) and
Lagrange multipliers μ∗ ∈ R

nexp such that for t ∈ T it holds almost everywhere

ẏ∗(t) = f̃(y∗(t), u∗(t), w∗(t), p),(4.3a)

˙λxi

∗T
(t) = λ∗Txi f i

x(·) +
∂

∂xi

(〈
λGi

∗,f i
x(·)G

i∗ + f i
p(·)

〉)T

(4.3b)

+
∂

∂xi

(〈
λF

∗, wi∗
(
hi
x(·)G

i∗
)T (

hi
x(·)G

i∗
)〉)T

,

˙λGi

∗T
(t) =

〈
λGi

∗,f i
x(·)

〉
(4.3c)

+
∂

∂Gi

(
wi∗

〈
λF

∗,
(
hi
x(·)G

i∗
)T (

hi
x(·)G

i∗
)〉)T

,

λ̇F
∗T

(t) = 0,(4.3d)

˙λzi

∗T
(t) = 0,(4.3e)

y∗(0) = y0,(4.3f)

λxi
∗T (tf) = 0,(4.3g)

λ∗T
Gi (tf) = 0,(4.3h)

λ∗T
F (tf) = −∂φ(F (tf))

∂F
,(4.3i)

λzi
∗T (tf) = −−∂μ∗

i (M
i − zi∗(tf))

∂z
= −μ∗

i ,(4.3j)

(u∗, w∗)(t) ∈ arg min
u∈Unexp ,w∈Wnexp

H(y∗(t), u, w, λ∗(t), p),(4.3k)

0 ≤M − z∗(tf),(4.3l)

0 ≤ μ∗,(4.3m)

0 = μ∗T (M − z∗(tf))(4.3n)

with i = 1 . . . nexp and y, λ, f̃ defined as above.
Proof. The proof follows directly from applying the maximum principle (2.4) to

the control problem (3.5) and taking the partial derivatives of the Hamiltonian (4.2)
and the objective function φ(·) of the OED control problem with respect to the state
variables xi(·),Gi(·),F (·), and zi(·).

This corollary serves as a basis for further analysis. A closer look at (4.3k) and
the Hamiltonian reveals structure.

Corollary 4.2. The Hamiltonian H decouples with respect to ui(·) and wi(·)
for all experiments i = 1 . . . nexp. Hence the optimal controls ui∗(·) and wi∗(·) can be
determined independently from one another for given states y∗(·), adjoints λ∗(·), and
parameters p.
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Proof. The proof follows directly from (4.2) and the fact that f i(·) and the
partial derivatives f i

x(·) and f i
p(·) do not depend on the sampling functions wi(·).

Let w̃T = (w1,∗T (t), . . . , wi−1,∗T (t), wiT , wi+1,∗T (t), . . . , wnexp,∗T )(t), then

wi∗(t) ∈ argminwi∈W H(y∗(t), u∗(t), w̃, λ∗(t), p)

= argminwi∈W

〈
λF

∗, wi
(
hi
x(·)Gi∗

)T (
hi
x(·)Gi∗

)〉
+ λ∗ziwi.

(4.4)

Likewise, the experimental controls ui∗(·) are given as

ui∗(t) ∈ argminui∈U H(y∗(t), ũ, w∗(t), λ∗(t), p)

= argminui∈U λ
∗T
xi f i(·) +

〈
λGi

∗,f i
x(·)Gi∗ + f i

p(·)
〉

(4.5)

because the measurement function h(·) and its partial derivative do not depend ex-
plicitly on u(·).

We would like to stress that the decoupling of the control functions holds only
in the sense of necessary conditions of optimality, and for given optimal states and
adjoints. Clearly they may influence one another indirectly. We come back to this
issue in section 4.1.

A closer look at (4.4) reveals that the sampling control function w(·) enters linearly
into the Hamiltonian. This implies that the sign of the switching function determines
whether w(·) ∈ [0, wmax] is at its lower or upper bound, which corresponds in our case
to integer feasibility, w(·) ∈ {0, wmax}.

Definition 4.3 (local and global information gain). The matrix P i(t) ∈ R
np×np ,

P i(t) := P (xi(t),Gi(t)) :=
(
hi
x(x

i(t))Gi(t)
)T (

hi
x(x

i(t))Gi(t)
)
,

is called the local information gain matrix of experiment i. Note that P i(t) is positive
semidefinite, and positive definite if the matrix hi

x(x
i(t))Gi(t) has full rank np.

If F ∗−1(tf) exists, we call

Πi(t) := F ∗−1
(tf)P

i(t)F ∗−1
(tf) ∈ R

np×np

the global information gain matrix.
We use Corollary 4.2 as a justification to concentrate our analysis on the case of a

single experiment. Hence we leave the superscript i away for notational convenience,
assuming nexp = 1, and come back to the multiexperiment case in section 4.3.

Definition 4.4 (switching function). The derivative of the Hamiltonian (4.2)

Hw(t) :=
∂H(·)
∂w

= 〈λF (t),P (t)〉 + λz(t)

is called the switching function with respect to w(·). The derivative

Hu(t) :=
∂H(·)
∂u

=
∂

∂u

(
λ∗Tx f(·) +

〈
λG

∗,fx(·)Gi∗ + fp(·)
〉)

is called the switching function with respect to u(·).
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We are now set to investigate the conditions for either measuring or not at a time
t for different objective functions. From now on we assume that (y∗, u∗, w∗, λ∗, μ∗)(·)
is an optimal trajectory of the relaxed optimal control problem (3.5) with nexp = 1
and W = [0, wmax], and hence a solution of the boundary value problem (4.3).

Lemma 4.5 (maximize trace of Fisher matrix). Let φ(F (tf)) = φFA(F (tf)) =
−trace(F (tf)) be the objective function of the OED problem (3.5), and let w∗(·) be an
optimal control function. If

trace (P (t)) > μ∗

for t ∈ (0, tf), then there exists a δ > 0 such that w∗(t) = wmax almost everywhere on
[t− δ, t+ δ].

Proof. As w∗(t) is the pointwise minimizer of the Hamiltonian and according to
Corollary 4.2 it decouples from the other control functions, and as it enters linearly, it
is at its upper bound of wmax whenever the sign of the switching function is positive.
The switching function is given by

Hw(t) =
〈
λ∗
F (t),P (t)

〉
+ λ∗z(t).

With Corollary 4.1 we have

Hw(t) =

〈
−∂φ(F (tf))

∂F
,P (t)

〉
− μ∗

=

〈
−∂−trace(F (tf))

∂F
,P (t)

〉
− μ∗.

Applying Lemma A.2 from the appendix we obtain

Hw(t) = trace (P (t))− μ∗.

As trace(P (t)) is differentiable with respect to time, there exists a time interval of
positive measure around t where this expression is also positive, which concludes the
proof.

Lemma 4.6 (minimize trace of covariance matrix). For the assumptions of
Lemma 4.5, but the objective function

φ(F (tf)) = φFC(F (tf)) = trace(C(tf)),

the sufficient condition for w∗(t) = wmax in an optimal solution is that

trace (Π(t)) > μ∗

holds.
Proof. The argument is similar to the one in Lemma 4.5. We have

Hw(t) = −
〈
∂trace(F ∗−1(tf))

∂F
,P (t)

〉
− μ∗

= −
〈
∂trace(F ∗−1(tf))

∂F−1
,
∂F ∗−1(tf)

∂F
P (t)

〉
− μ∗.
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Note here that the expression ∂F ∗−1(tf )
∂F P (t) is a matrix in R

np×np by virtue of Defi-
nition 1.2. Applying Lemma A.2 from the appendix we obtain

Hw(t) = −trace

(
∂F ∗−1(tf)

∂F
P (t)

)
− μ∗.

To evaluate the directional derivative of the inverse operation we apply Lemma A.3
and obtain

Hw(t) = trace
(
F ∗−1(tf)P (t)F ∗−1(tf)

)
− μ∗

which concludes the proof, as Π(t) = F ∗−1(tf)P (t)F ∗−1(tf).
Lemma 4.7 (minimization of max eigenvalue of covariance matrix). For the

assumptions of Lemma 4.5, but the objective function

φ(F (tf)) = φCE(F (tf)) = max{λ : λ is eigenvalue of C(tf)},

the sufficient condition for w∗(t) = wmax in an optimal solution is that, if λmax is a
single eigenvalue,

vTΠ(t)v > μ∗

holds, where v ∈ R
np is an eigenvector of C(tf) to λmax with norm 1.

Lemma 4.8 (minimization of determinant of covariance matrix). For the as-
sumptions of Lemma 4.5, but the objective function

φ(F (tf)) = φCD(F (tf)) = det(C(tf)),

the sufficient condition for w∗(t) = wmax in an optimal solution is that

det(C∗(tf))
np∑

i,j=1

(F ∗(tf))i,j (Π(t))i,j > μ∗

holds.
The proofs of Lemmas 4.7 and 4.8 and for other objective functions are similar

to the one in Lemma 4.6, making use of the appendix Lemmas A.4 and A.5.
The local information gain matrix P (t) is positive definite, whenever the mea-

surement function is sensitive with respect to the parameters. This attribute carries
over to the matrix state F (·) in which P (t) is integrated, to the covariance matrix
function (as the inverse of a positive definite matrix is also positive definite), and to
the product of positive definite matrices. The considered functions of P (t) and Π(t)
are hence all positive values; compare, e.g., Lemma A.1.

This implies for nonexistent constraints on the number of measurements with
μ∗ = 0 the trivial conclusion that measuring all the time with w(t) ≡ wmax is optimal.

In the more interesting case when the constraint c(z∗(tf)) = M − z∗(tf) ≥ 0 is
active, the Lagrange multiplier μ∗ indicates the threshold. The Lagrange multipliers
are also called shadow prices, as they indicate how much one gains from increasing
a resource. In this particular case relaxing the measurement bound M yields the
information gain μ∗ in the objective function φ(·).

The main difference between using the Fisher information matrix F (·) and the
covariance matrix C(·) = F−1(·), e.g., in Lemmas 4.5 and 4.6, lies in the local P (t)
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and global Π(t) = F−1(tf)P (t)F−1(tf) information gain matrices that yield a suffi-
cient criterion, respectively. The fact that the sufficient criterion for a maximization
of the Fisher information matrix does not depend on the value of F−1(tf) has an
important consequence. Modifying the value of w(t), e.g., by rounding, does not have
any recoupling effect on the criterion itself. Therefore, whenever w(t) �∈ {0, wmax} on
different time intervals, one can round these values up and down (making sure that∫
T w(τ) dτ keeps the value of M) to obtain a feasible integer solution with the same
objective function value. This is not the case when we have a covariance objective
function, as measurable modifications of w(t) have an impact on F (tf) and hence also
on F−1(tf) and the sufficient criterion.

The procedure for the case with finitely many measurements that enter as non-
continuous jumps in finite difference equations (3.3) is very similar to the one above,
only some definitions need to be modified. The main results are identical and we have
the same criteria to validate whether the control values wi

j are on their upper bound
of wmax or not. The main difference is that measurements in the continuous setting
average the information gain on a time interval, whereas point measurements are on
the exact location of the maxima of the global information gain function.

4.1. Singular arcs. As we saw above, the sampling controls w(t) enter linearly
into the control problem. If for control problems with linear controls the switching
function is zero on an interval of positive measure, one usually proceeds by taking
higher order time derivatives of the switching function to determine an explicit rep-
resentation of this singular control, which may occur if at all in even degree time
derivatives as shown by [10]. This approach is not successful for sampling functions
in experimental design problems.

Lemma 4.9 (infinite order of singular arcs). Let nu = 0. For all values j ∈ N

the time derivatives Sj := dj

dtj Hw(t) never depend explicitly on w(·).
Proof. The switching functions above are functions of either P (t) or in the case of

a covariance objective function of F ∗−1(tf)P (t)F ∗−1(tf). Taking the time derivative
only affects P (t). We see that in

dP (t)

dt
=

d (hx(x(t))G(t))
T
(hx(x(t))G(t))

dt

= 2 (hx(x(t))G(t))
T d (hx(x(t))G(t))

dt

= 2 (hx(x(t))G(t))T
(
hxx(x(t))ẋ(t)G(t) + hx(x(t))Ġ(t)

)
= 2 (hx(x(t))G(t))

T
(hxx(x(t))f(x(t), u(t), p)G(t)

+ hx(x(t))(fx(x(t), u(t), p)G(t) + fp(x(t), u(t), p)))

only time derivatives of x(·) and G(·) appear. Also in higher order derivatives F (·)
and z(·) never enter, and as nu = 0 no expressions from a singular control u∗(·) may
appear, hence also w(·) never enters in any derivative.

In the special case that nu = 0, hence all controls enter linearly, another type
of argument can also be applied. In [7] and also in [15] it is shown that under
certain conditions when linearly entering controls are relaxed1 towards a probability
distribution P (u(t)), then the support of P is contained in the set on which the

1Attention: here relax does not refer to a relaxation between integer values {0, 1} towards their
convex hull [0, 1] as in the rest of this paper!
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Hamiltonian attains its minimum value. The boundary of the feasible set, {0, 1}nexp,
can be chosen as the support by means of a simple convex combination. Thus, a
control α∗(t) with

0 < k1 ≤ α∗(t) ≤ k2 < 1

on an interval [t1, t2] can be replaced by either 0 or 1 in this interval, and the maximum
principle is satisfied for the new control too.

This is the case for wi(·) when (hi
x(x

i(t))Gi(t))Thi
x(x

i(t))Gi(t) ≡ 0 on [t1, t2]
(compare (3.5)), corresponding to an interval in which parameters of the systems
cannot be identified because of nonexistent sensitivities.

The assumption that nu = 0 is rather strong though. It is an open and interesting
question, whether one can construct nontrivial instances of OED control problems for
which the joint control vector (u,w)(·) is a singular control. This implies that the
interplay of the singular controls results in a constant value of the global information
gain matrix Π(t) on a measurable time interval.

Numerically, such sensitivity-seeking cases (following the terminology of [26]) can
be resolved efficiently making use of the sum up rounding strategy, which we shortly
apply to the OED case for the convenience of the reader. Note, however, that the
question remains open if this algorithm to generate integer feasible solutions from
noninteger ones in linear time and with guaranteed error bounds needs to be applied
to OED problems at all.

4.2. Applying the integer gap lemma to OED. A first immediate advantage
of the formulation (3.5) as a continuous optimal control problem is that we can apply
the integer gap lemma proposed in [20]. In the interest of an easier presentation let
us assume wmax = 1. We first recall the sum up rounding strategy. We consider
given measurable functions αi : [0, tf ] �→ [0, 1] with i = 1 . . . nexp and a time grid
0 = t0 < t1 < · · · < tm = tf on which we approximate the controls αi(·). We write
Δtj := tj+1 − tj and Δt for the maximum distance,

Δt := max
j=0...m−1

Δtj = max
j=0...m−1

{tj+1 − tj}.(4.6)

Let then a function ω(·) : [0, tf ] �→ {0, 1}nexp be defined by

ωi(t) = pi,j , t ∈ [tj , tj+1),(4.7)

where for i = 1 . . . nexp and j = 0 . . .m− 1 the pi,j are binary values given by

pi,j =

{
1 if

∫ tj+1

0 αi(τ)dτ −
∑j−1

k=0 pi,kΔtk ≥ 0.5Δtj,
0 else.

(4.8)

We can now formulate the following corollary.
Corollary 4.10 (integer gap). Let (xi∗,Gi∗,F ∗, zi∗, ui∗, αi∗)(·) be a feasible

trajectory of the relaxed problem (3.5) with the measurable functions αi∗ : [0, tf ] →
[0, 1] replacing wi(·) in problem (3.5), with i = 1 . . . nexp.

Consider the trajectory (xi∗,Gi∗,F SUR, zi,SUR, ui∗, ωi,SUR)(·) which consists of
controls ωi,SUR(·) determined via sum up rounding (4.7)–(4.8) on a given time grid
from αi∗(·) and differential states (F SUR, zi,SUR)(·) that are obtained by solving the
initial value problems in (3.5) for the fixed differential states (xi∗,Gi∗)(·) and ωi,SUR(·).
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Then there exists a constant C̄ such that

|zi,SUR(tf)− zi∗(tf)| ≤ C̄Δt, i = 1, . . . , nexp.(4.9)

Assume in addition that constants C,M ∈ R
+ exist such that the functions

f̂ i(xi∗,Gi∗) :=
(
hi
x(x

i(t))Gi(t)
)T (

hi
x(x

i(t))Gi(t)
)

are differentiable with respect to time and it holds∥∥∥∥ d

dt
f̂ i(xi∗,Gi∗)

∥∥∥∥ ≤ C

for all i = 1 . . . nexp, t ∈ [0, tf ] almost everywhere, and f̂ i(xi∗,Gi∗) are essentially

bounded by M . Then there exists a constant Ĉ such that

|φ(F SUR(tf))− φ(F ∗(tf))| ≤ ĈΔt.(4.10)

Proof. The proof follows from Corollary 8 in [20] and the fact that all assumptions
on the right-hand-side function are fulfilled. Note that the condition on the Lipschitz
constant is automatically fulfilled, because z(·) and F (·) do not enter in the right-hand
side of the differential equations.

Corollary 4.10 implies that the exact lower bound of the OED problem (3.5)
can be obtained by solving the relaxed problem in which wi(t) ∈ conv Ω instead of
wi(t) ∈ Ω. In other words, anything that can be done with fractional sampling can
also be done with an integer number of measurements. However, the price might be
a so-called chattering behavior, i.e., frequent switching between yes and no. Note
that the famous bang-bang principle and the mentioned references [7, 15] state similar
results, however, without the linear grid dependence of the Hausdorff distance that
can be exploited numerically by means of an adaptive error control.

4.3. L1 penalization and sparse controls. We are interested in how changes
in the formulation of the optimization problem influence the role of the global infor-
mation gain functions. We first consider an L1 penalty term in the objective function.
We are going back to the multiexperiment case and use the upperscript i = 1 . . . nexp.

Corollary 4.11 (switching function for L1 penalty). Let Hold
wi (·) denote the

switching function for problem (3.5) and Hpenalty
wi (·) the switching function with respect

to wi(·) for problem (3.5) with an objective function that is augmented by a Lagrange
term,

min
xi,Gi,F ,zi,ui,wi

φ(F (tf)) +

∫
T

nexp∑
i=1

εiwi(τ) dτ.

Assume that the maximum principle holds in normal form, i.e., λ0 = 1. Then it holds

Hpenalty
wi (t) = Hold

wi (t)− εi.

Proof. By definition (2.2) of the Hamiltonian we have

Hpenalty(t) = Hold(t)−
nexp∑
i=1

εiwi(t)

which already concludes the proof.
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Corollary 4.11 allows a direct connection between the penalization parameter ε
and the information gain function. For the minimization of the trace of the covariance
matrix (compare Lemma 4.6), this implies that a sufficient condition for wi∗(t) = wmax

is

trace
(
Πi(t)

)
> εi + μi∗.

As a consequence, an optimal sampling design never performs measurements when the
value of the trace of the information gain function is below the penalization parameter
εi.

The case is similar for the time discrete OED problem (3.3). Assume we extend
the objective with a penalization term

nexp∑
i=1

ni
t∑

j=1

Ltr(wi
j) =

nexp∑
i=1

ni
t∑

j=1

εi wi
j ,

then the derivative of the discrete Hamiltonian (2.8) with respect to the control wi
j is

again augmented by −εi.
4.4. L2 penalization and singular arcs. An alternative penalization is a L2

penalization of the objective function with a Lagrange term

∫
T

nexp∑
i=1

εi wi(τ)2 dτ.

This formulation has direct consequences. As the controls ui(·) and wi(·) decouple
(compare Corollary 4.2), the optimal sampling design may be on the boundary of its
domain, or can be determined via the necessary condition that the derivative of the
Hamiltonian with respect to wi(·) is zero, i.e.,

wi(t) =
1

2εi
[
trace

(
Πi(t)

)
− μi∗]

for the case of the minimization of the trace of the covariance matrix. This implies
that wi(·) may be a singular control with fractional values w(t) ∈ (0, wmax). Hence,
we discourage use of this formulation.

5. Numerical examples. In this section we illustrate several effects with nu-
merical examples. Our analysis so far has been based on the so-called first optimize,
then discretize approach. Now we solve the numerical OED problems with direct
or first-discretize–then-optimize methods. In particular, we use the code MS MINTOC

that has been developed for generic mixed-integer optimal control problems by the
author. It is based on Bock’s direct multiple shooting method, adaptive control dis-
cretizations, and switching time optimization. A comprehensive survey of how this
algorithm works can be found in [22]. Note however that there are many specific
structures that can, should, or even have to be exploited to take into account the
special structure of the OED control problems in an efficient implementation. It is
beyond the scope of this paper to go into details, instead we refer to [9, 13] for a more
detailed discussion.

Having obtained an optimal solution, it is possible to evaluate the functions Πi(t)
for an a posteriori analysis. This is what we do in the following. As we have derived
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an explicit formula for the switching functions Πi(t) in terms of primal state variables,
we do not even have to use discrete approximations of the adjoint variables.

Although the algorithm has also been applied to higher-dimensional problems,
such as the bimolecular catalysis benchmark problem of [11], we focus here on two
small-scale academic benchmark problems, that allow us to illustrate many of the
interesting features of optimal sampling designs.

5.1. One-dimensional academic example. We are interested in estimating
the parameter p ∈ R of the initial value problem

ẋ(t) = p x(t), t ∈ [0, tf ], x(0) = x0.

We assume x0 and tf to be fixed and are only interested in when to measure, with an
upper boundM on the measuring time. We can measure the state directly, h(x(t)) =
x(t). The experimental design problem (3.5) then simplifies to

min
x,G,F,z,w

1
F (tf )

subject to
ẋ(t) = p x(t),

Ġ(t) = p G(t) + x(t),

Ḟ (t) = w(t) G(t)2,
ż(t) = w(t),

x(0) = x0, G(0) = F (0) = z(0) = 0,

w(t) ∈ W ,
0 ≤M − z(tf)

(5.1)

with tf = 1, M = 0.2wmax.
Although problem (5.1) is as easy as an optimum experimental design problem

can be, it already allows us to investigate certain phenomena that may occur. First,
assume that x0 = 0. This implies ẋ(t) = Ġ(t) = 0 for all t ∈ T , and hence the
degenerated case in which G(·) ≡ 0 and the inverse of the Fisher information matrix
does not even exist. If we were to maximize a function of the Fisher information
matrix, the sampling design would be a singular decision, as there is no sensitivity
with respect to the parameter throughout.

If we choose an initial value of x0 �= 0, this degenerated case does not occur:
obviously a 0 < τ < tf exists such that

∫ τ

0
x(t) dt �= 0 and hence also G(τ) �= 0 and

therefore F (tf) > 0. The global information function for (5.1) is given by

Π(t) =
G(t)2

F (tf)2
.

As the matrix is one dimensional, all considered criteria carry directly over to this

expression. The switching function for (5.1) is given by Hw = G2(t)
F 2(tf )

− μ. Hence it

is clear that a singular arc with Hw = 0 can only occur on an interval [τs, τe] when
Ġ(τ) = 0 for τ ∈ [τs, τe] almost everywhere. With Ġ(τ) = pG(τ) + x(τ) this implies
that also x(·) is constant on [τs, τe], which is impossible for x0 �= 0. Therefore problem
(5.1) with x0 �= 0 always has a bang-bang solution with respect to w(·).

We choose x0 = 1 in the following. If G(·) happens to be a positive, monotonically
increasing function on T , then we can deduce that the optimal sampling w(·) is given
by a 0 − 1 arc, where the switching point is determined by the value of M . Such a
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Fig. 5.1. Linear optimum experimental design problem (5.1) with one state and one sampling
function for different values of p. Left: p = −0.5, right: p = −2.

scenario is obtained for the expected optimal parameter value of p = −0.5; compare
Figure 5.1(left).

The switching structure depends not only on functions and initial values, but
may also depend on the very value of p itself. An example with an optimal 0− 1− 0
solution is depicted in Figure 5.1(right) for the value of p = −2. Here the optimal
sampling is

w(t) =

{
0, t ∈ [0, τ ] ∪ [τ + 0.2, 1],
wmax, t ∈ [τ, τ + 0.2].

(5.2)

Figure 5.1 also illustrates the connection between the discrete-time measurements
in section 3.1 and the measurements on intervals as in section 3.2. If the interval width
is reduced, the solutions eventually converge to a single point (argmaxt∈T Π(t)) and
coincide with the optimal solution of (3.3).

One interesting feature of one-dimensional problems is that the effect of additional
measurements is a pure scaling of Π(t), but not a qualitative change that results in
measurements at different times. In other words: it is always optimal to measure as
much as possible at the point/interval in time where Π(t) has its maximum value.
The measurement reduces the value of Π(t), but its maximum remains in the same
time point. This is visualized in Figure 5.6(left), where the optimal sampling (5.2) for
different values of wmax results in differently scaled Π(t). We see in the next section
that this is not necessarily the case for higher-dimensional OED problems.

5.2. Lotka–Volterra. We are interested in estimating the parameters p2, p4 ∈ R

of the Lotka–Volterra-type predator-prey fish initial value problem

ẋ1(t) = p1 x1(t)− p2x1(t)x2(t)− p5u(t)x1(t), t ∈ [0, tf ], x1(0) = 0.5,

ẋ2(t) = −p3 x2(t) + p4x1(t)x2(t)− p6u(t)x2(t), t ∈ [0, tf ], x2(0) = 0.7,

where u(·) is a fishing control that may or may not be fixed. The other parameters,
the initial values and tf = 12, are fixed, consistent with a benchmark problem in
mixed-integer optimal control, [21]. We are interested in how to fish and when to
measure, again with an upper bound M on the measuring time. We can measure the
states directly, h1(x(t)) = x1(t) and h

2(x(t)) = x2(t). We use two different sampling
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functions, w1(·) and w2(·), in the same experimental setting. This can be seen either
as a two-dimensional measurement function h(x(t)), or as a special case of a multiple
experiment, in which u(·), x(·), and G(·) are identical. The experimental design
problem (3.5) then reads

min
x,G,F ,z1,z2,u,w1,w2

trace
(
F−1(tf)

)
subject to

ẋ1(t) = p1 x1(t)− p2x1(t)x2(t)− p5u(t)x1(t),
ẋ2(t) = −p3 x2(t) + p4x1(t)x2(t)− p6u(t)x2(t),
˙G11(t) = fx11(·) G11(t) + fx12(·) G21(t) + fp12(·),
˙G12(t) = fx11(·) G12(t) + fx12(·) G22(t),
˙G21(t) = fx21(·) G11(t) + fx22(·) G21(t),
˙G22(t) = fx21(·) G12(t) + fx22(·) G22(t) + fp24(·),
˙F11(t) = w1(t)G11(t)

2 + w2(t)G21(t)
2,

˙F12(t) = w1(t)G11(t)G12(t) + w2(t)G21(t)G22(t),
˙F22(t) = w1(t)G12(t)

2 + w2(t)G22(t)
2,

ż1(t) = w1(t),

ż2(t) = w2(t),

x(0) = (0.5, 0.7),
G(0) = F (0) = 0,
z1(0) = z2(0) = 0,

u(t) ∈ U , w1(t) ∈ W , w2(t) ∈ W ,
0 ≤M − z(tf)

(5.3)

with tf = 12, p1 = p2 = p3 = p4 = 1, and p5 = 0.4, p6 = 0.2, and fx11(·) =
∂f1(·)/∂x1 = p1 − p2x2(t) − p5u(t), fx12(·) = −p2x1(t), fx21(·) = p4x2(t), fx22(·) =
−p3+p4x1(t)−p6u(t), and fp12(·) = ∂f1(·)/∂p2 = −x1(t)x2(t), fp24(·) = ∂f2(·)/∂p4 =
x1(t)x2(t).

Note that the state F21(·) = F12(·) has been left out for reasons of symmetry.
We start by looking at the case where the control function u(·) is fixed to zero. In
this case the states and the sensitivities are given as the solution of the initial value
problem, independent of the sampling functions w1(·) and w2(·). Figure 5.2 shows
the trajectories of x(·) and G(·).

We set W = [0, 1] and M = (4, 4). The optimal solution for this control problem
is plotted in Figure 5.3. It shows the sampling functions w1(·) and w2(·) and the trace
of the global information gain matrices

Π1(t) = F−1(tf)

(
G11(t)

2 G11(t)G12(t)
G11(t)G12(t) G12(t)

2

)
F−1(tf),(5.4a)

Π2(t) = F−1(tf)

(
G21(t)

2 G21(t)G22(t)
G21(t)G22(t) G22(t)

2

)
F−1(tf)(5.4b)

with F−1(tf) =
(

F11(tf ) F12(tf )
F12(tf ) F22(tf )

)−1

.

Comparing this solution that measures at the time intervals when the integral
over the trace of Π(t) is maximal to a simulated one with all measurements in the
time intervals [0,Mi] with Mi = 4, the main effect of the measurements seems to
be a homogeneous downscaling over time, comparable to the one-dimensional case in
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Fig. 5.2. States and sensitivities of problem (5.3) for u(·) ≡ 0 and p2 = p4 = 1.
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Fig. 5.3. Optimal solution of problem (5.3) for u(·) ≡ 0 and p2 = p4 = 1. Left: measurement of
prey state h1(x(t)) = x1(t). Right: measurement of predator state h2(x(t)) = x2(t). The dotted lines
show the traces of the functions (5.4) over time, their scale is given at the right borders of the plots.
One clearly sees the connection between the timing of the optimal sampling, the evolution of the
global information gain matrix, and the Lagrange multipliers of the total measurement constraint.

the last example. The value of what could be gained by additional measurements is
reduced by a factor of ≈ 10. These values for both measurement functions are, as we
have seen in the last section, identical to the Lagrange multipliers μ∗

i . The numerical
results for these Lagrange multipliers are also plotted as horizontal lines in Figure 5.3.
As one expects they are identical to the maximal values of the trace of Π(t) outside
of the time intervals in which measurements take place.

The same is true for the optimal solution for problem (5.3), again with u(·) ≡ 0
and M = (4, 4), but now p4 = 4. The difference in parameters results in stronger
oscillations and differences between the two differential states. The optimal sampling
hence needs to take the heavy oscillations into account and do measurements on
multiple intervals in time; see Figure 5.4. As one can observe, the optimal solution is
a sampling design such that the values of the traces of Π(t) at the border points of
the wi ≡ 1 arcs are identical to the values of the corresponding Lagrange multipliers.
Hence, performing a measurement does have an inhomogeneous (over time) effect on
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Fig. 5.4. Optimal solution of problem (5.3) for u(·) ≡ 0 and p2 = 1, p4 = 4. The traces of
the information gain functions have more local maxima, hence the sampling is distributed in time.
Note that the Lagrange multipliers indicate entry and exit of the functions into the intervals of
measurement.
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Fig. 5.5. Optimal solution of problem (5.3) as in Figure 5.4, but now with wmax = 20. Com-
paring trace Π1(t) to the one in Figure 5.4, one observes a modification and hence a change in the
number of arcs with w1(t) ≡ 1. The objective function value is reduced, which is reflected in the fact
that the values of the optimal Lagrange multipliers μ∗

i are smaller than in Figure 5.4.

the scaling of Π(t). The coupling between measurements at different points in time,
and also between different experiments, takes place via the transversality conditions
of the adjoint variables.

The inhomogeneous scaling can also be observed in Figure 5.5, where a sampling
design for wmax = 20 is plotted. One sees that fewer measurement intervals are chosen
and that the shape of the local information gain function Π1(t) is different from the
one in Figure 5.4.

The same effect—an inhomogeneous scaling of the information gain function—is
the reason why fractional values w(·) �∈ {0, 1}may be obtained as optimal values when
fixed time grids are used with piecewise constant controls. We use the same scenario
as above, hence u(·) ≡ 0, M = (4, 4), and p4 = 4. Additionally we fix w2(·) ≡ 0 and
consider a piecewise constant control discretization on the grid ti = i with i = 0 . . . 12.
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Fig. 5.6. Left: Global information gain function for one-dimensional OED problem (5.1) and
controls w(·) obtained from (5.2) for different values of wmax. Note that the information gain matrix
is scaled uniformly over the whole time horizon. Right: Global information gain functions for OED
problem (5.3) and controls w(·) obtained from (5.5) and either one from (5.6a)–(5.6c). One sees
that the information gain matrix Π1(t) is scaled differently, depending on the values of w2 and w7.
The optimal solution (5.6b) on this coarse grid is the solution which scales the information gain
function in a way such that the integrated values on [2, 3] and [7, 8] are identical.

We consider the trajectories for w1(t) = wi when t ∈ [ti, ti+1], i = 0 . . . 11 with

w1 = w5 = w11 = 1, w0 = w3 = w4 = w6 = w9 = w10 = 0, w8 = 0.0444,(5.5)

and the three cases

w2 = 0.0885, w7 = 0.8671,(5.6a)

w2 = 0.3885, w7 = 0.5671,(5.6b)

w2 = 0.6885, w7 = 0.2671,(5.6c)

where the trajectory corresponding to (5.6b) is the optimal one, and the two others
have been slightly modified to visualize the effect of scaling the information gain
matrix by modifying the sampling design. See Figure 5.6(right) for the corresponding
information gain functions. One sees clearly the inhomogeneous scaling. The optimal
solution (5.6b) on this coarse grid is the solution which scales the information gain
function in a way such that the integrated values on [2, 3] and [7, 8] are identical. To
get an integer feasible solution with w(·) ∈ {0, 1} we therefore recommend refining
the measurement grid rather than rounding.

Next, we shed some light on the case where we have additional degrees of freedom.
We choose U = [0, 1] and allow for additional fishing, again for the case p2 = p4 = 1.
In Figure 5.7(left) one sees the optimal control u∗(·), which is also of bang-bang type.
The effect of this control is an increase in amplitude of the states’ oscillations, which
leads to an increase in sensitivity information; see Figure 5.7(right). The correspond-
ing optimal sampling design is plotted in Figure 5.8. The timing is comparable to
the one in Figure 5.3. However, the combination of control function u∗(·) and the
sampling design leads to a concentration of information in the time intervals in which
measurements are being done. This is best seen by comparing the values of the La-
grange multipliers in Figure 5.3 of μ∗ ≈ (1.8, 2.6)10−3 versus the ones of Figure 5.8
with μ∗ ≈ (3, 3.6)10−4 which are one order of magnitude smaller.
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Fig. 5.7. States and sensitivities of problem (5.3) for u(·) ∈ U = [0, 1] and p2 = p4 = 1. See
the increased variation in amplitude compared to Figure 5.2.
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Fig. 5.8. Optimal sampling corresponding to Figure 5.7. Note the reduction of the Lagrange
multiplier by one order of magnitude compared to Figure 5.3 due to the amplification of states and
sensitivities.

As a last illustrating case study we consider an additional L1 penalty of the
sampling design in the objective function as discussed in section 4.3. We consider
problem (5.3) for u(·) ≡ 0 and p2 = p4 = 1 and M = ∞. The objective function now
reads

min
x,G,F ,z1,z2,u,w1,w2

trace
(
F−1(tf)

)
+

∫
T
ε(w1(τ) + w2(τ)) dτ(5.7)

with ε = 1.
As can be seen in Figure 5.9, the L1 penalization has the effect that the optimal

sampling functions are given by

wi(t) =

{
wmax, trace Πi(t) ≥ ε,
0, else.

(5.8)

This implies that the value of ε in the problem formulation can be used to directly
influence the optimal sampling design. Especially for ill-posed problems with small
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Fig. 5.9. Optimal sampling for problem (5.3) with objective function augmented by linear
penalty term

∫
T ε(w1(τ) + w2(τ)) dτ . The sampling functions wi(t) are at their upper bounds of 1

if and only if trace Πi(t) ≥ ε = 1.

values in the information gain matrix Π(t) this penalization is beneficial from a nu-
merical point of view, as it avoids flat regions in the objective function landscape that
might lead to an increased number of iterations. Also it allows a direct economic
interpretation by coupling the costs of a single measurement to the information gain.
To give an idea of the impact on the number of iterations until convergence we con-
sider an instance with both measurement functions, u(·) ∈ [0, 1] and M = (4, 4).
Dependent on the penalization value ε in (5.7) we get the following number of it-
erations (with default settings) with different NLP codes. Problem (5.3) has been
discretized by means of a direct collocation (implicit Euler and piecewise constant
controls) method. The resulting AMPL model can be found on http://mintoc.de in
the benchmark library described in [19].

The following table shows iteration numbers which are not to be compared among
one another as they indicate completely different things. Rather the impact of the
penalization parameter ε within each row is of interest.

ε 0 10−3 10−2 10−1 1 10
conopt 3.15C 1685 1707 1651 1666 1681 1677
ipopt 3.10.0 207 152 155 152 143 130

KNITRO 8.0.0 213 144 76 38 50 64
snopt 7.2-8 1670 2040 1473 2499 1530 1127

The significant reduction in iterations for higher values of ε for most solvers can
also be observed with the optimal control package MUSCOD-II2 that is based on Bock’s
direct multiple shooting method, hence an SQP-type method. However, the reduced
gradient solver conopt seem to be less sensitive to the regularization. The optimal
solutions corresponding to different ε are of course different, hence a comparison is
somewhat arbitrary as the iteration number depends heavily on the starting point.
Yet, it at least gives an indication of the potential of this regularization for certain
numerical methods.

We discourage using an L2 penalization as discussed in section 4.4. It often
results in sensitivity-seeking arcs with values in the interior of W , and there is no
useful economic interpretation.

2Trunk version of September 1, 2012
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6. Conclusions. We have applied the integer gap theorem and the maximum
principle to an optimal control formulation of a generic optimum experimental design
problem. Thus we were able to analyze the role of sampling functions that determine
when measurements should be performed to maximize the information gain with re-
spect to unknown model parameters. We showed the similarity between a continuous
time formulation with measurements on intervals of time, and a formulation with
measurements at single points in time. We defined the information gain functions
that apply to both formulations as the result of a theoretical analysis of the necessary
conditions of optimality. Based on information gain functions we were able to shed
light on several aspects, both theoretical as by means of two numerical examples.

Differences between Fisher and covariance objective function. We showed
that the information gain matrix for a Fisher objective function has a local character,
whereas the one for a covariance objective function includes terms that depend on dif-
ferential states at the end of the time horizon. This implies that measurements affect
the information gain function in the covariance objective case, but not in the Fisher
objective case. This noncorrelation for a maximization of a function of the Fisher
information matrix has direct consequences: integral-neutral rounding of fractional
solutions does not have any influence on the objective function. It also means that
other experiments do not influence the choice of the measurements. Third, providing
a feedback law in the context of first optimize then discretize methods is possible. All
this is usually not true for covariance objective functions.

Scaling of global information gain function by measuring. Taking mea-
surements changes the global information matrix Π(t). The impact may be in form of
a uniform downscaling, but also as a nonhomogeneous over time modification. In the
latter case it is not optimal to take as many measurements as possible in one single
point of time, as is the case for a Fisher objective function or one-dimensional prob-
lems, if one allows more than one measurement per time point/interval. The coupling
between the information function and the measurement functions takes place via the
transversality conditions, thus the impact also carries over to other experiments and
measurement functions.

Role of Lagrange multipliers. We showed that the Lagrange multipliers of
constraints that limit the total number of measurements on the time horizon give a
threshold for the information gain function. Whenever the function value is higher,
measurements are performed, otherwise the value of w is 0.

Role of additional control functions. We used a numerical example to ex-
emplarily demonstrate the effect of additional control functions on the shape of the
information gain function.

Role of fixed grids and piecewise constant approximations. For the prac-
tically interesting case that optimizations are performed on a given measurement grid
we showed that fractional solutions may be optimal. We recommend further refining
the measurement grid instead of rounding.

Penalizations and ill-posed problems. By its very nature, optimal solutions
result in small values of the global information gain function. This explains why OED
problems are often ill-posed if the upper bounds on the total amount of measurements
are chosen too high: additional measurements only yield small contributions to the
objective function once the other measurements have been placed in an optimal way.
As a remedy to overcome this intrinsic problem of OED we propose using L1 penaliza-
tions of the measurement functions. We showed that the penalization parameter can
be directly interpreted in terms of the information gain functions. Therefore such a
formulation couples the costs of a measurement to a minimum amount of information
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it has to yield, which makes sense from a practical point of view. Of course, the value
of ε can also be decreased in a homotopy.

Appendix A. Useful lemmas. In this appendix we list several useful lemmas
we use throughout the paper.

Lemma A.1 (positive trace). If A ∈ R
n×n is positive definite, then trace(A) > 0.

Proof. As A is positive definite, it holds xTAx > 0 for all x ∈ R
n, in particular

for all unit vectors. Hence it follows aii > 0 for all i = 1 . . . n and thus trivially
trace(A) =

∑n
i=1 aii > 0.

Lemma A.2 (derivative of trace function). Let A be a quadratic n × n matrix.
Then 〈

∂trace(A)

∂A
,ΔA

〉
= trace(ΔA).(A.1)

Proof. 〈
∂trace(A)

∂A
,ΔA

〉
= lim

h→0

trace(A+ hΔA)− trace(A)

h

= lim
h→0

h trace(ΔA)

h
= trace(ΔA).

Lemma A.3 (derivative of inverse operation). Let A ∈ GLn(R) be an invertible
n× n matrix. Then

∂A−1

∂A
·ΔA = −A−1ΔAA−1.(A.2)

Lemma A.4 (derivative of eigenvalue operation). Let λ(A) be a single eigenvalue
of the symmetric matrix A ∈ R

n×n. Let z ∈ R
n be an eigenvector of A to λ(A) with

norm 1. Then it holds 〈
∂λ(A)

∂A
,ΔA

〉
= zTΔAz.(A.3)

Lemma A.5 (derivative of determinant operation). Let A ∈ R
n×n be a symmet-

ric, positive definite matrix. Then it holds

〈
∂det(A)

∂A
,ΔA

〉
= det(A)

n∑
i,j=1

A−1
i,j ΔAi,j .(A.4)

Proofs for the Lemmas A.3, A.4, and A.5 can be found in [11].
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