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Zusammenfassung

In dieser Arbeit untersuchen wir gemischt-ganzzahlige nichtlineare Optimalsteuerungsprobleme
(MIOCPs). Darunter verstehen wir Optimierungsprobleme mit unterliegenden Differentialglei-
chungen und Steuerfunktionen, die Ganzzahligkeitsbedingungen erfüllen müssen. Typische Bei-
spiele sind die Gangwahl von Fahrzeugen, logische Entscheidungen wie “messe ich zu einem
gegebenen Zeitpunkt oder nicht?” oder verfahrenstechnische Prozesse mit ein-aus Pumpen. In
praktischen Anwendungen kommen häufig zusätzliche Charakteristika hinzu. Beispiele sind
kombinatorische Bedingungen, Unsicherheiten verschiedener Art, Verzögerungseffekte oder die
Existenz multipler Optimierungskriterien.
In dieser Arbeit erläutern wir algorithmische Ansätze für MIOCPs. Wir stellen neue Algorith-
men vor, die in der Lage sind, auch praktische Optimierungsprobleme schnell und zuverlässig
zu lösen. Sie basieren auf neuen theoretischen Ergebnissen. Auf der unteren Ebene werden re-
laxierte, kontinuierliche Optimalsteuerungsprobleme gelöst. Hierzu nutzen wir direkte simultane
Methoden, insbesondere Bocks direkte Mehrzielmethode. Diese grundsätzliche Vorgehensweise
wurde schon in früheren Arbeiten vorgeschlagen. Die Beiträge dieser Arbeit gehen dahingehend
weiter, als der internationale Forschungsstand für MIOCPs erweitert wird durch
• einen Algorithmus für eine generische Problemklasse von MIOCPs mit bewiesener Ter-

minierung und Konvergenz zu einer ε-zertifizierten Lösung,
• Theoreme, die die beste untere Schranke für MIOCPs garantieren,
• ein Korollar, das die Abschätzung des Hausdorff-Abstandes zwischen den Erreichbarkeits-

mengen einer disjunkten Steuerungsmenge und ihrer konvexen Hülle verbessert und das
Resultat auf den nichtlinearen Fall verallgemeinert,
• struktur-ausnutzende lineare Algebra für die Äußere Konvexifizierung,
• ein Theorem, das die Dekomposition eines MIOCP in ein OCP und ein gemischt-ganzzahliges

lineares Programm (MILP) rechtfertigt,
• einen struktur-ausnutzenden Branch and Bound Algorithmus, der die MILP Lösungszeit um

Größenordnungen gegenüber kommerziellen Lösern verbessert,
• Algorithmen, um Unsicherheiten und Verzögerungseffekte behandeln zu können,
• eine benchmark-Bibliothek von MIOCPs mit einem neuen Klassifizierungsschema,
• eine detaillierte Untersuchung eines zeit-diskreten MIOCPs, das das psychologische Anwen-

dungsfeld “Komplexes Problemlösen” Methoden der Optimierung zugänglich macht,
• notwendige Optimalitätsbedingungen für Versuchsplanungsprobleme (OEDPs),
• eine neue Formulierung von OEDPs, die zu besserer Konditionierung und Konvergenz führt,
• und Lösungen für mehr als ein Dutzend MIOCPs.
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Abstract

The central topic of this thesis are mixed-integer nonlinear optimal control problems (MIOCPs).
These are optimization problems that involve differential equations and control functions con-
strained by integrality requirements. Typical examples are the choice of gears in transport, logi-
cal decisions like “do I measure at a given point in time or not?”, or processes in chemical engi-
neering involving on-off pumps. In practical applications often further characteristics evolve for
this class of problems. Examples are combinatorial and logical constraints, uncertainties, delays,
and multiple objectives.
In this thesis we present, compare, and discuss possible approaches to treat MIOCPs, and present
novel algorithms that are reliable, fast, and can cope with many generalizations that are necessary
from a practical point of view. These algorithms are backed up by novel insight from a theoretical
perspective. Our algorithms are based on state-of-the-art direct methods on the lower level to
solve relaxed problems, in particular all-at-once approaches like direct multiple shooting and
direct collocation. This has already been proposed in previous work. However, the contributions
in this thesis go further. The international state-of-the-art in mixed-integer optimal control has
particularly been advanced by
• an algorithm for a generic problem class of MIOCPs, for which termination and convergence

to an ε-certificated solution has been proven,
• Theorems that yield the best possible lower bound for MIOCPs,
• a Corollary that sharpens the estimate of the Hausdorff distance between reachability sets of

a disjoint control set and its convex hull from the previously known
√

∆t to linear grid size
∆t, and generalizes to the nonlinear case,
• a structure-exploiting linear algebra approach that drastically reduces the computational ex-

tra effort due to the outer convexification,
• a theorem that justifies a practically important decomposition of MIOCPs into continuous

nonlinear control problems and mixed-integer linear programs (MILPs), and hence the in-
clusion of combinatorial constraints into the proposed solution framework,
• a structure-exploiting Branch and Bound algorithm that reduces the MILP solution time by

orders of magnitude compared to state-of-the-art commercial solvers,
• a framework to treat uncertainties and control delays,
• a benchmark library of MIOCPs with a detailed and novel classification scheme,
• the necessary conditions of optimality for Optimum Experimental Design (OED) problems,
• a novel formulation of OED problems that helps to overcome the intrinsic ill-conditioning,
• and more than a dozen MIOCPs that have been solved, most of them for the first time.
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Ohne die Unterstützung von Freunden und Familie geht gar nichts, auch nicht wissenschaftlich.
Ein herzliches danke schön daher an Carola, Daniel, Jens, Lars, Olaf, Uli, Rolf und Walter dafür,
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1 Introduction

The central topic of our work are so-called mixed-integer nonlinear optimal control problems
(MIOCPs). These are optimization problems that involve differential equations and control func-
tions that need to obey integrality requirements. Typical examples are the choice of gears in
transport, logical decisions like “do I measure at a given point in time or not?”, or processes
in chemical engineering involving on-off valves. In practical applications often further charac-
teristics evolve for this class of problems. Examples are combinatorial and logical constraints,
uncertainties, delays, and multiple objectives.
From an algorithmical point of view the integer requirement makes this problem class extremely
challenging. Most approaches to standard optimal control problems use gradient information and
hence assume a connected feasible set. Thus, there is a strong demand for efficient and stable
algorithms for MIOCPs that are in particular able to cope with the mentioned extended problem
formulations.

1.1 Goals of this thesis

Mathematical optimization is a discipline of high importance for science, industry, and eco-
nomics, with much progress over the last decades. Unfortunately, this field has also seen a
separation into at least three major subdisciplines: continuous, discrete, and stochastic optimiza-
tion. In addition, communities focussing on optimal control, design problems, multiple objective
functions, nonsmooth optimization, or global optimization have evolved. However, only very
few mathematical optimization and control problems fall precisely into only one of these subdis-
ciplines. This habilitation aims towards an integration of deterministic, gradient-based methods
from these subdisciplines in the context of MIOCPs, and hence to an extension of numerically
solvable optimal control problems.
Although the first MIOCPs were already solved in the early 1980s, the so-called indirect meth-
ods that were used at the time do not seem appropriate for generic large-scale optimal control
problems with underlying nonlinear differential algebraic equation systems. It is also difficult
to extend the algorithms to be able to cope with the mentioned complications. Instead direct
methods, in particular simultaneous approaches, have become the methods of choice for most
practical (non-integer) problems.
By direct method we refer to methods that discretize first, then optimize and work directly on
the optimality conditions of the discretized control problem. In our terminology indirect meth-
ods for optimal control are methods that optimize first, then discretize by applying necessary
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conditions of optimality in function space, and then solving the control problem indirectly by
solving the resulting boundary value problem numerically. This is not to be confused with the
notion of direct and indirect methods in PDE constrained optimization. In that context direct
methods sometimes refer to descent-based algorithms that directly use derivative information,
while indirect methods refer to solving necessary first order conditions of optimality.
In our context, the direct methods discretize infinite-dimensional control functions with basis
functions and corresponding finite-dimensional variables that enter into the optimization prob-
lem. We further distinguish between sequential and simultaneous direct methods, depending on
whether they solve an outer optimization loop with sequential simulations, or whether they solve
the simulation and optimization task simultaneously. The drawback of direct methods with inte-
ger control functions obviously is that they may lead to high-dimensional vectors of integer vari-
ables. For many practical applications a fine control discretization is required, however. There-
fore, in general, techniques from mixed-integer nonlinear programming like Branch&Bound or
Outer Approximation will work only on coarse grids, because of the exponentially growing
complexity of the problem.
In this thesis we present, compare, and discuss possible approaches to treat MIOCPs, and present
novel algorithms that are reliable, fast, and can cope with many generalizations that are necessary
from a practical point of view. The algorithms are based on new theoretical results.

1.2 Outline of this thesis

Our goal to shed light on mixed-integer nonlinear optimal control problems from different points
of view is challenging. Some of the results of this thesis could only be obtained in (interdisci-
plinary) cooperations. The thesis is structured in chapters, which are based on submitted or
published papers. On the one hand, the chapters can hence be read independent from the rest of
the thesis. On the other hand, they highlight different aspects of mixed-integer optimal control
and contribute to an overall understanding.
Chapter 2 has a special role as the backbone of this thesis. It gives an overview and refers
to details in the other chapters. This is also the chapter which differs most from the original
publication, as it includes additional material. All chapters were rewritten to link to one another,
to reduce redundancy, and to jointly yield a comprehensive work on a challenging optimization
problem class. They start with a comprehensive summary of content and a specific, but non-
redundant introduction. They vary from the mentioned publications, in particular with respect
to bibliography, a unified format for algorithms, tables, and plots, and links to other chapters of
this work.
In the following we give details and explain the contributions of the author of this thesis. Out of
a total of eight papers that form the basis of this thesis, S. Sager authored three as single author
and three as first, corresponding author. For the two remaining publications, PhD students from
the junior research group headed by S. Sager were first authors.

2
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Chapter 2 is based on the publication

[204] S. Sager. Reformulations and Algorithms for the Optimization of Switching Decisions in
Nonlinear Optimal Control. Journal of Process Control, 2009, Vol. 19:1238–1247.

This chapter gives an overview of the field of mixed-integer nonlinear optimal control and refers
to later chapters. S. Sager coauthored more papers on MIOC that do not enter as chapters in
this thesis. References to and short summaries of this additional work, in particular [170, 157,
146, 147, 213, 141], are provided. Also a generic introduction to MIOC and to competitive
approaches are given.
The chapter can be seen as the backbone of this thesis and should be read first.

Chapter 3 is based on the publication

[208] S. Sager, H.G. Bock, M. Diehl. The Integer Approximation Error in Mixed-Integer Opti-
mal Control. Mathematical Programming A, 2011, DOI 10.1007/s10107-010-0405-3.

In this chapter the most important theoretical results are achieved. We show that an outer con-
vexification of the integer control functions has very beneficial properties. We present a strategy
that calculates integer controls in linear time, but still allows to guarantee upper bounds with
respect to objective function and constraints that depend on the control discretization grid. The
Sum Up Rounding strategy is a constructive part of the proof of these guarantees.
S. Sager wrote the publication and worked out the details of the mathematical proofs. The coau-
thors contributed in several discussions and reviewed the paper before submission.

Chapter 4 is based on the publication

[145] C. Kirches, H.G. Bock, J.P. Schlöder, S. Sager. Block Structured Quadratic Programming
for the Direct Multiple Shooting Method for Optimal Control. Optimization Methods and
Software, 2010, Vol. 26(2):239–257.

To overcome the drawback of additional control functions due to the outer convexification, we
propose a tailored structure-exploitation for the solution of the underlying Karush-Kuhn-Tucker
systems.
S. Sager as last author initiated this work with the basic idea to use an alternative to condensing
for MIOCPs. C. Kirches worked out the details in his PhD thesis that S. Sager mentored within
the Heidelberg PhD student mentoring system. Especially the numerical implementation has
been done completely by C. Kirches. H.G. Bock and J.P. Schlöder worked on a predecessor of
the method in a different context and supervised C. Kirches during his PhD thesis. The paper
has been written jointly by C. Kirches and S. Sager.

3



CHAPTER 1
∣∣ I N T R O D U C T I O N

Chapter 5 is based on the publication

[212] S. Sager, M. Jung, C. Kirches. Combinatorial Integral Approximation. Mathematical
Methods for Operations Research, 2011, Vol. 73(3):363–380.

The Sum Up Rounding strategy is not able to take combinatorial constraints into account. We
discuss a decomposition approach that couples the solution of a mixed-integer linear program to
the approximation results that guarantee a-priori bounds on the loss of optimality. The decom-
position of a mixed-integer nonlinear optimal control problem into one continuous nonlinear
control problem and one mixed-integer linear program usually has dramatic advantages in terms
of computational complexity.
S. Sager is the first author of this publication. He developed the main mathematical ideas and
proofs. The coauthoring PhD students M. Jung and C. Kirches contributed with an efficient
implementation of the Branch and Bound algorithm.

Chapter 6 is based on the publication

[128] T. Huschto, G. Feichtinger, P. Kort, R.F. Hartl, S. Sager, A. Seidl. Numerical Solution of a
Conspicuous Consumption Model with Constant Control Delay. Automatica, 2011, DOI
10.1016/j.automatica.2011.06.004.

This chapter is special, because the control problem under consideration does not include integer
controls. However, it could be easily extended by requiring that the prices need to be from a finite
set, as is often the case for airlines, hotels, and so on. Hence, the control problem can be seen
as the relaxed control problem, for which an integer solution can be determined in a second
step. The optimal control problem is interesting, as it includes an uncertain scenario in which an
expected value is optimized subject to worst case constraints. Additionally, it contains delays in
the control functions.
S. Sager initiated the mathematical approach to this problem and supervised the progress of the
paper, mainly due to the first author T. Huschto, who is a PhD student in the junior research
group headed by S. Sager. The other coauthors contributed from the economical application
point of view and by providing the challenging and interesting test problem. The mathematical
parts have been written jointly by T. Huschto and S. Sager.

Chapter 7 is based on the publication

[205] S. Sager. A benchmark library of mixed-integer optimal control problems. Proceedings
MINLP09 IMA Minneapolis, accepted.

We present a number of different MIOCPs that are also included in an open online benchmark
library the author maintains. The control problems are classified according to different criteria
and either solutions or references to solutions are given.

4
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Chapter 8 is based on the publication

[207] S. Sager, C.M. Barth, H. Diedam, M. Engelhart, J. Funke. Optimization as an Analysis
Tool for Human Complex Problem Solving. SIAM Journal on Optimization, accepted.

We discuss a particularly interesting example of a time-discrete optimal control problem with
integer-valued decisions that stems from the analysis of human complex problem solving. Op-
timization is applied as an analysis tool and as a means to come up with an objective indicator
function to quantitatively assess the performance of subjects in complex problem solving.
S. Sager initiated and wrote the paper as first author. H. Diedam and M. Engelhart worked as
“Wissenschaftliche Hilfskräfte” in this project and provided a graphical user interface and auto-
matic model generation tools. C.M. Barth and J. Funke are cooperation partners from the Insti-
tute of Psychology in Heidelberg and contributed expertise from the field of complex problem
solving.

Chapter 9 is based on the publication

[206] S. Sager. Sampling Decisions in Optimum Experimental Design in the Light of Pontrya-
gins Maximum Principle. SIAM Journal on Control and Optimization, submitted.

The optimal design of experiments can be seen as an important subclass of MIOC. We analyze
sampling decisions via necessary conditions in function space to exemplarily show how problem
classes can be further investigated by means of optimization theory.

1.3 Contributions to the international state-of-the-art

In this thesis we present, compare, and discuss possible approaches to treat MIOCPs, and present
novel algorithms that are reliable, fast, and can cope with many generalizations that are necessary
from a practical point of view. These algorithms are backed up by novel insight from a theoretical
perspective.
Our favored algorithms use state-of-the-art direct methods on the lower level to solve relaxed
problems, in particular all-at-once approaches like direct multiple shooting and direct colloca-
tion. This has already been proposed in previous work [203, 214]. However, the contributions
in this thesis go further. The international state-of-the-art in mixed-integer optimal control has
particularly been advanced by
• Algorithm 2.1 on page 25 for a generic problem class of MIOCPs, for which termination and

convergence to an ε-certificated solution has been proven,
• Theorem 3.2.2 on page 36 that gives an upper bound on the distance between differential

states as unique solutions of a system of ordinary differential equations with different control
functions,
• Theorem 3.3.1 on page 38 that bounds the sliding mode norm between a relaxed and a Sum

Up Rounding based integer control function,

5
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• Theorem 3.4.2 on page 40 that extends this to the nonlinear case,
• Corollary 3.5.3 on page 44 that yields the best possible lower bound for MIOC problems,
• Corollary 3.5.7 on page 45 that sharpens the estimate of the Hausdorff distance between

reachability sets of a disjoint control set and its convex hull from the previously known
√

∆t
to linear grid size ∆t, and generalizes to the nonlinear case,
• a structure-exploiting linear algebra approach in Chapter 4 that drastically reduces the com-

putational extra effort due to the outer convexification,
• Theorem 5.3.1 on page 78 that justifies a practically important decomposition of MIOCPs

into continuous nonlinear control problems and mixed-integer linear programs (MILPs), and
hence the inclusion of combinatorial constraints into the proposed solution framework,
• the structure-exploiting Branch and Bound Algorithm 5.1 on page 82 that reduces the MILP

solution time by orders of magnitude compared to state-of-the-art commercial solvers,
• a framework to treat uncertainties and control delays in Chapter 6,
• a benchmark library of MIOCPs with a detailed and novel classification scheme,
• the extensive study of a time-discrete MIOCP which not merely describes an application, but

opens up the whole new application area of complex problem solving for optimization,
• Corollary 9.5.1 on page 198 that states the necessary conditions of optimality for Optimum

Experimental Design (OED) problems,
• the concept of the Local and Global Information Gain functions in OED and Lemmata 9.5.5,

9.5.6, 9.5.7, 9.5.8 that allow an a posteriori analysis of sampling decisions in OED,
• a novel formulation of OED problems that helps to overcome the intrinsic ill-conditioning

and improves convergence properties,
• and more than a dozen of challenging MIOC applications that have been solved, most of

them for the first time.

A short outlook to future work is given in Chapter 10.
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2 Overview: Mixed–Integer Optimal Control

The contents of this chapter are based on the paper

[204] S. Sager. Reformulations and Algorithms for the Optimization of Switching Decisions in
Nonlinear Optimal Control. Journal of Process Control, 2009, Vol. 19:1238–1247.

Chapter Summary. In model-based nonlinear optimal control switching decisions that can be
optimized often play an important role. Prominent examples of such hybrid systems are gear
switches for transport vehicles or on/off valves in chemical engineering. Optimization algo-
rithms need to take the discrete nature of the variables that model these switching decisions into
account. Unnecessarily, for many applications still an equidistant time discretization and either
rounding or standard mixed–integer solvers are used. In this chapter we survey recent progress in
theoretical bounds, reformulations, and algorithms for this problem class and show how process
control can benefit from them. We propose a comprehensive algorithm based on the solution of
a sequence of purely continuous problems and simulations.

2.1 Introduction

We give an introduction to the problem class we are interested in and review the literature. Note
that more specific, complementary literature surveys are provided in the introductory sections of
the next chapters.
Problem class. We are interested in model-based nonlinear optimal control including switching
decisions that are to be optimized together with continuous controls. For the sake of readabil-
ity, we proceed as follows. We focus on a specific case of a mixed–integer nonlinear optimal
control problem (MIOCP) in ordinary differential equations (ODE) of the following form. Later
on, in Section 2.8, we discuss extensions to include different objective functionals, multi-point
constraints, algebraic variables, more general hybrid systems, and the like. For now, we want to
minimize a Mayer term

min
x,u,v

Φ(x(tf)) (2.1a)

over the differential states x(·) and the control functions (u,v)(·) subject to the nx-dimensional
ODE system

ẋ(t) = f (x(t),u(t),v(t)), t ∈ [0, tf], (2.1b)

7
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with fixed initial values

x(0) = x0, (2.1c)

a feasible domain for the measurable controls

u(t) ∈ U , t ∈ [0, tf], (2.1d)

and integrality of the control function v(·)

v(t) ∈ Ω := {v1,v2, . . . ,vnω}, t ∈ [0, tf]. (2.1e)

Additionally, nonlinear path and control constraints of the form

0 ≤ c(x(t),u(t),v(t)), t ∈ [0, tf] (2.1f)

may need to be considered. Our main focus lies on the control function v(·) that needs to take a
value vi from a finite set Ω ⊂ Rnv at all times. In the following all functions are assumed to be
sufficiently often continuously differentiable, and ‖ · ‖ denotes the maximum norm ‖ · ‖

∞
.

We use the term integer control for (2.1e), while binary control refers to the special case

ω(t) ∈ {0,1}nω . (2.2a)

We use the expression relaxed, whenever a restriction v(·) ∈Ω is relaxed to a larger subset of Ω,
in particular to its convex hull. Of interest is a recently proposed outer convex relaxation [203]
that we define as follows. For every element vi of Ω a binary control function ωi(·) is introduced.
The ODE (2.1b) can then be written as

ẋ(t) =
nω

∑
i=1

f (x(t),u(t),vi) ωi(t), t ∈ [0, tf]. (2.2b)

If we impose the special ordered set type one condition

nω

∑
i=1

ωi(t) = 1, t ∈ [0, tf], (2.2c)

there is obviously a bijection between every feasible integer function v(·) ∈ Ω and an ap-
propriately chosen binary function ω(·) ∈ {0,1}nω , compare Section 2.6.5. The relaxation of
ω(t) ∈ {0,1}nω is given by ω(t) ∈ [0,1]nω .
We use the expression outer convexification or partial outer convexification for the formulation
(2.2b, 2.2c). Note that the resulting problem is only convex if f (·) is convex also in the arguments
x(·) and u(·). Hence, the expression convexification only addresses the integer component.
Note that an equivalent formulation that is sometimes used, especially in the hybrid systems

8
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community, is to write (2.1b, 2.1e) as

ẋ(t) = f̃i(x(t),u(t)), t ∈ [0, tf], 1≤ i≤ nω (2.3)

as the choice of a model i to use.
As already done in [203], we refer to (2.1) as a mixed-integer nonlinear optimal control problem.
Whereas the term ”optimal control” is commonly agreed to denote the optimization of processes
that can be described by an underlying system of (partial) differential and algebraic equations
with so–called control functions, there are several names for optimal control problems contain-
ing binary or integer variables in the literature. Sometimes it is referred to as mixed–integer
dynamic optimization or mixed-logic dynamic optimization (MIDO or MLDO, see, e.g., [185]),
sometimes as hybrid optimal control (e.g., [12], [232] or [56]), sometimes as a special case of
mixed–integer nonlinear program (MINLP) optimization. As controls that take only values at
their boundaries are known as bang–bang controls in the optimal control community, very often
expressions containing bang–bang are used, too (e.g., [177]). Although there may be good rea-
sons for each of these names, we use the expressions mixed–integer (nonlinear) optimal control
(MIOC) and mixed–integer (nonlinear) optimal control problem (MIOCP). The reason is that the
expression mixed–integer describes very well the nature of the variables involved and is well–
established in the optimization community, while optimal control is used for the optimization of
control functions and parameters in dynamic systems, whereas the term dynamic optimization
might also refer to parameter estimation.
Typical examples for the problem class (2.1) are the choice of gears in transport, [237, 106, 213,
214, 147, 141], or processes involving on/off valves, [137, 54, 174]. Also Optimum Experimen-
tal Design can be interpreted as a special non–standard subclass of (2.1), compare Chapter 9. An
open online benchmark library of MIOCPs is available, [202], see also Chapter 7.
MIOC approaches in the literature. MIOCPs include features related to different mathe-
matical disciplines. Hence, it is not surprising that very different approaches have been pro-
posed to analyze and solve them, ranging from theoretical discussions based on variations of the
maximum principle to mixed-integer linear programming on piecewise linearly approximated
discretizations of the control problem.
There are three generic approaches to solve model-based optimal control problems, compare
[37, 36]. With its explicit approach, Dynamic Programming seems to be suited for a treatment of
integer variables. Proofs of concept can be found, e.g., for applications in automatic truck control
with gear switching, [125, 52]. However, the approach suffers in general from the so-called
curse of dimensionality, an exponential increase in runtime when the state dimension increases.
It is therefore not the method of choice for generic large–scale optimal control problems with
underlying nonlinear differential (algebraic) equation systems.
The same holds true for indirect methods, also known as the first optimize, then discretize ap-
proach. A global minimum principle for disjoint control sets and (noncontinuous) ordinary dif-
ferential equations (ODEs) has been formulated and solved numerically via the newly devel-

9



CHAPTER 2
∣∣ O V E R V I E W : M I O C

oped method of Competing Hamiltonians in the work of Bock and Longman in the early 1980s,
[42, 43, 161]. To our knowledge this was the first time that a global minimum principle has been
applied to solve a MIOCP. Theoretical results on hybrid systems have been determined, e.g.,
in [232, 223, 234]. Based on hybrid maximum principles or extensions of Bellman’s equation
approaches to treat switched systems have been proposed, e.g., in [224, 17, 5]. Unfortunately,
indirect methods are not appropriate for generic large-scale optimal control problems with un-
derlying nonlinear differential algebraic equation systems, and have problems to deal with path-
constrained arcs. It is important to stress, however, that functional analysis yields important
insight into solution structures, as exemplified in Chapter 9 for the special case of Optimum
Experimental Design.
The third generic approach, direct methods and in particular all–at–once approaches, have be-
come the methods of choice for most practical problems, see [37]. Even in the case of direct
methods, there are multiple alternatives to proceed. Various approaches have been proposed to
discretize the differential equations by means of shooting methods or collocation, e.g., [44, 34],
to use global optimization methods by under- and overestimators, e.g., [85, 188, 63], to con-
sider a static optimization problem instead of the transient behavior, e.g., [121], to approximate
nonlinearities by piecewise-linear functions, e.g., [174], or by approximating the combinatorial
decisions by continuous formulations, as in [55] for drinking water networks. Also problem
(re)formulations play an important role, e.g., outer convexification of nonlinear MIOCPs [214],
the modeling of MPECs and MPCCs [27, 26], or mixed-logic problem formulations leading to
disjunctive programming, [195, 120, 184]. The approach to optimize the time-points for a given
switching structure has been proposed by several authors, e.g., [139, 164, 199, 140, 106, 214].
It is well known that such a formulation introduces nonconvexities (see, e.g., an example in
[203]). Hence, this approach should be combined with a proper initialization of the switching
points and the calculation of an accurate lower bound, as pointed out in [214]. Another interest-
ing technique is the method of Monotone Structural Evolution proposed in [233]. This method
uses knowledge from the maximum principle to obtain criteria for an adaptive refinement of
discretization structures, unfortunately at the price of having to solve the adjoint equations.
Interesting recent developments include problem-specific reformulations and decompositions,
as in [55] for drinking water networks. The authors reformulate the MIOCP as a large-scale,
structured nonlinear program (NLP) and solve a small scale integer program on a second level
to approximate the calculated continuous aggregated output of all pumps in a water works.
Powerful commercial MILP solvers and advances in MINLP solvers, [1, 45], make the usage of
general purpose MILP/MINLP solvers more and more attractive. The MIOCP may be discretized
by a direct method and results in MILP, e.g., [174], or a MINLP, e.g., [105], with a finite number
of mixed-integer variables. However, due to the high complexity of MINLPs and the increase in
the number of integer variables, whenever the discretization grid is refined, this only works for
small problems with limited time horizons, see [238] for a discussion.
Outline of the chapter. We start by giving an overview of Dynamic Programming, the in-
direct, and the direct approach to mixed-integer optimal control in Sections 2.2, 2.3 and 2.4,
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respectively. Tackling generic problems of the form (2.1) is difficult because of the combined
nonlinear and discrete nature. Several algorithms are capable of producing a sub-optimal solu-
tion with the strong property of integer feasibility. For these approaches a bound on the perfor-
mance loss is of utmost importance. This is addressed in Section 2.5. We first consider the case
of linearly entering binary controls. In Sections 2.6.3 and 2.6.5 we obtain an equivalent formu-
lation of this control-affine structure for (2.1). Sections 2.6 and 2.7 list different approaches to
overcome the intrinsic problem of direct approaches with integer variables, cumulating into a
comprehensive algorithm in Section 2.7.4. In Section 2.8 generalizations of the simple control
problem (2.1) are discussed. We conclude with a summary in Section 2.9.

2.2 Dynamic programming

The methodology dynamic programming (DP) was developed in the fifties and sixties of the
20th century, most prominently by Richard Bellman [28]. It can be applied to discrete time and
discrete control and state spaces, as well as to the continuous case, which leads to the so-called
Hamilton-Jacobi-Bellman equation.

Dynamic programming is based on a backward recursion in time, starting at the end of the time
horizon tf with a cost-to-go function that is identical to the Mayer term contribution. Based
on Bellman’s principle of optimality, the optimization task is partitioned into N smaller time
horizon optimization problems on intervals [ti, ti+1].

When DP is applied to systems with continuous state spaces, such as (2.1), some approximations
have to be made, usually by discretization. Generally, this discretization leads to an exponential
growth of computational cost with respect to the dimension nx of the state space, what Bellman
called the “curse of dimensionality”. It is the only, but unfortunately decisive drawback of DP
and limits its practical applicability to systems with small nx. However, DP can easily deal
with all kinds of hybrid systems or non-differentiable dynamics, and it allows to treat stochastic
optimal control problems and min-max games without much additional effort.

In the context of the MIOCP (2.1) the treatment of the integer requirements (2.1e) is easily
achieved by means of an enumeration of all possible choices on each small time horizon prob-
lem. The partition of the optimization problem leads to a linear dependence of the runtime on
the number of discretization points N, which makes DP the method of choice for small nx and
long time horizons.

Applications of dynamic programming for MIOC can be found, e.g., in [125, 52]. Both discuss
the energy–optimal control of heavy duty trucks, based on GPS data and only one or two differ-
ential states, but possibly long prediction time horizons. An excellent textbook on discrete time
optimal control and dynamic programming is [32].
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2.3 Indirect approach to optimal control

The basic idea of indirect approaches is optimize, then discretize. In other words, first necessary
conditions for optimality are applied to the optimization problem in function space, and in a
second step the resulting boundary value problem is solved by an adequate discretization, such as
multiple shooting. The necessary conditions for optimality are given by the famous Pontryagin’s
maximum principle. Assume we want to solve the following optimal control problem.

min
x,w

Φ(x(tf))

subject to

ẋ(t) = f (x(t),w(t)), t ∈ [0, tf],

w(t) ∈ W , t ∈ [0, tf],

x(0) = x0,

(2.4)

with an arbitrary, essentially bounded feasible set W for the control w(·). To state the maximum
principle, we need the concept of the Hamiltonian.

Definition 2.3.1. (Hamiltonian, adjoint states)
The Hamiltonian of the corresponding optimal control problem (2.4) is given by

H (x(t),w(t),λ (t)) := λ (t)T f (x(t),w(t))

with variables λ : [t0, tf]→ Rnx called adjoint variables. The end–point Lagrangian function ψ

is defined as ψ(x(tf)) := Φ(x(tf)).

The maximum principle in its basic form, also sometimes referred to as minimum principle, goes
back to the early fifties and the works of Hestenes, Boltyanskii, Gamkrelidze, and of course
Pontryagin. Precursors of the maximum principle as well as of the Bellman equation can already
be found in Carathéodory’s book of 1935, compare [189] for details.
The maximum principle states the existence of adjoint variables λ ∗(·) that satisfy adjoint differ-
ential equations and transversality conditions. The optimal control w∗(·) is characterized as an
implicit function of the states and the adjoint variables — a minimizer w∗(·) of problem (2.4)
also minimizes the Hamiltonian subject to additional constraints.

Theorem 2.3.2. (Maximum principle)
Let problem (2.4) have a feasible optimal solution w∗(·) with a system response x∗(·). Then there
exist adjoint variables λ ∗(·) such that for t ∈ [0, tf] it holds almost everywhere

ẋ∗(t) = Hλ (x
∗(t),w∗(t),λ ∗(t)) = f (x∗(t),w∗(t)), (2.5a)

λ̇
∗T (t) = −Hx(x∗(t),w∗(t),λ ∗(t)), (2.5b)

x∗(t0) = x0, (2.5c)
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λ
∗T (tf) = −ψx(x∗(tf)), (2.5d)

w∗(t) = arg min
w∈W

H (x∗(t),w(t),λ ∗(t)). (2.5e)

For a proof of the maximum principle and further references see, e.g., [51, 192]. The interesting
part about the global maximum principle is that the constraint w(t) ∈ W has been transferred
towards the inner minimization problem (2.5e). This is done on purpose, so no assumptions
need to be made on the feasible control domain W . The global maximum principle also applies
to nonconvex and disjoint sets W . Hence, if we write w(·) = (u,v)(·) and W = U ×Ω, the
maximum principle also covers problem (2.1) and the inner minimization problem (2.5e) reads

(u∗,v∗)(t) = arg min
u∈U ,v∈Ω

H (x∗(t),u(t),v(t),λ ∗(t)). (2.6)

This is of course only possible if a global maximum principle is applied, as derived in [234, 108].
For a disjoint set Ω of moderate size, the pointwise minimization of (2.6) can be performed by
enumeration between the nω different choices, implemented as switching functions that deter-
mine changes in the minimum. This approach, the Competing Hamiltonians approach, has been
developed based on a global maximum principle and applied to the optimization of operation of
subway trains with discrete acceleration stages in New York by Bock and Longman [43]. Their
approach was even able to cope with non–continuous right hand sides.
Additional work has been done on the formulation of more general results, in particular the hy-
brid maximum principle, [232], and a hybrid necessary principle, [103]. Furthermore, the proofs
were simplified by making a direct connection to the classical maximum principle, [76]. Based
on hybrid maximum principles or extensions of Bellman’s equation approaches to treat switched
systems have been proposed that extend indirect methods or dynamic programming, e.g., in
[224, 17]. While the maximum principle and knowledge about solution behavior keeps being
important for analytical reasons, direct methods have become the methods of choice for larger
control problems of practical relevance in ordinary differential equations. It is interesting to ob-
serve, however, that this might be different in the case of partial differential equations (PDE).
In the PDE constraint optimization community the two approaches first optimize, then discretize
and first discretize, then optimize are still competing. One reasons for this is probably the fact
that adjoints need to be determined for an efficient calculation of derivatives, which involves a
second discretization grid for the backward solve. In higher dimensions the question which grid
to choose becomes more important and favors an indirect approach. Also there is a tendency to
treat spatial phenomena like shock waves rather in function space than by discretization, e.g.,
[59].
We revise the maximum principle in Section 9.2 to use it to analyze sampling functions in the
Optimal Design of Experiments. New results from [107] for a global maximum principle also
for the DAE case have been applied to a benchmark problem in Section 7.3.3 for illustration.
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2.4 Direct approach to optimal control

The main idea of direct approaches is first discretize, then optimize. The control problem in
a function space is discretized by means of parametric functions with local support, and then
the resulting nonlinear program (NLP) in finitely many optimization variables is solved. There
are basically three different approaches: single shooting, Bock’s direct multiple shooting, and
collocation. Details on these methods and how they relate to one another can be found, e.g., in
[37, 33, 36]. Details on the direct multiple shooting method are given in Section 4.2.
There are important differences between the approaches, mainly in the parameterization of the
underlying differential equations and the respective connections to the optimization algorithm
by means of derivative information. There are also good reasons why collocation and multiple
shooting, both dating back to the early eighties, [40, 44, 34], are most often superior to the single
shooting approach. However, all further algorithms and reformulations yet to be presented can
be equally applied to any one of the three.
We restrict ourselves to a short presentation of the discretization of the respective functions in
time, common to all three methods. Generally, any appropriate set of basis functions will do, e.g.,
splines or piecewise linear functions, if they can be described by means of finitely many values
that become the optimization variables. For the following it is sufficient to assume a piecewise
constant discretization of the form

û(t,qu
i ) := qu

i , v̂(t,qv
i ) := qv

i , t ∈ [ti, ti+1] (2.7)

on an appropriate time grid 0 = t0 < t1 < .. . < tm = tf and with control values qu
i ∈Rnu and qv

i ∈
Rnv . The control space is hence reduced to functions that can be written as in (2.7), depending
on finitely many controls (qu,qv).
If present, also the path constraints c(·)≥ 0 ∀ t ∈ [0, tf], compare Section 2.8, are discretized on an
appropriately chosen grid. From this discretization and the (algorithm specific) parameterization
of the differential states results a highly structured NLP that is usually solved by either an interior
point or an active set based algorithm. For details on an efficient implementation and further
references see, e.g., [169, 35, 36, 143].
If switching decisions or disjoint feasible sets are present as in (2.1e), the discretization (2.7)
leads to control variables that inherit this integrality condition. For a piecewise constant dis-
cretization qv

i ∈Ω needs to hold for all 0≤ i < m. Formally a mixed–integer nonlinear program
is obtained.

2.5 Theory for control-affine systems

Most of the algorithms that have been applied to solve problem (2.1) cannot provide a rigorous
lower bound on the optimal solution value. Even if global MINLP methods are applied, one does
not know how good the solution really is, as the underlying control discretization grid might

14



O V E R V I E W : M I O C
∣∣ CHAPTER 2

be too coarse in some regions or simply not hit the optimal switching points. Only recently
the connection between rigorous bounds on the optimal integer solution value and results of
relaxed, continuous control problems has been made, [203, 214]. Let us, for now, consider a
binary-control-affine problem of the form

min
x,u,ω

Φ(x(tf))

subject to

ẋ(t) = f̃ (x(t),u(t)) ·ω(t), t ∈ [0, tf],

u(t) ∈ U , t ∈ [0, tf],

ω(t) ∈ {0,1}nω , t ∈ [0, tf],

C(ω(t)) = 0, t ∈ [0, tf],

x(0) = x0,

(2.8)

with f̃ : Rnx ×Rnu → Rnx×nω and C : Rnω → RnC an arbitrary constraint on the binary control.
We see later how the special case (2.8) relates to the more general problem (2.1) that we are
really interested in. One of the observations in [203, 214] was that the optimal solution of the
relaxation of control problem (2.8) yields the exact lower bound for (2.1), i.e., the value that can
either be reached or be approximated arbitrarily close by an integer control. However, the proof
used arguments from functional analysis and hence this result does not apply to a finite number
of switches.

Now we extend this statement: for any δ > 0 it holds that if the control discretization grid is
chosen fine enough, then there exists a binary solution with a finite number of switches that
yields an objective value closer than δ to the one of the relaxed problem. The basis for this is

Theorem 2.5.1. Let x(·) and y(·) be solutions of the initial value problems

ẋ(t) = A(t,x(t)) ·α(t), x(0) = x0, (2.9a)

ẏ(t) = A(t,y(t)) ·ω(t), y(0) = y0, (2.9b)

with t ∈ [0, tf], for given measurable functions α,ω : [0, tf]→ [0,1]nω and a differentiable A :
Rnx+1 7→ Rnx×nω . If positive numbers C,L ∈ R+ exist such that for t ∈ [0, tf] almost everywhere
it holds that ∥∥∥∥ d

dt
A(t,x(t))

∥∥∥∥ ≤ C, (2.9c)

‖ A(t,y(t))−A(t,x(t)) ‖ ≤ L‖ y(t)− x(t) ‖ , (2.9d)

and A(·,x(·)) is essentially bounded by M ∈ R+ on [0, tf], and it exists ε ∈ R+ such that for all
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t ∈ [0, tf] ∥∥∥∥ ∫ t

0
α(τ)−ω(τ) dτ

∥∥∥∥ ≤ ε (2.9e)

then it also holds

‖ y(t)− x(t) ‖ ≤ (‖ x0− y0 ‖+(M+Ct)ε)eLt (2.9f)

for all t ∈ [0, tf].

A proof for this theorem is provided in Chapter 3, together with a formal connection to the
problem (2.8). The basic idea is to assume that we have found the feasible and optimal trajectory
(x∗,u∗,α∗) of the relaxation of problem (2.8). We fix the continuous control functions u∗(·) and
write the right hand side f (x(·),u(·))ω(·) as a function A(y(·);u∗(·))ω(·) of y(·) and ω(·) only.
The ODE in (2.8) is then in the form of (2.9b). We see in Section 2.7.3 a constructive way to
determine a binary control ω(·) from α∗(·) in a way that ε is a mere multiple of the control
discretization grid size, and can hence be made arbitrarily small. This is done for two cases
of interest: the one when there are no constraints, C(ω) = 0, and when a special ordered set
property C(ω) = ∑ωi−1 has to hold that stems from an equivalent reformulation of the general
nonlinear case.
Theorem 2.5.1 now helps to estimate the performance loss between the optimal relaxed control
α∗(·) and the binary control ω(·). The difference between the differential states is determined
from (2.9f), if (2.9e) holds. The Mayer function Φ(·) is assumed to be differentiable, hence
continuous. Therefore the difference between the objective function values of the original, binary
control problem (2.8) and of its relaxation are bounded by a constant times ε .
The most interesting assumption of Theorem 2.5.1 is (2.9e). At first sight the condition is some-
what unusual, as one might expect an L∞ norm,∫ tf

0
‖ ω(τ)−α(τ) ‖ dτ ≤ ε. (2.10)

This condition is far too strong, however. While one direction is obvious,∥∥∥∥ ∫ t

0
ω(τ)−α(τ) dτ

∥∥∥∥ ≤
∫ t

0
‖ ω(τ)−α(τ) ‖ dτ ≤

∫ tf

0
‖ ω(τ)−α(τ) ‖ dτ

one can construct an example for which the gap between the two expressions (2.9e) and (2.10)
becomes as large as it can get. Assume an equidistant time grid 0 = t0 < t1 < · · ·< tm = tf, with
ti+1− ti = tf

m . Define

α(τ) :=
1
2
, ω(τ) :=

{
1 τ ∈ [ti, ti+1], i even

0 τ ∈ [ti, ti+1], i odd
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We obtain ∫ tf

0
‖ ω(τ)−α(τ) ‖ dτ =

tf
2

and
∥∥∥∥ ∫ t

0
ω(τ)−α(τ) dτ

∥∥∥∥≤ tf
m
,

where the second term vanishes for m→ ∞ for all t ∈ [0, tf]. Again, the details are given in
Chapter 3.

2.6 Reformulations

In the previous sections we developed both general methodology and theory that guarantees
performance loss bounds for binary-control-affine systems. In this section we survey different
reformulations. The first two, a switching time optimization approach in 2.6.1 and penalization
strategies in 2.6.2, aim at producing sub-optimal integer feasible solutions. In subsections 2.6.3
and 2.6.5 the target is to reformulate the nonlinear problem equivalently to obtain a binary-
control-affine system.

2.6.1 Switching time optimization

One possibility to solve problem (2.1) is motivated by the idea to optimize the switching times
directly, and to take the values of the integer controls fixed on given intervals. This concept
is old and well known from a) indirect approaches, where switching functions (derivatives of
the Hamiltonian with respect to the controls) are used to determine switching times, from b)
hybrid systems, where switching functions determine phase transitions, and from c) multi-stage
processes, such as batch processes in chemical engineering, consisting of several phases with
open duration, e.g., [167].
The main idea consists of a reformulation. The control v(t) is fixed to a value vi j ∈ Ω on each
interval [t j, t j+1], with an (a priori) fixed order of the vi j . The control problem to be solved reads

min
x,u,t j

Φ(x(tf))

subject to

ẋ(t) = f (x(t),u(t),vi j), t ∈ [t j, t j+1],

u(t) ∈ U , t ∈ [0, tf],

x(0) = x0.

(2.11)

In practice one does not optimize the switching points t j directly, but the scaled vector h of
model stage lengths h j := t j+1− t j, see [167, 106]. This approach is visualized in Figure 2.1 for
a one-dimensional binary control. Although the algorithm looks very promising at first sight, it
has some severe disadvantages. First, a nonregular situation that may occur when stage lengths
are reduced to zero. Assume the length of an intermediate stage, say h2, has been reduced to
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Figure 2.1: Switching time optimization, one–dimensional example.

zero by the optimizer. Then the sensitivity of the optimal control problem with respect to h1 and
h3 is given by the value of their sum h1 + h3 only. Thus special care has to be taken to treat
the case where stage lengths diminish during the optimization procedure. In [139], [140] and
[176] an algorithm to eliminate such stages is proposed. This is possible, still the stage cannot
be reinserted, as the time when to insert it is undetermined. Also, in the presence of explicit
combinatorial constraints in the mixed path and control constraints (2.1f) a feasible initialization
is not straightforward.
The second drawback is that the number of switches is typically not known, left alone the precise
switching structure. Some authors propose to iterate on the maximum number of intervals until
there is no further decrease in the objective function of the corresponding optimal solution, [139,
140, 176]. But it should be stressed that this can only be applied to more complex systems, if very
good initial values for the location of all switching points are available. This is closely connected
to the third and most important drawback of the switching time approach. The reformulation
yields additional nonconvexities in the optimization space. Even if the optimization problem
is convex in the optimization variables resulting from a constant discretization of the control
function v(·), the reformulated problem may be nonconvex, compare[203].
The mentioned drawbacks of the switching time optimization approach can be overcome, though,
if it is combined with a bunch of other concepts, compare [203, 106]. This includes good ini-
tial values, a strategy to deal with diminishing stage lengths and a direct all–at–once approach
like direct multiple shooting that helps when dealing with nonconvexities as discussed in [203].
Also, making use of the theoretical results of Section 2.5, termination criteria for an iterative
refinement of the switching structure need to be determined.

2.6.2 Reformulations to avoid integrality

The first idea to replace a binary variable y ∈ {0,1} by a continuous variable y ∈ [0,1] is to add
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the constraint y (1− y) = 0 to the problem formulation. Unfortunately this equality constraint is
nonconvex with a disjoint feasible set and optimization solvers perform badly on such equations,
as the necessary constraint qualification is violated.
Penalization strategies have the same aim as switching time optimization: working with con-
tinuous variables only, but obtaining an integer feasible solution. To do so for, say, the binary
case ω(t) ∈ {0,1}nω , we first relax towards ω(t) ∈ [0,1]nω for all t ∈ [0, tf]. To enforce a binary
solution, we have two possibilities. One is to add a concave penalty function, e.g.,

min
x,u,ω

Φ(x(tf))+
nω

∑
i=1

εi

∫ t f

t0
(1−ωi(t)) ωi(t) dt

for εi ≥ 0. The other one would be to impose additional constraints,

(1−ωi(t)) ωi(t)≤ εi ∀ t ∈ [0, tf].

An extension is to use a penalty term homotopy, by solving a series of continuous optimal control
problems with relaxed ω(·). One initializes problem Pk+1 with the solution of Pk and raises εk

i

until all ωi(t) are 0 or 1.
Both approaches depend very much on the choice of ε and impose bad numerical behavior by
either making the objective nonconvex, or splitting the feasible region into disjoint parts. Either
approach may work well for special cases, but is generally not to be recommended. Details and
a numerical case study can be found, e.g., in [203].

2.6.3 Reformulations to avoid nonlinearity

Another target for reformulations are the nonlinearities. We consider general linear approxima-
tions and products containing binary variables.
The basic idea to use underestimating and overestimating linear functions is best exemplified by
replacing a bilinear term xy by a new variable z and additional constraints. This reformulation
was proposed by [178]. For the new variable z we obtain the linear constraints

ylox+ xloy− xloylo ≤ z ≤ ylox+ xupy− xupylo,

yupx+ xupy− xupyup ≤ z ≤ yupx+ xloy− xloyup,
(2.12)

for given bounds on x and y, i.e., x ∈ [xlo,xup] and y ∈ [ylo,yup]. The inequalities follow from
(x− xlo)(y− ylo) ≥ 0 and three similar equations. The snag is of course that very tight bounds
are needed for a successful optimization, which is not the case in the presence of strong non-
linearities. See [235] or [92] for references on general under– and overestimation of functions.
When binary variables enter in a nonlinear way into the right hand side function f (·), often sim-
plifications are possible. All higher exponents can be skipped, as it holds ωi(t) ·ωi(t) = ωi(t)
for ωi(t) ∈ {0,1}. Also for mixed products of binary variables a reduction of nonlinearity is
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possible. We introduce an additional variable, e.g., for ωi(t) ·ω j(t):

ωi j(t) :=

{
1 if ωi(t) = ω j(t) = 1

0 else

The new binary variables can be incorporated into the optimization problem by adding the con-
straints

ωi j(t)≤ ωi(t), ωi j(t)≤ ω j(t), ωi(t)+ω j(t)≤ 1+ωi j(t).

2.6.4 Reformulations to decouple integrality and nonlinearity

A clever problem-specific reformulation is proposed in [54, 55]. For the optimal operation of
a water network the authors propose to decompose the problem in the sense that a pure NLP
is solved for the overall network with a (continuous) aggregated output of the discrete-valued
pumps in each waterworks. In a second step this optimal continuous output is approximated by
solving a small-scale integer program for every waterworks in the system.

Based on the same principle of decoupling nonlinearity and integrality, a more generic approach
is presented in Chapter 5. It allows to approximate the solution of the nonlinear MIOCP by
means of the solution of a continuous OCP and a mixed–integer linear program, with possibly
huge computational savings. Yet, it is possible to bound the gap between the exact and the
approximative solution.

2.6.5 Outer convexification

We saw in Section 2.5 that for binary-control-affine models we get an estimate of the perfor-
mance loss of any feasible binary solution by solving a relaxed problem. If nonlinearities with
respect to the v(·) in (2.1) occur, they can sometimes be transformed as in Section 2.6.3. If this
is not the case, a partial outer convexification with respect to the integer functions has been
proposed in [203, 214]. Consider the following reformulation of problem (2.1),

min
x,u,ω

Φ(x(tf))

subject to

ẋ(t) = ∑
nω

i=1 f (x(t),u(t),vi) ·ωi(t), t ∈ [0, tf],

u(t) ∈ U , t ∈ [0, tf],

ω(t) ∈ {0,1}nω , t ∈ [0, tf],

∑
nω

i=1 ωi(t) = 1, t ∈ [0, tf],

x(0) = x0,

(2.13)
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with fixed vi ∈ Ω,1 ≤ i ≤ nω . Problem (2.13) has two important properties: first, there is a
bijection between solutions of (2.13) and of (2.1), hence any optimal solution is also optimal
for the other problem. Second, it fits into the context of Section 2.5, as the binary controls enter
linearly. In fact, as all vi are fixed, problem (2.13) can be written in the form (2.8) with a matrix
f̃ (·) that contains f (x(t),u(t),vi) as its nω columns. There is one important modification: the
additional linear constraint 0 =C(ω) = ∑ωi− 1 to ensure the controls form a special ordered
set at each instant in time. This constraint needs to be taken into account whenever a binary
solution is constructed from a relaxed one, compare Section 2.7.3.

Problem (2.13) yields a tight relaxation of the original problem (2.1). This reformulation comes
at the price of additional control functions, as v(·) is replaced by nω controls ωi(·) (one less, if
the linear equality constraint is used to eliminate one of them).

Note that depending on f (·), integer controls may decouple, leading to a reduced number nω .
Assume we have

ẋ(t) = g(·,v1(t))+h(·,v2(t)),

v1(t) ∈ Ω1, v2(t) ∈Ω2.

Then an equivalent reformulation is given by

ẋ(t) =

(
nω1

∑
i=1

g(·,vi
1) ω1,i(t)

)
+

(
nω2

∑
i=1

h(·,vi
2) ω2,i(t)

)
,

nω1

∑
i=1

ω1,i(t) = 1, t ∈ [t0, t f ],

nω2

∑
i=1

ω2,i(t) = 1, t ∈ [t0, t f ],

ω1 ∈ {0,1}nω1 , ω2 ∈ {0,1}nω2 ,

leading to nω = nω1 + nω2 controls instead of nω = nω1nω2 . The proof is straightforward. As
in most practical applications the binary control functions enter linearly (such as valves that
indicate whether a certain term is present or not), or nω increases linearly with the number of
choices (e.g., the gears), or integer controls decouple, the drawback of an increased number nω

of control functions is clearly out-weighted by the advantages.

2.7 Algorithms

We present algorithms to solve problems of the form (2.1) and (2.13).
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2.7.1 Rounding

One idea to solve problem (2.13) is to solve its relaxation (hence, ω(t)∈ [0,1]nω ) and to round all
ωi(t) (alternatively their finite-dimensional parameterization qω

i ) to the nearest binary value. In
general mixed–integer programming this approach is not a good idea, rounded solutions are often
very poor solutions or even infeasible. However, for control problems the optimal solution in
function space is often of bang-bang type, i.e., the optimal control only takes values at its bounds.
For these cases rounding performs well, if it is combined with an adaptive control discretization
grid.

As follows from the results of Sections 2.5 and 2.6.5, we do have the exact lower bound from
the solution of the relaxation of problem (2.13) and can hence estimate the performance loss
associated with rounding. This is an important difference and advantage compared to general
integer programming.

2.7.2 MI(N)LP algorithms

In the last 20 years important contributions in the field of algorithms for mixed–integer nonlinear
programs (MINLPs) have been achieved. Of course both the classical algorithms Branch&Bound,
Outer Approximation, and Bender’s decomposition as newer developments including cutting
planes and treatment of nonconvexities can be applied to the MINLP that stems from a dis-
cretization with a direct approach of problem (2.13).

If switching decisions or disjoint feasible sets are present as in (2.1e), discretization (2.7) leads
to control variables that inherit this integrality condition. For a piecewise constant discretization
qω

i ∈ {0,1} needs to hold for all i. The drawback of direct methods with integer control functions
is obviously that they lead to high–dimensional vectors of binary/integer variables.

For many practical applications a fine control discretization is required. Therefore MINLP tech-
niques works only on limited and small time horizons because of the exponentially growing
complexity of the problem, [238].

We recommend to use global MINLP algorithms only in two cases: first, when the control dis-
cretization grid is fixed and a global solution on this grid is of importance, and second, in an outer
loop, when both integer control functions and non-time-dependent combinatorial decisions have
to be made. In this case the problem can be decoupled, treating combinatorial decisions in an
outer loop, and working with a relaxation of the integer control functions in the inner loop,
compare Section 2.8.

2.7.3 Sum up rounding

A novel rounding strategy that is especially tailored to minimize expression (2.9e) on page 16
has first been proposed in the context of mixed-integer optimal control in [203]. We consider a
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Figure 2.2: Relaxed and Sum Up Rounding binary controls for m = 64 time intervals.

piecewise constant control function

α j(t) = qα
j,i ∈ [0,1], t ∈ [ti, ti+1] (2.14)

with j = 1 . . .nω and i = 0 . . .m−1 on a fixed time grid 0 = t0 < t1 < · · ·< tm = t f , as introduced
in Section 2.4. Such a function could be the result of an optimization with a direct approach that
discretizes the control functions by piecewise constant functions. We write ∆ti := ti+1− ti and ∆t
for the maximum distance between two time points,

∆t := max
i=0...m−1

∆ti = max
i=0...m−1

{ti+1− ti}. (2.15)

Let then a function ω(·) : [0, t f ] 7→ {0,1}nω be defined by

ω j(t) = p j,i, t ∈ [ti, ti+1] (2.16)

where the p j,i are binary values given by

p j,i =

 1 if ∑
i
k=0 qα

j,k∆tk−∑
i−1
k=0 p j,k∆tk ≥ 0.5∆ti

0 else
. (2.17)

See Figure 2.2 for an example.

We have the following estimate on the integral over the difference between the control functions
α(·) and ω(·).

Theorem 2.7.1. (Sum Up Rounding Integral Deviation)
Let the functions α : [0, t f ] 7→ [0,1]nω and ω : [0, t f ] 7→ {0,1}nω be given by (2.14) and (2.16,
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2.17), respectively. Then it holds∥∥∥∥ ∫ t

0
ω(τ)−α(τ) dτ

∥∥∥∥≤ 0.5 ∆t.

For a proof see Chapter 3. In combination with Theorem 2.5.1 this theorem allows us to relate
the difference between differential states corresponding to any (relaxed) solution and a specific
integer solution obtained by Sum Up Rounding to the size of the control discretization grid.
Note that the Sum Up Rounding strategy (2.17) does not work for problems with the additional
special ordered set property ∑ωi = 1 as in (2.13), as can be seen by the easy example of two
functions that have the constant value α1(t) = α2(t) = 0.5. If we define p j,i to be

p̂ j,i =
i

∑
k=0

qα
j,k∆tk−

i−1

∑
k=0

p j,k∆tk (2.18a)

p j,i =

{
1 if p̂ j,i ≥ p̂k,i ∀ k 6= j and j < k ∀ k : p̂ j,i = p̂k,i

0 else
(2.18b)

a similar result to Theorem 2.7.1 holds, compare Chapter 3.

2.7.4 MS MINTOC

We propose to use the following algorithm for the solution of problem (2.1). We denote the
control discretization grid in iteration k with G k, and the optimal trajectory of (2.8) with T k =

(xk(·),uk(·),αk(·)). For the sake of notational simplicity we use uk(·) and αk(·) and not the
discretization variables qu,qα .
As for all algorithms we have to ask whether it is well-posed and terminates in a finite number
of steps. The answer is given by the following

Theorem 2.7.2. (Well-posedness of MS MINTOC)
If the assumptions

1. On all grids G k an optimal solution to the relaxed problem (2.8) is found in a finite number
of operations.

2. Bisection is used for the refinement of G k.

3. After a finite number kmax of refinements we freeze the optimal relaxed solution, T k =

T kmax
and ΦREL

G k = ΦREL
G kmax ∀ k > kmax.

hold, then Algorithm 2.1 terminates in a finite number of steps with a feasible binary solution,
for which Φ∗ < ΦREL

G k +TOL holds.

Proof. By Assumption 1 all optimal control problems are solved in finite time, and so is the
simulation in 3.(c). If the algorithm stops in 3.(b), a binary solution with Φ∗ = ΦREL

G k has been
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Algorithm 2.1: MS MINTOC
input : initial control discretization grid G 0, tolerance TOL ∈ R+, k = 0.
output: ε–optimal solution
begin

If necessary, reformulate and convexify (Sections 2.6.3, 2.6.5) problem (2.1).
Obtain problem of type (2.8). Relax this problem to α(·) ∈ [0,1]nω .
repeat

Solve relaxed problem on G k. Obtain T k = (xk(·),uk(·),αk(·)) and the
grid–dependent optimal value ΦREL

G k .
If T k on G k fulfills ωk(·) := αk(·) ∈ {0,1}nω then STOP.
Apply Sum Up Rounding (Section 2.7.3) to αk(·). Fix uk(·).
Obtain yk(·) and upper bound ΦBIN

G k by simulation.
If ΦBIN

G k < ΦREL
G k +TOL then STOP.

Refine the control grid G k.
k = k+1.

until
Bijection to obtain solution for problem (2.1) with objective Φ∗ = ΦBIN

G k .
end

found. It is left to show that the algorithm does not loop infinitely often. Let ωk(·) be the control
that we obtain from applying Sum Up Rounding on grid G k to αk(·), and yk(·) the vector of
corresponding differential states. From Theorem 2.7.1 we have∥∥∥∥ ∫ tf

0
ω

k(τ)−α
k(τ) dτ

∥∥∥∥≤ 0.5 ∆t,

hence with Theorem 2.5.1 on page 15∥∥ yk(tf)− xk(tf)
∥∥≤M∆teLtf .

Due to Assumption 3, xk(·) stays constant for k≥ kmax. Reducing ∆t by bisection causes a strictly
monotonic decrease of this expression, and this holds also for Φ(yk(tf))−Φ(xk(tf)), as Φ(·) is a
continuous function.

Note that Algorithm 2.1 is modified in practice for efficiency. Of particular interest are solutions
with a small number of switches, but good performance. Therefore we recommend to include
an intermediate switching time optimization (Section 2.6.1), initialized with the ωk(·) in 3.(c) to
improve ΦBIN

G k . It may also be advantageous to leave uk(·) open for optimization, to compensate
for the coarser grid. Also, adaptive refinements of the grid G k, based on control values αk(·) are
preferable to bisection, see [203, 217].
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2.8 More general problem classes

Problem (2.1) does not include all features that a mathematical model of a control process might
show. In this section we discuss some straightforward extensions of the aforementioned ap-
proach, plus two features at the end, where special attention and further work is necessary.

Bolza type functionals. Every Lagrange term
∫

L(x(t),u(t),v(t))dt can be transformed equiva-
lently into a Mayer term, hence the objective can also be of the more general Bolza type.
Multi-point constraints. Whenever multi-point constraints of the form

0 ≤ rieq(x(t0),x(t1), . . . ,x(tf)),

0 = req(x(t0),x(t1), . . . ,x(tf))

have to be fulfilled, the same argument as for the objective function can be used: All differential
states corresponding to a relaxed solution can be approximated arbitrarily close by the ones
corresponding to an integer solution, and rieq(·),req(·) are assumed to be at least continuous
functions. Algorithm 2.1 needs to be extended in the sense that for all constraints an additional
tolerance has to be checked in step 3.(d).
Path constraints. Path constraints c(x(t),u(t)) ≥ 0 ∀ t ∈ [0, tf] are discretized in direct ap-
proaches, see Section 2.4, hence with a fixed u∗(·) the same argument as for multi-point con-
straints applies.
Time-independent continuous and combinatorial variables. For many processes also time-
independent control values enter the problem formulation, say of continuous type, pmin ≤ p ≤
pmax, and of integer type, such as ρ ∈ {ρ1,ρ2, . . . ,ρnρ}. These control values are optimized to-
gether with the continuous controls u∗(·) and the relaxed binary controls α(·). Once determined,
(u∗(·), p∗,ρ∗) are fixed. In a second stage, the REPEAT loop of Algorithm 2.1, feasible binary
controls are determined. Especially integer control values ρ∗ are typically hard to compute. Our
procedure allows thus for a decoupling of the determination of optimal integer control values
and optimal binary control functions, resulting in a huge reduction of complexity.
Multi-stage processes. Often complex practical processes, such as batch processes in chemical
engineering or robot control, consist of several successive phases with different models and
transition phases that may even change the number of differential states, see, e.g., [167]. The
main additional effect of multiple stages that plays a role in Theorem 2.5.1 are the initial values
of the differential states on each model stage determined by a continuous transition function.
The expression

∥∥ yi
0− xi

0

∥∥ for model stage i is nothing else than a function of the difference
of the differential states on model stage i− 1. Hence, also

∥∥ yi
0− xi

0

∥∥ depends on the control
discretization grid size ∆t.
Global optimization. Algorithm 2.1 works for both global as local optimization. If a global
method is applied in step 3.(a), the integer solution approximates arbitrarily close the global
optimum. If a local approach is chosen, the result is an approximation of this local optimum.
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Multi-objective optimization. There is an important implication in the context of multi-objective
optimization: whenever the Pareto front is to be calculated, it suffices to solve the relaxed con-
vexified problem. The Pareto front of optimal control problems involving integer functions can
hence be calculated without actually solving a single integer problem. This has been shown ex-
emplarily in [170], where a combined multi-objective mixed-integer optimal control algorithm
is presented.
State-dependent switches. In hybrid systems a second type of discrete events may occur, namely
state-dependent switches. Prominent examples are overflows in chemical engineering or ground
contact in robotics, both dependent on a differential state (volume, vertical position) and trig-
gering a model change. Mathematically these systems can be modeled by means of continuous
switching functions. For all possible orderings of such events Theorems 2.5.1 and 2.7.1 can be
adapted.
Algebraic variables and conditions. Theory and algorithms have to be extended for the case
that algebraic equations involving the binary control functions are present, e.g., in an explicit
system of index 1,

ẋ(t) = f (x(t),z(t),u(t),ω(t)), t ∈ [0, tf],

0 = g(x(t),z(t),u(t),ω(t)), t ∈ [0, tf].

Formally, index 1 DAE systems can be transformed into an ODE, making it possible to treat
them within the proposed methodology. However, for many systems special DAE solvers have
been developed, as the additional derivation of the system is not beneficial from a numerical
point of view. Further analysis is needed on how to exploit occurring structures.
(Mixed Path-) Control constraints. For generic constraints of the type

c(x(t),u(t),v(t))≥ 0 ∀ t ∈ [0, tf]

no termination criterium for Algorithm 2.1 can be guaranteed (think about a constraint that
simply cuts off all binary solutions). However, in most practical applications the constraints are
usually of one of the following types.
• Special Ordered Set type 1 constraints

After a partial outer convexification, compare Section 2.6.5, the resulting MIOCP contains
coupling constraints on the values of the binary control functions ω(·). The constraints (2.2c)

nω

∑
i=1

ωi(t) = 1, t ∈ [0, tf]

however can be addressed with the specialized Sum Up Rounding strategy presented in Sec-
tion 2.7.3.
• Combinatorial linear constraints

Many explicit constraints on the integer control functions are linear, or can be equivalently
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reformulated as linear constraints. For these constraints we propose to use a decoupling of
the nonlinearity and the integrality requirements. This is discussed in detail in Chapter 5.
• Logical implications

One general idea is to reformulate the constraints (2.1f) for t ∈ [0, t f ] to either

0 ≤
nω

∑
j=1

c(x(t),u(t),v j) ω j(t) (2.19)

or for j = 1, . . . ,nω to

0 ≤ c(x(t),u(t),v j) ω j(t) (2.20)

which are equivalent for ω j(t) ∈ {0,1}. The first one, unfortunately, leads to compensation
effects once ω(·) is relaxed. This formulation is similar to the convex hull formulation in a
disjunctive programming approach, as discussed in [195, 120, 184].
The second formulation can also be interpreted as “only when choice j is active, the con-
straint 0≤ c(x(t),u(t),v j) needs to hold”. Note that by constraint (2.20) only positive relaxed
solutions are feasible, for which also the corresponding binary vector is feasible. This makes
it more unlikely (although not impossible) that the index j corresponding to a value qα

j,i = 0
is chosen as the maximum in (2.18), whenever c(x(t),u(t),v j) < 0 on [ti, ti+1]. Furthermore
this constraint should be included in the rounding decision to avoid infeasibilities.
Constraints of type (2.20) are called vanishing constraints. Note that every optimization
problem with vanishing constraints can be transformed into an optimization problem with
equilibrium constraints [3, 133]. Unfortunately, they may violate constraint qualifications
and hence lead to severe numerical and theoretical problems. One possible approach to over-
come this is to treat the vanishing constraints on the QP level with a tailored active set
strategy, compare [143].

MIOC under Uncertainties.

When optimal control is applied in practice, uncertainties need to be taken into account. Typical
sources of uncertainties are model mismatch (wrong or approximative model), external distur-
bances (wind, rain, economic behavior, . . . ), or strategic uncertainties (e.g., uncertain future use
of designed plant).

There are different algorithmic approaches to uncertainties, e.g., worst-case (robust) optimiza-
tion, optimization of expectation value, optimization with feedback, optimization of Value-at-
Risk, optimization of Conditional Value-at-Risk, multi-stage stochastic programming. An ex-
cellent survey is given by [201]. All theoretical results and proposed methods carry over to our
methodology for MIOC, due to the direct first discretize, then optimize approach and the theo-
retically established connection between relaxed and integer feasible trajectories.

One example are worst case scenarios. Here we want to make sure safety critical constraints are
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satisfied for all possible parameters p. In an abstract setting the optimization problem

min
x,u

Φ[x,u, p]

subject to

0 = F [x,u, p],

0 ≤ C[x,u, p].

(2.21)

for particular values of the parameters p is replaced by the robust counterpart

min
x,u

Φ[x,u, p]

subject to

0 = F [x,u, p],

0 ≤ min
‖p−p̄‖2,Σ−1≤γ

C[x,u, p].

(2.22)

Problem (2.22) is a semi-infinite optimization problem with an infinite number of constraints,
which is very difficult to tackle. One approach to approximate the solution has been proposed
by [31, 73]. It is easy to show that up to first order

min
‖p−p̄‖2,Σ−1≤γ

C[x,u, p]≈C[x,u, p̄]+ γ

∥∥∥∥ d
dp

C[x,u, p̄]
∥∥∥∥

2,Σ
(2.23)

So we can approximate the solution of (2.22) by

min
x,u

Φ[x,u, p̄]

subject to

0 = F [x,u, p̄],

0 ≤ C[x,u, p̄]+ γ

∥∥∥ d
dpC[x,u, p̄]

∥∥∥
2,Σ

.

(2.24)

For robust MIOC we calculate the relaxed solution to the robust counterpart OCP, which we
approximate arbitrarily close as described above. How to include statistical information on the
uncertainty is exemplarily discussed in Chapter 6.
Nonlinear model predictive control (NMPC). In practical control applications often feedback
information is available in form of measurements. Nonlinear model predictive control strives
to include these measurements in a closed loop, in which calculation of new controls that are
being applied to the process and measurements are iterated. Each sampling time, one solves for
a given system state x0 that may be partially or fully determined from measurements, a MIOCP.
Figure 2.3 visualizes the basic concept.
Clearly, the solution of the MIOC needs to be obtained fast to be able to apply it in real-time. An
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Figure 2.3: Sketch of NMPC: Using the current state x0, a control problem is solved on a prediction
horizon. The first control u0 on the time interval [t0, t0 +δ ] is given “back to the real-world”,
i.e., applied to the process. Then the horizon is shifted by one sampling interval to the right.
This results in a feedback law u0(x0) that allows to react to disturbances and modeling errors.

important ingredient is the speed up achieved by Algorithm 2.1 compared to traditional MINLP
algorithms, compare Section 7.9.2 for an example with a speed up of four orders of magnitude.
In addition to this, further speedup can and needs to be obtained.
Apparently, the value of the integer control functions needs to be determined only on the first
time interval [t0, t0+δ ], whereas the relaxed values can be taken for the future time intervals. Of
more importance, however, is the fast solution of the relaxed control problems.
We apply ideas of Diehl, Bock and coworkers. In particular, the solution of the previous horizon
problem is used to initialize the variables such that they are already close to the solution. This
initialization is done using an initial value embedding [74]. While the conventional approach
initializes with the new initial value x0 and integrates with the old u0, initial value embedding
initializes with the old trajectory and adds a constraint sx

0− x0 = 0 that the optimization takes
into account. The first iteration is a tangential predictor for the exact solution (for exact Hessian
SQP) and is also valid for active set changes. This concept is combined with real-time iterations
that optimize while the problem is changing. It exploits that derivatives can be computed before
x0 is known and allows to get the first iteration nearly without delay. As a result, one needs
only one iteration despite the overall nonlinear approach. Also it is possible to show the nominal
stability of the combined system-optimizer dynamics. For details see [72, 74].
Building on the SQP-based iterative scheme of [74], a new real-time multi-level optimization
algorithm has been proposed. The four-level scheme proposed in [6] operates with ultra-fast
feedback on the lowest level, where small QPs are solved very quickly using an online active
set strategy, [89]. On the second level, which provides updated data down to the first level,
the nonlinear constraints are evaluated to improve feasibility, on the third level the Lagrange
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gradient is evaluated by means of adjoint sensitivities to improve nonlinear optimality, [41, 250],
and on the topmost level the complete derivative information if generated. Additional potential
for speedup lies in an efficient parallel implementation and on the concept of an automatic code
export [175, 127].
A final possibility for speedup is on the linear algebra level. In Chapter 4 we present a tailored
solution approach that takes the special properties of MIOCPs for which an Outer Convexifica-
tion has been applied into account.
Many numerical issues in NMPC are discussed in [148]. For further details on mixed–integer
nonlinear model predictive control we refer to the PhD thesis [143]. Here also a proof for the
nominal stability for rounding–based schemes can be found.

2.9 Summary

We presented a broad overview on recent mathematical developments in the efficient algorithmic
treatment of switching decisions in nonlinear optimal control. Theoretical foundations for error
estimates are given alongside a discussion of possible solution approaches. A comprehensive
algorithm is presented. Well-posedness of the algorithm is discussed, as well as extensions to
treat more general optimal control problems.
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3 The Integer Approximation Error in
Mixed-Integer Optimal Control

The contents of this chapter are based on the paper

[208] S. Sager, H.G. Bock, M. Diehl. The Integer Approximation Error in Mixed-Integer Opti-
mal Control. Mathematical Programming A, 2011, DOI 10.1007/s10107-010-0405-3.

Chapter Summary. We extend recent work on nonlinear optimal control problems with integer
restrictions on some of the control functions (mixed-integer optimal control problems, MIOCP).
We improve a theorem [214] that states that the solution of a relaxed and convexified problem
can be approximated with arbitrary precision by a solution fulfilling the integer requirements.
Unlike in previous publications the new proof avoids the usage of the Krein-Milman theorem,
which is undesirable as it only states the existence of a solution that may switch infinitely often.
We present a constructive way to obtain an integer solution with a guaranteed bound on the
performance loss in polynomial time. We prove that this bound depends linearly on the control
discretization grid. A numerical benchmark example illustrates the procedure.
As a byproduct, we obtain an estimate of the Hausdorff distance between reachable sets. We
improve the approximation order to linear grid size h instead of the previously known result
with order

√
h [123]. We are able to include a Special Ordered Set condition which allows a

transfer of the results to a more general, multi-dimensional and nonlinear case compared to the
theorems in [190].

3.1 Introduction

Our main motivation are mixed-integer optimal control problems (MIOCPs) in ordinary differ-
ential equations (ODE) that are of the form (2.1), compare page 8. See Chapter 2 for a generic
introduction to MIOC and the relation to other approaches in MIOC.
Relation to own work. In [214] a new approach to MIOC was proposed. Based on insight
from functional analysis, the exact lower bound for the nonlinear integer control problem is
determined by solving a relaxed, continuous control problem. Integer solutions are obtained by
a combination of grid adaptivity and the Sum Up Rounding Strategy described later on in this
chapter.
We extend this work in two ways. First, a theorem stating that the solution of a relaxed and
convexified problem can be approximated arbitrarily close by a solution fulfilling the integer
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requirements is improved. Unlike before, a new short and self-contained proof avoids the usage
of the Krein-Milman theorem, which is undesirable as it only states the existence of a solution
that may switch infinitely often.
Second, the Sum Up Rounding strategy to obtain integer controls from continuous, relaxed ones,
is analyzed. Previously, it has been described as a heuristic, similar to rounding methods in
integer programming. However, it is used in the above proof. It yields a constructive way to
obtain an integer solution with a guaranteed bound on the performance loss in polynomial time.
We prove that this tolerance depends on the control discretization grid. The rounded solution is
arbitrarily close to the relaxed one, if only the underlying grid is chosen fine enough.
The complete algorithm to solve MIOCPs has been described in Chapter 2. In there, the most
important part of the proof for the algorithm’s termination in a finite number of steps is missing,
however. To fill this gap is the main contribution of this chapter.
Related work in error estimation for switched systems. In his PhD thesis [123] Gerhard
Häckl estimated the Hausdorff distance between the reachable sets cl(R+(x0)) of a continuous
time system and cl(R+(h,x0)) of a discrete time system with piecewise constant controls and
grid size h. Parts of this dissertation entered in the book [68], the convergence result and approx-
imation order are discussed in Section C.1. In comparison our results show that the approxima-
tion order is of order h instead of a constant multiple of

√
h as claimed in [123, Corollary 2.4.8].

Also our estimation does hold for all values of h, and not only as h→ 0. The reason seems to be
that Häckl and coworkers do not make use of the Sum Up Rounding strategy which is needed
for the better approximation order. Also the extension from control-affine systems to nonlinear
ones is not discussed.
A related result on error bounds has recently been obtained independently of this work by [190],
building on work of [77, 117, 242, 241]. The authors give an upper bound of order h on the
Hausdorff distance between the reachable set of relaxed controls and controls that are restricted
to the space of piecewise constant functions that may only take the values 0 and 1 on a finite
time grid. The mathematical approach is based on differential inclusions and Lie brackets. They
use the Sum Up Rounding [203] strategy as well within their proof. Their study is restricted to
the one-dimensional linear case, while we consider integer controls in arbitrary dimension and
allow for nonlinearities.
To our knowledge, the approximation order h was first postulated in [241], for a locally Lipschitz
continuous right-hand side. Veliov writes: “However, the author was able so far to prove this only
in some special cases and the problem is still open.” We refer to this as “Veliov’s conjecture” in
the following.
More remotely related is the question of the maximum number of switches for equivalent reach-
able sets. For a special case of a switched system it is shown in [225] that 4 switches are enough.
A counterexample based on Fuller’s phenomenon is given in [172].
Outline. We first consider the case where v(·) = ω(·) enters linearly in the optimization prob-
lem. This is the case for which theoretical results can be obtained, and we see later on that the
nonlinearity with respect to the integer control function vanishes by a partial outer convexifica-
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tion using the reformulation (2.2b). We show that for any feasible relaxed solution we obtain
a binary solution by the presented rounding strategy that is feasible and reaches the objective
function value, both up to a given tolerance that depends on the control discretization grid size.

For this we deduce theoretical results concerning the difference between differential states that
are obtained by integration with different control functions in Section 3.2. In Section 3.3 we
present the rounding strategy and give an upper bound on the difference between the integral over
the relaxed and the rounded control. In Section 3.4 we extend the results to the case in which
the integer function v(·) enters in a nonlinear way. The partial outer convexification leads to
additional Special Ordered Set constraints on the resulting binary control functions ω(·) that we
take into account in an extended Sum Up Rounding Strategy. In Section 3.5 we bring together the
results and connect them to the optimization problem. In Section 3.6 we investigate a benchmark
example to illustrate the procedure. We sum up the results in Section 3.7.

3.2 Approximating differential states

We want to show how the difference of the integrals of two differential states depends on the
difference of the integrals of their corresponding control functions. Before we come to the main
theorem of this section, we need the following lemma that can also be found, e.g., in [108,
Lemma 1.3, page 4].

Lemma 3.2.1 (A variant of the Gronwall Lemma). Let [t0, tf] be an interval and w,z : [t0, tf] 7→
R real-valued integrable functions. If for constant L≥ 0 it holds for t ∈ [t0, tf] almost everywhere
that

w(t)≤ z(t)+L
∫ t

t0
w(τ) dτ

then also

w(t)≤ z(t)+L
∫ t

t0
eL(t−τ)z(τ) dτ

for t ∈ [t0, tf] almost everywhere. If z(·) in addition belongs to L∞([t0, tf],R) then it holds

w(t)≤ ‖ z(·) ‖
∞

eL(t−t0)

for t ∈ [t0, tf] almost everywhere.

Proof. According to the assumption we may write

w(t) = a(t)+ z(t)+δ (t) (3.1)
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with the absolutely continuous function

a(t) := L
∫ t

t0
w(τ) dτ (3.2)

and a non-positive function δ (·) ∈ L1([t0, tf],R). Using (3.1) in (3.2) yields

a(t) = L
∫ t

t0
a(τ) dτ + L

∫ t

t0
z(τ)+δ (τ) dτ.

Hence, a(·) solves the inhomogeneous linear differential equation

da
dt

(t) = La(t) + L(z(t)+δ (t))

for t ∈ [t0, tf] almost everywhere and initial value a(t0) = 0. The well-known solution formula
for linear differential equations yields

a(t) = L
∫ t

t0
eL(t−τ) (z(τ)+δ (τ)) dτ

respectively

w(t) = z(t)+δ (t) + L
∫ t

t0
eL(t−τ) (z(τ)+δ (τ)) dτ.

Since δ (t)≤ 0 the first assertion holds. If z(·) is essentially bounded we find

w(t)≤ ‖ z(·) ‖
(

1+L
∫ t

t0
eL(t−τ) dτ

)
= ‖ z(·) ‖ eL(t−t0),

completing the proof.

Assume now we are given an initial value problem that is of the form

ẋ(t) = A(t,x(t)) α(t), x(0) = x0. (3.3)

Here A(t,x(t)) is a matrix in Rnx×nω with entries depending on t and x(t). We assume in the
following that the function A(·) is differentiable with respect to time and fulfills certain require-
ments with respect to its argument x. Note that we leave away a term independent of α(·), as it
may be included easily by fixing one additional component of α to 1. The following theorem
states how the difference of solutions to this initial value problem depends on the integrated
difference between control functions and the difference between the initial values.
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Theorem 3.2.2. Let x(·) and y(·) be solutions of the initial value problems

ẋ(t) = A(t,x(t)) ·α(t), x(0) = x0, (3.4a)

ẏ(t) = A(t,y(t)) ·ω(t), y(0) = y0, (3.4b)

with t ∈ [0, tf], for given measurable functions α,ω : [0, tf]→ [0,1]nω and a differentiable A :
Rnx+1 7→ Rnx×nω . If positive numbers C,L ∈ R+ exist such that for t ∈ [0, tf] almost everywhere
it holds that ∥∥∥∥ d

dt
A(t,x(t))

∥∥∥∥ ≤ C, (3.4c)

‖ A(t,y(t))−A(t,x(t)) ‖ ≤ L‖ y(t)− x(t) ‖ , (3.4d)

and A(·,x(·)) is essentially bounded by M ∈ R+ on [0, tf], and it exists ε ∈ R+ such that for all
t ∈ [0, tf] ∥∥∥∥ ∫ t

0
α(τ)−ω(τ) dτ

∥∥∥∥ ≤ ε (3.4e)

then it also holds

‖ y(t)− x(t) ‖ ≤ (‖ x0− y0 ‖+(M+Ct)ε)eLt (3.4f)

for all t ∈ [0, tf].

Proof. Because both α and ω map to [0,1]nω we have

‖ α(t) ‖ ≤ 1, ‖ ω(t) ‖ ≤ 1 (3.5)

for all t ∈ [0, tf]. As ω and α are measurable and bounded functions, so is ∆w := α −ω . We
define ∆a as ∆a(t) :=

∫ t
0 ∆w(τ) dτ . Note that it holds ∆a(0)=

∫ 0
0 ∆w(τ) dτ = 0 and ‖ ∆a(t) ‖≤ ε .

Because of (3.4a,3.4b) we can write

x(t) = x0 +
∫ t

0
A(τ,x(τ)) α(τ) dτ, y(t) = y0 +

∫ t

0
A(τ,y(τ)) ω(τ) dτ

and obtain

‖ x(t)− y(t) ‖ ≤ ‖ x0− y0 ‖+
∥∥∥∥ ∫ t

0
A(τ,x(τ)) α(τ)−A(τ,y(τ)) ω(τ) dτ

∥∥∥∥
≤ ‖ x0− y0 ‖+

∥∥∥∥ ∫ t

0
A(τ,x(τ)) ω(τ)−A(τ,y(τ)) ω(τ) dτ

∥∥∥∥
+

∥∥∥∥ ∫ t

0
A(τ,x(τ)) α(τ)−A(τ,x(τ)) ω(τ) dτ

∥∥∥∥
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= ‖ x0− y0 ‖+
∥∥∥∥ ∫ t

0
(A(τ,x(τ))−A(τ,y(τ))) ω(τ) dτ

∥∥∥∥
+

∥∥∥∥ ∫ t

0
A(τ,x(τ)) ∆w(τ) dτ

∥∥∥∥
= ‖ x0− y0 ‖+

∥∥∥∥ ∫ t

0
(A(τ,x(τ))−A(τ,y(τ))) ω(τ) dτ

∥∥∥∥
+

∥∥∥∥ A(t,x(t))∆a(t)−
∫ t

0

d
dτ

A(τ,x(τ)) ∆a(τ) dτ

∥∥∥∥
≤ ‖ x0− y0 ‖+L

∫ t

0
‖ x(τ)− y(τ) ‖ ‖ ω(τ) ‖ dτ

+‖ A(t,x(t)) ‖ε +
∫ t

0

∥∥∥∥ d
dt

A(τ,x(τ))
∥∥∥∥ ‖ ∆a(τ) ‖ dτ

≤ ‖ x0− y0 ‖+L
∫ t

0
‖ x(τ)− y(τ) ‖ dτ

+(‖ A(t,x(t)) ‖+Ct)ε.

The functions

w(t) := ‖ x(t)− y(t) ‖ , z(t) := ‖ x0− y0 ‖+(‖ A(t,x(t)) ‖+Ct)ε

are integrable and z(·) is in L∞([t0, tf],R). Applying Lemma 3.2.1 yields the claim

‖ y(t)− x(t) ‖ ≤ (‖ x0− y0 ‖+(M+Ct)ε)eLt

for all t ∈ [0, tf].

Note that assumptions (3.4c) and (3.4d) do not require global constants, but only for the two
trajectories x(·) and y(·) under consideration. In our context the initial values x0 and y0 are
identical. From the monotonicity eLt ≤ eLtf it follows that Theorem 3.2.2 states that we have an
upper bound ‖ y(t)− x(t) ‖ ≤ c · ε with constant c ≥ 0 on the difference between differential
states that depends linearly on the integrated difference between the two control functions. In
the next section we investigate this term closer.

3.3 Approximating the integral over the controls by sum up
rounding

We consider given measurable functions α j : [0, tf] 7→ [0,1] with j = 1 . . .nω and a time grid 0 =

t0 < t1 < · · ·< tm = tf on which we want to approximate the control α(·). We write ∆ti := ti+1−ti
and ∆t for the maximum distance between two time points,

∆t := max
i=0...m−1

∆ti = max
i=0...m−1

{ti+1− ti}. (3.6)
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Let then a function ω(·) : [0, tf] 7→ {0,1}nω be defined by

ω j(t) = p j,i, t ∈ [ti, ti+1) (3.7)

where for i = 0 . . .m−1 the p j,i are binary values given by

p j,i =

{
1 if

∫ ti+1
0 α j(τ)dτ−∑

i−1
k=0 p j,k∆tk ≥ 0.5∆ti

0 else
. (3.8)

See Figure 3.1 for an example. We have the following estimate on the integral over the difference
between the control functions α(·) and ω(·).

Theorem 3.3.1. Let a measurable function α : [0, tf] 7→ [0,1]nω and a function ω : [0, tf] 7→
{0,1}nω defined by (3.7, 3.8) be given. Then it holds∥∥∥∥ ∫ t

0
α(τ)−ω(τ) dτ

∥∥∥∥≤ 0.5 ∆t.

Proof. Let 0 ≤ r ≤ m− 1 be the index such that tr ≤ t < tr+1. First observe that maximum or
minimum values of the integrals∫ t

0
α j(τ)−ω j(τ) dτ =

∫ tr

0
α j(τ)−ω j(τ) dτ +

∫ t

tr
α j(τ)− p j,r dτ

are obtained on the time grid, as either α j(τ) ≤ p j,r or α j(τ) ≥ p j,r on [tr, tr+1]. Therefore it
suffices to show the claim for all t = tr. For r = 0 . . .m we show by induction that∥∥∥∥ ∫ tr

0
α(τ)−ω(τ) dτ

∥∥∥∥ = max
j

∣∣∣∣∣
∫ tr

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti

∣∣∣∣∣≤ 0.5 ∆t. (3.9)

For r = 0 the claim follows trivially. So let us assume

max
j

∣∣∣∣∣
∫ tr

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti

∣∣∣∣∣ ≤ 0.5 ∆t (3.10)

and show that also

max
j

∣∣∣∣∣
∫ tr+1

0
α j(τ)dτ−

r

∑
i=0

p j,i∆ti

∣∣∣∣∣ ≤ 0.5 ∆t.

For all j = 1, . . . ,nω it holds that if p j,r = 1, then because of (3.8) we have

∫ tr+1

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti ≥ 0.5∆tr
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and by adding −p j,r∆tr =−∆tr on both sides

∫ tr+1

0
α j(τ)dτ−

r

∑
i=0

p j,i∆ti ≥−0.5∆tr ≥−0.5∆t.

By induction hypothesis we also have

∫ tr

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti︸ ︷︷ ︸
≤0.5∆t

+
∫ tr+1

tr
α j(τ)−1 dτ︸ ︷︷ ︸
≤0

≤ 0.5∆t.

If p j,r = 0, then because of (3.8) we have

∫ tr+1

0
α j(τ)dτ−

r

∑
i=0

p j,i∆ti =
∫ tr+1

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti

< 0.5∆tr ≤ 0.5∆t.

By induction hypothesis we also have

∫ tr

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti︸ ︷︷ ︸
≥−0.5∆t

+
∫ tr+1

tr
α j(τ) dτ︸ ︷︷ ︸
≥0

≥−0.5∆t,

for all j = 1, . . . ,nω , completing the proof.

3.4 Extension to the nonlinear case

To apply the above results to the more general nonlinear case, we convexify problem (2.1) with
respect to the integer control functions v(·) as first suggested in [203]. We replace (2.1b) and
(2.1e) by the partially convexified right hand side (2.2b) and the SOS1 constraint (2.2c). This
Outer Convexification has shown very efficient in practice [147]. It allows us to generate a tight
relaxation of the integer control problem - very similar as before for the affinely entering binary
controls, but with one important modification, namely an additional linear constraint to ensure
the controls form a Special Ordered Set (2.2c) at each instant in time.
There is obviously a bijection v(t) = vi↔ ωi(t) = 1 between solutions of problems

(2.1a,2.1b,2.1c,2.1d,2.1e,2.1f)

and

(2.1a,2.2b,2.1c,2.1d,2.2a,2.2c,2.1f),
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compare [203]. This means that we can find a solution to the convexified problem that is affine
in ω(·) by applying the proposed Sum Up Rounding strategy to a solution of its relaxation and
then deduce the optimal solution to the nonlinear binary problem (2.1) from it.
However, the Sum Up Rounding strategy (3.8) does not work for problems with the additional
Special Ordered Set property (2.2c), as can be seen by the easy example of two functions with
constant α1(t) = α2(t) = 0.5.

Remark 3.4.1. The SOS1 constraint (2.2c) can be used to eliminate one control, e.g., ωnω
(·).

One replaces

ωnω
(t) = 1−

nω−1

∑
i=1

ωi(t)

for t ∈ [0, tf]. Constraint (2.2c) is then always fulfilled. However, now the constraint 0≤ωnω
(t)≤

1 may be violated if the SUR strategy is applied (example: α1(t) = α2(t) = 0.5 and α3(t) = 0,
substitute α3). Furthermore, if αi(t)< 0.5 for all i = 1 . . .nω−1 then ωnω

is (implicitly) rounded
up, even if ωnω

(t) = 1−∑
nω−1
i=1 ωi(t) is small.

Substituting controls typically makes a difference concerning computational efficiency and is an
interesting aspect to study. Whereas in linear programming this substitution is usually avoided
to maintain sparsity, for control functions there might be good reasons for a substitution. In the
diploma thesis [53] an adaptive replacement has been proposed that minimizes the effort of the
underlying QP solver, dependent on the dimensions of null and image space. However, for our
theoretical considerations we do not consider this case separately, all results can be transfered
easily.

Therefore we propose a different technique for functions that have to fulfill this equality. Let us
assume we are given a measurable function α(·) that fulfills (2.2c). Again we define ω(·) via
(3.7), but with p j,i given by

p̂ j,i =
∫ ti+1

0
α j(τ)dτ−

i−1

∑
k=0

p j,k∆tk (3.11a)

p j,i =

{
1 if p̂ j,i ≥ p̂k,i ∀ k 6= j and j < k ∀ k : p̂ j,i = p̂k,i

0 else
(3.11b)

and not by (3.8). Again we have an estimation of the integral over α−ω that depends on ∆t of
the underlying grid, compare (3.6).

Theorem 3.4.2. Let a measurable function α : [0, tf] 7→ [0,1]nω that fulfills equation (2.2c) and
a function ω : [0, tf] 7→ {0,1}nω defined by (3.7, 3.11) be given for nω ≥ 2. Then it holds∥∥∥∥ ∫ t

0
α(τ)−ω(τ) dτ

∥∥∥∥≤ (nω −1) ∆t
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and also ω(·) fulfills (2.2c).

Proof. Note that ω(t) fulfills the Special Ordered Set type one property (2.2c) by construction,
as exactly one entry is set to 1 and all others to 0. This is important for the proof, because it
implies

nω

∑
j=1

∫ t

0
α j(τ)−ω j(τ) dτ =

∫ t

0

nω

∑
j=1

(α j(τ)−ω j(τ)) dτ = 0 (3.12)

for all t ∈ [0, tf]. As above we can restrict our proof to the case that t = tr. For the sake of
notational simplicity we define

k := arg max
j=1...nω

∣∣∣∣∣
∫ tr

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti

∣∣∣∣∣ ,
observing that

∫ tr
0 ω j(τ)) dτ = ∑

r−1
i=0 p j,i∆ti. We assume that there exists an r ∈ {0 . . .m} such that

the claim does not hold, i.e.,∣∣∣∣∣
∫ tr

0
αk(τ)dτ−

r−1

∑
i=0

pk,i∆ti

∣∣∣∣∣≥ (nω −1) ∆t

and contradict this assumption. We distinguish two cases. Let us first assume that

∫ tr

0
αk(τ)dτ−

r−1

∑
i=0

pk,i∆ti <−(nω −1)∆t. (3.13)

Let î be the highest index for which the control k has been rounded up,

î := arg max
0≤i≤r−1

{i : pk,i = 1 and pk,l = 0 ∀ l : i < l ≤ r−1}.

Note that î is well defined, as there must be at least two i such that pk,i = 1. Then it holds by
assumption (3.13)

î

∑
i=0

pk,i∆ti =
r−1

∑
i=0

pk,i∆ti >
∫ tr

0
αk(τ)dτ +(nω −1)∆t

≥
∫ tî+1

0
αk(τ)dτ +(nω −1)∆t

and as k had the maximum value on interval î,

∫ tî+1

0
α j(τ)dτ−

î

∑
i=0

p j,i∆ti <−(nω −1)∆t
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for all j = 1, . . . ,nω . Summing up over all controls j yields

nω

∑
j=1

(∫ tî+1

0
α j(τ)dτ−

î

∑
i=0

p j,i∆ti

)
<−

nω

∑
j=1

(nω −1)∆t

and because of (3.12) we have the contradiction 0 < nω −n2
ω .

Let us now assume that ∫ tr

0
αk(τ)dτ−

r−1

∑
i=0

pk,i∆ti > (nω −1)∆t. (3.14)

Because of (3.12) it holds

nω

∑
1= j 6=k

(∫ tr

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti

)
+
∫ tr

0
αk(τ)dτ−

r−1

∑
i=0

pk,i∆ti = 0

and with assumption (3.14)

nω

∑
1= j 6=k

(∫ tr

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti

)
+(nω −1)∆t < 0.

We can write the left hand side as the sum of nω −1 terms

∆t +
∫ tr

0
α j(τ)dτ−

r−1

∑
i=0

p j,i∆ti.

Obviously at least one of them has to be negative, thus there exists an index ĵ such that

∆t +
∫ tr

0
α ĵ(τ)dτ−

r−1

∑
i=0

p ĵ,i∆ti < 0.

Let î be the highest index for which the control ĵ has been rounded up,

î := arg max
0≤i≤r−1

{i : p ĵ,i = 1 and p ĵ,l = 0 ∀ l : i < l ≤ r−1}.

Note that î is well defined, as there must be at least two i such that p ĵ,i = 1. Then it holds

∫ tî+1

0
α ĵ(τ)dτ−

î−1

∑
i=0

p ĵ,i∆ti ≤ ∆t +
∫ tr

0
α ĵ(τ)dτ−

r−1

∑
i=0

p ĵ,i∆ti < 0
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and with

ĵ = arg max
1≤ j≤nω

{∫ tî+1

0
α j(τ)dτ−

î−1

∑
i=0

p j,i∆ti

}

which must hold because of the rounding decision at time î we have

∫ tî+1

0
α j(τ)dτ−

î

∑
i=0

p j,i∆ti ≤
∫ tî+1

0
α j(τ)dτ−

î−1

∑
i=0

p j,i∆ti < 0

for all j = 1, . . . ,nω in contradiction to (3.12).

3.5 Connection to the optimization problem

We connect the results to the optimization problem (2.1).

Corollary 3.5.1. Let (x,α,u∗)(·) be a feasible trajectory of the relaxed control problem

(2.1c,2.1d,2.2b,2.2c)

with the measurable function α : [0, tf]→ [0,1]nω replacing ω in (2.2b,2.2c).
Consider the trajectory (y,ω,u∗)(·) which consists of a control ω(·) determined via (3.7, 3.11)
on a given time grid from α(·) and differential states y(·) that are obtained by solving the initial
value problem (2.1c,2.2b).
Assume that constants C,L,M ∈R+ exist for the fixed measurable control u∗ ∈U and all vi ∈Ω

such that the function f (t,x(t),u∗(t),vi) be differentiable with respect to time and it holds∥∥∥∥ d
dt

f (t,x(t),u∗(t),vi)

∥∥∥∥ ≤ C, (3.15)∥∥ f (t,y(t),u∗(t),vi)− f (t,x(t),u∗(t),vi)
∥∥ ≤ L‖ y(t)− x(t) ‖ (3.16)

for t ∈ [0, tf] almost everywhere and f (·,x((·),u∗(·),vi) is essentially bounded by M.
Then (y,ω,u∗)(·) is a feasible trajectory for (2.1c,2.1d,2.2b,2.2c) and it holds

‖ y(t)− x(t) ‖ ≤ ((M+Ct) c(nω) ∆t)eLt (3.17)

for all t ∈ [0, tf] with constant c(nω).

Proof. We define the function A :Rnx+1 7→Rnx×nω as a matrix with column i given by f (t,x,u∗,vi)

for i = 1, . . . ,nω . Here both u∗ and the feasible integer controls vi are fixed. The ODE (2.1b)
is then of the form (3.4a). Because f (·) is assumed to be differentiable with respect to time,
bounded and fulfills a Lipschitz condition, this holds for A(·) as well. All assumptions of The-
orem 3.2.2 and of either Theorem 3.3.1 or 3.4.2 are fulfilled. The constant c(nω ) is given by
c(nω) = nω −1 if nω ≥ 2 and (2.2c) holds and c(nω) = 0.5, else.
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The differentiability assumption on f (·) in Corollary 3.5.1 is quite strong, as it implies that the
optimal control u∗(·) must be differentiable as well. However, this holds only almost everywhere,
hence the important case of controls u∗ with finitely many discontinuities is included.

Remark 3.5.2. The important result of Corollary 3.5.1 is the linear convergence order with
respect to ∆t. However, also the constants may be interesting from a practical point of view.
In Theorem 3.3.1 the estimation is sharp, as can be seen by investigating the constant function
α(·) = 0.5.
In Theorem 3.4.2 we think the constant (nω −1) can be improved. Without proof: Assume [0, tf]
is partitioned in nω equidistant time intervals. The deviation from the constructed control ω(·)
and the control α(·) is maximal, when the nω controls α(·) are piecewise constant functions
defined as

α j(t) =

 1
nω−i j ≥ i

0 j < i
t ∈ [ti, ti+1], i = 0, . . . ,nω −1, j = 1, . . . ,nω

Applying (3.7, 3.11) results in

pnω ,i =

{
0 i < nω −1

1 i = nω −1

The maximal deviation at time tnω−1 is then the harmonic number

nω−2

∑
i=0

αnω
(ti) =

nω−2

∑
i=0

1
nω − i

=
nω

∑
i=2

1
i

which is approximately ln(nω).

Corollary 3.5.3. Let the assumptions and definitions of Corollary 3.5.1 hold. Assume that the
objective function Φ(·) in (2.1a) and all constraints ci(· · ·) in (2.1f) are continuous functions.
Then for any δ > 0 there exists a grid size ∆t such that

|Φ(x(tf))−Φ(y(tf))| ≤ δ , (3.18)

|ci(x(t),u∗(t))− ci(y(t),u∗(t))| ≤ δ , i = 1, . . . ,nc. (3.19)

Proof. Follows directly from the definition of continuity, eLt ≤ eLtf for all t ∈ [0, tf], and (3.17).

Remark 3.5.4. For “first discretize, then optimize” methods that discretize α(·) and u(·) by
means of differentiable basis functions the assumptions of Corollary 3.5.3 are fulfilled. In par-
ticular there are only finitely many discontinuities in the optimal control u∗(·). The results can
be transfered to more general problems than (2.1). This is discussed in [214] and Chapter 2.
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Remark 3.5.5. Note that Corollary 3.5.3 is not related to the issue of local or global optima.
In fact, it holds for all feasible trajectories (x,α,u), hence also for globally and locally optimal
trajectories. Naturally, the global lower bound for the integer problem can only be obtained
when the relaxed problem is solved to global optimality, as discussed, e.g., in [63].

The motivation for the estimation (3.17) was to obtain the exact lower bound for an optimal
integer solution. But the result can also be interpreted in the sense of the Hausdorff distance
between reachability sets.

Definition 3.5.6. We define the Hausdorff distance between sets X and Y as

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)

}
.

The reachable set Y is defined as the set of all differential states z ∈ Rnx for which a control
function ω : [0, tf] 7→ {0,1}nω exists such that (2.2c) holds and for a given function u∗(·) and
initial value x0 the solution y(·) of the ordinary differential equation (2.2b, 2.1b) fulfills y(tf) =
z. The set X is defined accordingly by taking the convex hull of the feasible control values,
α : [0, tf] 7→ [0,1]nω .

Corollary 3.5.7. Let the assumptions of Corollary 3.5.1 hold. Then a positive constant c exists
such that

dH(X ,Y )≤ c∆t.

Proof. [0,1]nω is a relaxation of {0,1}nω , hence Y ⊆ X . For any given trajectory (x,u∗,α)(·)
corresponding to a point in X , a trajectory (y,u∗,ω)(·) can be found such that

‖ y(tf)− x(tf) ‖ ≤ c∆t,

as was shown in Corollary 3.5.1.

Corollary 3.5.7 improves the results in [123] in two ways. First it provides the better order ∆t
instead of

√
∆t. Secondly, it allows the inclusion of the SOS1 constraint (2.2c), which allows the

application to more general functions that are nonlinear in the control function v(·).

3.6 Numerical example

The Sum Up Rounding Strategy has been successfully applied to various applications by now.
See Chapter 7 or [202] for an online description of most of them. To illustrate theoretical proper-
ties and the effect of the rounding strategy we investigate an academic example. In the following
we simplify notation by leaving the argument (t) away, where convenient.
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We want to solve the following nonlinear MIOCP,

min
x,v

x2(tf)

s.t. ẋ0 =−
x0

sin(1)
sin(v1)+(x0 + x1) v2

2 +(x0− x1) v3
3,

ẋ1 = (x0 +2x1) v1 +(x0−2x1) v2 +(x0 + x1) v3

+(x0x1− x2) v2
2− (x0x1− x2) v3

2,

ẋ2 = x2
0 + x2

1,

x(0) = (0.5,0.5,0)T ,

x1 ≥ 0.4,

v ∈ {(1,0,0),(0,1,0),(0,0,1)}

(3.20)

with t ∈ [t0, tf] = [0,1]. This problem can be relaxed by requiring

ω1,ω2,ω3 ∈ [0,1],
3

∑
i=1

ωi = 1

instead of
v ∈ {(1,0,0),(0,1,0),(0,0,1)}.

We denote the solution of this relaxed problem with (xN,ωN) to stress the nonlinear character.
This relaxation naturally gives a lower bound, however the gap between this bound and integer
solutions may be quite large.

The tightest relaxation is obtained, if an outer convexification of the integer components is ap-
plied. This results in the optimization problem

min
x,ω

x2(tf)

s.t. ẋ0 =−x0 ω1 +(x0 + x1) ω2 +(x0− x1) ω3,

ẋ1 = (x0 +2x1) ω1 +(x0−2x1) ω2 +(x0 + x1) ω3,

ẋ2 = x2
0 + x2

1,

x(0) = (0.5,0.5,0)T ,

x1 ≥ 0.4,

ωi ∈ {0,1},
3

∑
i=1

ωi = 1

(3.21)

with t ∈ [t0, tf] = [0,1]. Note that this problem is (by construction) identical to the one investigated
in [233] and originally in [82]. The only difference is the path constraint

x1(t)≥ 0.4 t ∈ [t0, tf] (3.22)
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that has been added to make the problem more interesting for our purposes. The relaxation of
optimization problem (3.21) is obtained by replacing ωi ∈ {0,1} by its convex hull ωi ∈ [0,1].
We denote the solution of this relaxation by (xR,ωR) and the solution obtained with Sum Up
Rounding by (xSUR,ωSUR).
We solve all relaxed problems using the direct multiple shooting [44] based software package
MUSCOD-II for different equidistant control discretization intervals. Figure 3.1 shows trajec-
tories (xN,ωN) as the solution of the relaxed nonlinear problem, (xR,ωR) as the solution of
the relaxed convexified problem, and (xSUR,ωSUR) of the Sum Up Rounding solution obtained
from ωR. All depicted solutions are based on a control discretization with 80 equidistant time
intervals.
In Table 3.1 objective function and infeasibility values for different grid sizes are given. The
number of equidistant intervals m listed in the first column determines the interval length ∆t as
tf = 1 divided by m. The second and third columns show the objective function values of the
relaxations of (3.20) and (3.21), denoted by xN

2 (tf) and xR
2 (tf), respectively.

The fourth column shows the objective function value xSUR
2 (tf) obtained by applying the Sum

Up Rounding strategy (3.7, 3.11) to the relaxed solution ωR. The fifth column “infeasibility”
contains the norm of the constraint violation of xSUR(·), which is the norm of the discretized
path constraint vector corresponding to constraint (3.22).
The relaxed problems are only solved until a certain criterion on the progress in objective func-
tion values is fulfilled, in our case at m = 80. For all finer discretizations this solution is used for
the SUR strategy (3.7, 3.11) in the interest of comparability of the objective function values. We
define x∗2(tf) to be the value of xR

2 (tf) = 0.995569 for m = 80, as a sufficiently fine approxima-
tion of the infinite dimensional control problem. In the right-most column we list the deviation
of xSUR

2 (tf) from this value.
As can be observed, there is a linear dependence of both constraints and objective function value
on the control grid size, as stated by Corollary 3.5.3. The deviation is not deterministic and
especially for small m outliers are possible within the range of the bounds, but the asymptotic
behavior can be clearly seen as m doubles from row to row. It can also be seen the gap between
xN

2 (tf) and the SUR integer solutions (which of course give the same objective function value for
problem (3.20) as for problem (3.21)) is large, whereas it goes to zero with respect to xR

2 (tf).
Looking again at Figure 3.1 we would like to stress that the SUR strategy needs to be applied to
the solution of the relaxation of the (partially) convexified problem (3.21) and not of (3.20). If
we apply it to the latter for m = 80 the objective function value would only be 1.108835 instead
of 1.011600, and no theoretical guarantee can be given.
The discretization has been bisected for illustrative purposes. In practice more advanced adap-
tive schemes are used that neglect bang-bang arcs and take the goal to obtain approximate in-
tegral values into account, see [203]. The computational effort is low compared to enumerative
schemes, such as Branch and Bound. In every step only a relaxed optimization problem has to be
solved. The rounding procedure is almost for free and then a simple forward simulation has to be
performed. The relaxed solution on a coarse grid is used to initialize the optimization variables
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Figure 3.1: Different trajectories for m = 80 equidistant control intervals. First row: controls v(·) and
states x(·) as the solution of the relaxation of problem (3.20). Second row: solution of the
relaxation of convexified problem (3.21). Third row: the Sum Up Rounding solution, identical
for both problems (3.20) and (3.21). Note the path-constrained arc for x1 ≥ 0.4 in row 4 at
t ≈ [0.3,0.5] and the constraint violation for the SUR solution.
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m xN
2 (tf) xR

2 (tf) xSUR
2 (tf) infeasibility xSUR

2 (tf)− x∗2(tf)

10 0.782278 0.999869 1.120181 6.30E-02 0.124612

20 0.782219 0.997646 1.132580 3.72E-02 0.137011

40 0.782204 0.995621 1.028741 1.45E-02 0.033172

80 0.782200 0.995569 1.011600 6.49E-03 0.016031

160 - - 1.004031 3.26E-03 0.008462

320 - - 1.000119 1.75E-03 0.004550

640 - - 0.997933 8.19E-04 0.002364

1280 - - 0.996706 4.61E-04 0.001137

2560 - - 0.996154 2.03E-04 0.000585

Table 3.1: Numerical results for Egerstedt example.

on the finer grid, leading to fast convergence. An additional benefit of this approach is the fact
that all previously calculated solutions can be stored and compared a posteriori to compare the
trade off between frequent switching and a loss in the objective function.

3.7 Summary

We presented theoretical results with applications in mixed-integer nonlinear optimal control.
First, a novel proof was given that a trajectory with the strong property of integer feasibility
exists that approximates the optimal relaxed solution arbitrarily close. Compared to previous
studies it could be shown that a finite number of switches suffices.
Second, the role of the Sum Up Rounding strategy to obtain integer controls from continuous,
relaxed ones, has been clarified. Previously, it has been described as a heuristic, similar to round-
ing methods in integer programming. We showed that it yields a constructive way to obtain an
integer solution with a guaranteed bound on the performance loss, depending on the control
discretization grid.
Third, we obtain an estimate of the Hausdorff distance between reachable sets. We improved
previously known results in the sense that the approximation order is linear in the grid size ∆t
instead of the previously known result with order

√
∆t [123], that we are able to include an

SOS1 condition which allows for a transfer of the results to a more general, multi-dimensional
and nonlinear case compared to the Theorems in [123, 190]. Hence, we proved Vladimir Veliov’s
conjecture [241], however with the additional assumption of differentiability.
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4 Block Structured Quadratic Programming

The contents of this chapter are based on the paper

[145] C. Kirches, H.G. Bock, J.P. Schlöder, S. Sager. Block Structured Quadratic Programming
for the Direct Multiple Shooting Method for Optimal Control. Optimization Methods and
Software, 2010, Vol. 26(2):239–257.

Chapter Summary. We address the efficient solution of optimal control problems of dynamic
processes with many controls. Such problems arise, e.g., from the outer convexification of in-
teger control decisions. We treat this optimal control problem class using the direct multiple
shooting method to discretize the optimal control problem. The resulting nonlinear problems
are solved using sequential quadratic programming methods. We review the classical condens-
ing algorithm that preprocesses the large but structured quadratic programs to obtain small but
dense ones. We show that this approach leaves room for improvement when applied in con-
junction with outer convexification. To this end, we present a new complementary condensing
algorithm for quadratic programs with many controls. This algorithm is based on a hybrid null–
space range–space approach to exploit the block structure of the quadratic programs that is due
to direct multiple shooting. An assessment of the theoretical run time complexity reveals signif-
icant advantages of the proposed algorithm. We give a detailed account on the required number
of floating point operations, depending on the process dimensions. Finally we demonstrate the
merit of the new complementary condensing approach by comparing the behavior of both meth-
ods for a vehicle control problem in which the integer gear decision is convexified.

4.1 Introduction

Our main motivation are mixed-integer optimal control problems (MIOCPs) in ordinary differ-
ential equations (ODE) that are of the form (2.1), compare page 8. See Chapter 2 for a generic
introduction to MIOC and the relation to other approaches in MIOC.
Direct methods, in particular all–at–once approaches, [34, 44, 191], have become the methods
of choice for most practical optimal control problems. By direct method we refer to methods that
discretize first, then optimize and work directly on the optimality conditions of the discretized
control problem. Indirect methods for optimal control are methods that optimize first, then dis-
cretize by applying necessary conditions of optimality in function space, and then solving the
control problem indirectly by solving the resulting boundary value problem numerically.
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The drawback of direct methods with binary control functions obviously is that they lead to
high–dimensional vectors of binary variables. Because of the exponentially growing complexity
of the problem, techniques from mixed–integer nonlinear programming work only for small
instances [238]. In Chapters 2 and 3 and past contributions [147, 203, 214] we proposed to use
an outer convexification with respect to the binary controls, which has several main advantages
over standard formulations or convexifications. A number of challenging mixed–integer optimal
control problems has already been solved with this approach, see Chapter 7.

From the direct approach discretization of the MIOCP that is applied after outer convexification
of the integer control, a highly structured Nonlinear Program (NLP) is obtained. For its solution,
both Sequential Quadratic Programming (SQP) methods [34, 44, 191] and Interior Point (IP)
methods [243] have become popular. In this contribution we consider SQP methods exclusively,
which solve a sequence of Quadratic Programs (QPs) to obtain the NLP’s solution and thus
those of the discretized OCP. Here, the outer convexification approach results in QPs with many
control parameters, one per possible discrete choice per discretization point in time.

Concerning the efficient solution of these QPs, active set methods are favored over interior point
methods in an SQP context. This is due to the better performance of active set QP methods on a
sequence of closely related QPs [24, 89]. Efficient exploitation of the problem structure found in
the QP data is crucial for the efficiency of the QP solving procedure. Two possible approaches
are thinkable here. First, in a preprocessing step the QP may be subjected to a reformulation that
is tailored to the structures introduced by the discretization method. The classical condensing
algorithm [191, 44] is reviewed here. Second, an active set QP code that directly exploits the
block structure may be designed. This still is an active field of research, cf. [23, 131], where
the difficulties lie with the efficient factorization of the QP’s structured KKT system. In [229]
a family of structure exploiting factorizations for systems arising in direct optimal control is
studied systematically. Therein, the presented techniques are applied to KKT systems arising in
interior point methods.

In this contribution, we present a new approach for solving QPs with block structure due to di-
rect multiple shooting, named complementary condensing, based on prior work by [229]. This
approach was first introduced in [144] and provides a factorization of the QP’s KKT system
tailored to the direct multiple shooting block structure. An evaluation of an ANSI C implemen-
tation of this approach and a comparison to classical condensing are presented for the first time.
A detailed analysis of the required number of floating point operations is made, depending on the
process dimensions. We apply the new complementary condensing approach for the first time to
a vehicle control problem due to [105, 106] in which the integer gear decision is convexified as
first proposed for this problem in [147]. We compare the obtained run times to the performance
of the classical condensing algorithm, using the dense active set QP code QPOPT [111] for solv-
ing the condensed QPs. Classical condensing is shown to leave room for improvement if the QP
has more control parameters than system states, as is the case for MIOCPs. In addition, we apply
a general–purpose sparse symmetric indefinite factorization to the QP’s KKT system, using the
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HSL code MA57 [79]. We comment on the obtained run times and on numerical stability issues.

This chapter is structured as follows. Section 4.2 describes direct multiple shooting as our
method of choice for discretizing the OCP and presents the structure of the block structured
NLP. We briefly mention SQP methods and motivate the source of the QPs with block structure
and many control parameters, to be dealt with in the two following sections. Section 4.3 reviews
the classical condensing algorithm that reduces the large and block structured QP to a small but
dense one in what can be seen as a preprocessing step. This condensed QP may be solved with
any available QP code. Section 4.4 presents a the complementary condensing method as a new
alternative approach at solving the block structured QPs. It exploits the block structure inside
the QP solver. Section 4.5 describes an exemplary mixed–integer vehicle control problem with
gear shift. The integer gear choice is treated by outer convexification, which is briefly explained
and gives rise to an OCP with many controls. The classical condensing approach is applied to
the example problem together with a dense active–set QP solver, and the resulting run times
are discussed. Application of the proposed complementary condensing method to the example
problem yields improved run times. A brief comparison to a sparse symmetric indefinite factor-
ization of the KKT system as provided by HSL MA57 is made and run times as well as issues of
numerical stability are discussed. In Section 4.6 further developments in block structured active
set QP solving are discussed, in particular the possibility to further speed up the computations
using update techniques. Section 4.7 summarizes this chapter.

4.2 Direct multiple shooting for optimal control

In this section we describe the direct multiple shooting method due to [191, 44] as an efficient
tool for the discretization and parameterization of a general class of infinite dimensional optimal
control problems (OCP). Using this method, we obtain from the OCP a highly structured NLP
which we solve with an SQP method.
Details on Bock’s direct multiple shooting method can be found in a number of recent publica-
tions and theses, e.g., in [168, 143].

4.2.1 Optimal control problem formulation

We consider the following general class (4.1) of optimal control problems

min
x(·),u(·)

l(x(·),u(·)) (4.1a)

s.t. ẋ(t) = f (t,x(t),u(t)) ∀t ∈T (4.1b)

0≤ c(t,x(t),u(t)) ∀t ∈T (4.1c)

0 = req
i (ti,x(ti)) 0≤ i≤ m (4.1d)

0≤ rin
i (ti,x(ti)) 0≤ i≤ m (4.1e)
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in which we strive to minimize objective function l(·) depending on the trajectory x(·) of a dy-
namic process described in terms of a system f : T ×Rnx ×Rnu → Rnx of ordinary differential
equations (ODE), running on a time horizon T := [t0, tf]⊂R, and governed by a control trajec-
tory u(·) subject to optimization. The process trajectory x(·) and the control trajectory u(·) shall
satisfy certain inequality path constraints c : T ×Rnx ×Rnu → Rnc,in

on the time horizon T , as
well as equality and inequality point constraints req

i : T ×Rnx →Rnr,eq
i and rin

i : T ×Rnx →Rnr,in
i

on a prescribed grid on T consisting of m+1 grid points

t0 < t1 < .. . < tm−1 < tm := tf, m ∈ N, m≥ 1. (4.2)

In order to make this infinite dimensional optimal control problem computationally accessible,
the direct multiple shooting method is applied to discretize the control trajectory u(·) subject to
optimization.

4.2.2 The direct multiple shooting method

We introduce a discretization of the control trajectory u(·) by defining a shooting grid

t0 < t1 < .. . < tm−1 < tm := tf, m ∈ N, m≥ 1. (4.3)

that shall be a superset of the constraint grid used in (4.1). For clarity, we assume in the following
that the two grids coincide, though this is not a theoretical or algorithmic requirement. On each
interval of the shooting grid (4.3) we introduce a vector qi ∈Rnq

i of control parameters together
with an associated control base function bi : T ×Rnq

i → Rnu
with local support,

u(t) := ∑
nq

i
j=1 bi j(t,qi j), t ∈ [ti, ti+1]⊆T , 0≤ i≤ m−1. (4.4)

The number and location of the shooting grid points and the choice of base functions obviously
affects the approximation quality of the optimal solution of the discretized problem.

In addition, we introduce state vectors si ∈Rnx in all shooting nodes serving as initial values for
m IVPs

ẋi(t) = f (t,xi(t),qi), xi(ti) = si, t ∈ [ti, ti+1]⊆T , 0≤ i≤ m−1. (4.5)

This parameterization of the process trajectory x(·) is in general discontinuous on T . Continuity
of the solution is ensured by introduction of additional matching conditions

xi(ti+1; ti,si,qi)− si+1 = 0, 0≤ i≤ m−1, (4.6)

where xi(ti+1; ti,si,qi) denotes the state trajectory’s value xi(·) in ti+1, depending on the start
time ti, initial value si, and control parameters qi on that interval.

The path constraints of problem (4.1) are enforced on the nodes of the shooting grid (4.3) only.
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While in general it can be observed that this formulation already leads to a solution that satisfies
the path constrains on the whole of T , methods from semi–infinite programming exist [193]
to ensure this in a rigorous fashion. For clarity we define the combined constraint functions
ri : T ×Rnx×Rnu → Rnr

i ,

0 5 ri(ti,si,qi), 0≤ i≤ m−1, 0 5 rm(tm,sm) (4.7)

with nr
i := nc + nr,eq

i + nr,in
i . These comprise all discretized path constraints as well as equality

and inequality point constraints.

The objective function l(x(·),u(·)) shall be separable with respect to the shooting grid structure.
In general, l(·) is a Mayer type function evaluated at the end of the horizon T , or Lagrange type
integral objective evaluated on the whole of T . For both types, a separable formulation is easily
found,

l(x(·),u(·)) = M(sm) or l(x(·),u(·)) = ∑
m−1
i=0

∫ ti+1

ti
Li(xi(t),qi) dt. (4.8)

Summarizing, the discretized multiple shooting optimal control problem can be cast as a nonlin-
ear problem

min
w ∑

m
i=0 li(wi) (4.9a)

s.t. 0 = xi(ti+1; ti,wi)− si+1, 0≤ i≤ m−1 (4.9b)

0 5 ri(wi), 0≤ i≤ m (4.9c)

with the vector of unknowns w being

w := (s1,q1, . . . ,sm−1,qm−1,sm) , (4.10a)

wi := (si,qi) , 0≤ i≤ m−1, wm := sm, (4.10b)

where the evaluation of the matching condition constraint (4.9b) requires the solution of an initial
value problem (4.5).

4.2.3 Structured quadratic subproblem

Sequential Quadratic Programming (SQP) methods are a long–standing and highly effective
method for the solution of NLPs that also allow for much flexibility in exploiting the problem’s
special structure. First introduced by [124, 194], SQP methods iteratively progress towards a
KKT point of the NLP by solving a linearly constrained local quadratic model of the NLP’s
Lagrangian [181]. For the NLP (4.9) arising from direct multiple shooting, this local quadratic
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model reads

min
δw

1
2 ∑

m
i=0 δw′iBiδwi +g′iδwi (4.11a)

s.t. 0 = Xi(wi)δwi−δ si+1−hi(wi), 0≤ i≤ m−1, (4.11b)

0 5 Ri(wi)δwi− ri(wi), 0≤ i≤ m, (4.11c)

with the following notations for vector of unknowns δw and its components

δw := (δ s1,δq1, . . . ,δ sm−1,δqm−1,δ sm) , (4.12a)

δwi := (δ si,δqi) , 0≤ i≤ m−1, δwm := δ sm, (4.12b)

similar to the notation used in (4.10a), and with vectors hi denoting the matching conditions
residuals,

hi(wi) := xi(ti+1; ti,wi)− si+1. (4.13)

The matrices Bi denote the node Hessians of the NLP’s Lagrangian, or suitable approximations,
cf. [44]. The vectors gi denotes the node gradients of the NLP’s objective function. Matrices Xi,
Req

i , and Rin
i denote linearizations of the constraint functions obtained in wi,

Bi ≈
d2li(wi)

dw2
i

, gi :=
dli(wi)

dwi
, (4.14a)

Ri :=
dri(wi)

dwi
, Xi :=

∂xi(ti+1; ti,wi)

∂wi
. (4.14b)

In particular, the computation of the sensitivity matrices Xi requires the computation of deriva-
tives of the solution of IVP (4.5) with respect to the initial values wi. To ensure consistency
of the derivatives, this should be done according to the principle of internal numerical differ-
entiation (IND) [7, 39], i.e. by computing nominal solution and its derivatives using the same
discretization scheme.

4.3 Condensing to obtain a dense quadratic problem

In order to solve the QP (4.11) efficiently, one has to take advantage of its block structure that
is due to multiple shooting. In view of the widespread availability and reliable performance of
active–set QP codes, an obvious choice is to employ one of these solvers for that purpose. System
(4.11) does not suit the majority of codes, though. They either do not exploit sparsity in the QP
data, i.e. they are dense solvers [111, 218], or do exploit sparsity at a general–purpose level
by employing linear algebra working on specially shaped dense data [23, 111], where the shape
assumptions are not fulfilled by QP (4.11). Generic sparse data in triplets or column–compressed
format is commonly accepted by interior–point QP solvers only, cf. [240, 109], which are not
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ideally suited for employment inside an SQP method. Only recently, some progress towards a
general–purpose sparse active set solver has been made as presented in [131].

The block structure in QP (4.11) therefore is exploited in a preprocessing or condensing step
that transforms the QP into a related, considerably smaller, and densely populated one. In this
section we briefly review a condensing algorithm due to [191, 44] and presented to great detail
in [168].

4.3.1 Reordering the structured quadratic problem

We start by reordering the constraint matrix of QP (4.11) to separate the additionally introduced
node values δv = (δ s1, . . . ,δ sm) from the single shooting values δu = (δ s0,δq0, . . . ,δqm−1) as
shown below, 

X s
0 Xq

0 −I

Xq
1 X s

1 −I
. . . . . . . . .

Xq
m−1 X s

m−1 −I

Rs
0 Rq

0

Rq
1 Rs

1
. . . . . .

Rq
m−1 Rs

m−1

Rs
m



. (4.15)

4.3.2 Elimination using the matching conditions

We may now use the negative identity matrix blocks of the equality matching conditions as pivots
to formally eliminate the additionally introduced multiple shooting state values (δ s1, . . . ,δ sm)

from system (4.15), analogous to the usual Gaussian elimination method for triangular matrices.
This elimination procedure was introduced in [44] and a detailed presentation can be found in
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[168]. From this elimination procedure the dense constraint matrix

(
X −I

R 0

)
=



X s
0 Xq

0 −I

X s
1X s

0 X s
1Xq

0 Xq
1 −I

...
...

...
. . . . . .

Π
m−1
0 Π

m−1
1 Xq

0 Π
m−1
2 Xq

1 · · · Xq
m−1 −I

Rs
0 Rq

0

Rs
1X s

0 Rs
1Xq

0 Rq
1

...
...

...
. . .

Rs
mΠ

m−1
0 Rs

mΠ
m−1
1 Xq

0 Rs
mΠ

m−1
2 Xq

1 · · · Rs
mXq

m−1



. (4.16)

is obtained, with sensitivity matrix products Πk
j defined to be

Π
k
j :=

k

∏
l= j

X s
l , 0≤ j ≤ k ≤ m−1, Π

k
j := I, j > k. (4.17)

From (4.16) we deduce that, after this elimination step, the transformed QP in terms of the two
unknowns δu and δv reads

min
δu,δv

1
2

(
δu

δv

)′ =B︷ ︸︸ ︷(
B11 B12

B′12 B22

)(
δu

δv

)
+

=g′︷ ︸︸ ︷(
g1

g2

)′(
δu

δv

)
(4.18a)

s.t. 0 = Xδu− Iδv−h (4.18b)

0 5 Rδu− r (4.18c)

with appropriate right hand side vectors h and r obtained by applying the Gaussian elimination
steps to h and r.

4.3.3 Reduction to a single shooting sized system

System (4.18) easily lends itself to the elimination of the unknown δv. By this step we arrive at
the final condensed QP

min
δu

1
2 δu′Bδu+g′δu (4.19a)

s.t. 0≤ Rδu− r (4.19b)
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with the following dense Hessian matrix and gradient obtained from substitution of δv in the
objective (4.18a)

B = B11 +B12X +X ′B′12 +X ′B22X , (4.20a)

g = g1 +X ′g2−B′12h−X ′B22h (4.20b)

The matrix multiplications required for the computation of these values are easily laid out to
exploit the block structure of X and B. In addition, from the elimination steps of sections 4.3.2
and 4.3.3 one obtains relations that allow to recover δv = (δ s1, . . . ,δ sm) from the solution δu =

(δ s0,δq0, . . . ,δqm−1) of the condensed QP (4.19).

4.3.4 Solving the condensed quadratic problem

As the resulting condensed QP (4.19) no longer has a multiple shooting specific structure, it
may be solved using any standard dense method for quadratic programming, which is what
condensing aims for. Popular codes are the null space method QPSOL, available as subroutine
E04NAF in the NAG library, and its successor QPOPT [111], available as subroutine E04NFF.
An efficient code for parametric quadratic programming is qpOASES [89]. Further active set
codes such as the Schur complement code QPSchur [23] and the QPKWIK code [218] exist.
The primal–dual null–space solver BQPD [91] is also able to exploit sparsity remaining in the
condensed QP to a certain extent. An extensive bibliography of existing QP methods and codes
can be found in [116].

4.4 Block structured quadratic programming: “complementary
condensing”

In this section we present a new approach of solving the KKT system of a QP with block struc-
ture due to multiple shooting that is suited for embedding in a standard active–set loop. This
approach is based on related work by [229] and was first presented in [144]. It does not work as
a preprocessing step but directly exploits the block structure inside the solver. We derive in detail
the necessary elimination steps that shall ultimately retain the duals of the matching condition
equalities only. In classical condensing, these were used for elimination, which gives rise to the
name complementary condensing for our new method. An analysis of the run time complexity
as well as a detailed account on the number of floating point operations spent in the various parts
of the algorithm is presented.
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4.4.1 The KKT system’s block structure

For a given active set, the KKT system of the QP (4.11) to be solved for the primal step δwi and
the dual step (δλ ,δ µ) reads for 0≤ i≤ m

P′i δλi−1 +Bi(−δwi)+R′iδ µi +X ′i δλi = Biwi +gi =: gi, (4.21a)

Ri(−δwi) = Riwi− ri =: ri, (4.21b)

Xi(−δwi)+Pi+1(−δwi+1) = Xiwi +Pi+1si+1−hi =: hi. (4.21c)

with Lagrange multipliers δλ ∈ Rnx
for the matching conditions (4.11b) and δ µ ∈ Rnr

i for the
equality point constraints and the active subset of the discretized inequality path and point con-
straints (4.11c). The projection matrices Pi are defined as

Pi :=
(
−I 0

)
∈ Rnx×(nx+nq), 1≤ i≤ m, (4.22)

and for the first and last shooting nodes as

P0 := 0 ∈ Rnx×(nx+nq), Pm+1 := 0 ∈ Rnx×nx
. (4.23)

In the following, all matrices and vectors are assumed to comprise the components of the active
set only. To avoid the need for repeated special treatment of the first and last shooting node, we
introduce the following conventions that make equation (4.21) hold also for the border cases
i = 0 and i = m:

δλ−1 := 0 ∈ Rnx
, λ−1 := 0 ∈ Rnx , δλm := 0 ∈ Rnx

, λm := 0 ∈ Rnx
, (4.24a)

δwm+1 := 0 ∈ Rnx
, wm+1 := 0 ∈ Rnx

, hm := 0 ∈ Rnx
, Xm := 0 ∈ Rnx×nx

. (4.24b)

As our presentation focuses on a single block of the KKT system only, we omit the subscript
index i where unambiguous. System (4.21) can also be put in matrix form,

B0 R′0 X ′0
R0

X0 P1

P′1 B1 R′1 X ′1
R1

X1
. . .

Bm R′m
Rm





−δw0

δ µ0

δλ0

−δw1

δ µ1

δλ1
...

−δwm

δ µm



=



g0

r0

h0

g1

r1

h1
...

gm

rm



(4.25)
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4.4.2 Hessian projection step

Under the assumption that the number of active point constraints does not exceed the number
of unknowns (i.e. the active set is not degenerate), we can perform QR decompositions of the
linearized point constraints matrix R,

RQ =
(

RR′ 0
)
, Q =:

(
Y Z

)
. (4.26)

We remind the reader that the subscript index i denoting the node is omitted to improve read-
ability. Here Q are a unitary matrices and RR are upper triangular. We partition δw into its range
space part δy and its null space part δ z, where the identity δw = Y δy+Zδ z holds. We find δy
from the range space projection of (4.21b)

R(−δw) =−RR
δy = r. (4.27)

We transform the remainder of the KKT system onto the null space of R by substituting Y δy+
Zδ z for δw and solving for δ z. First, we find for the matching conditions (4.21c)

−XZδ z−Pi+1Zδ zi+1 = h+XY δy+Pi+1Y δyi+1 (4.28)

which can be solved for δwZ
i once δwZ

i+1 is known. Second, from the stationarity conditions
(4.21a) we find

Z′P′δλi−1−Z′BZδ z+Z′R′µ +Z′X ′δλ = Z′g+Z′BY δy, (4.29a)

Y ′R′δ µ =−Y ′(Bδw+P′δλi−1−X ′δλ +g). (4.29b)

Herein, Z′R′ = 0 and Y ′R′ = RR. Equation (4.29a) can be solved for δλi once δwi and δλi−1

are known, while (4.29b) can be used to determine the point constraints multipliers δ µ . Let thus
null space projections be defined as follows, where we use a tilde to distinguish them from their
full-space counterparts:

B̃ := Z′BZ, X̃ := XZ, P̃ := PZ, (4.30a)

g̃ := Z′(g+B(Y δy)), h̃ := h+X(Y δy)+Pi+1(Yi+1δyi+1). (4.30b)

With this notation the projection of the KKT system on the null space of the point constraints
can be read from equations (4.28) and (4.29a) for 0≤ i≤ m−1 as

P̃′δλi−1 + B̃(−δ z)+ X̃ ′δλ = g̃, (4.31a)

X̃(−δ z)+ P̃i+1(−δ zi+1) = h̃. (4.31b)
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This again can be put in matrix form as

B̃0 X̃ ′0
X̃0 P̃1

P̃′1 B̃1 X̃ ′1
X̃1

. . . P̃m

P̃′m B̃m





−δ z0

δλ0

−δ z1

δλ1
...

−δ zm


=



g̃0

h̃0

g̃1

h̃1
...

g̃m


. (4.32)

4.4.3 Schur complement step

In (4.32) the elimination of δ z is possible using a Schur complement step, provided that the
reduced Hessians B̃ are positive definite. We find from (4.31a)

(−δ z) = B̃−1(g̃− P̃′δλi−1− X̃ ′δλ ) (4.33)

depending on the knowledge of δλ . Inserting into (4.31b) and collecting for δλ yields

X̃ B̃−1P̃′δλi−1 +(X̃ B̃−1X̃ ′+ P̃i+1B̃−1
i+1P̃′i+1)δλ + P̃i+1B̃−1

i+1X̃ ′i+1δλi+1 (4.34)

=− h̃+ X̃ B̃−1g̃+ P̃i+1B̃−1
i+1g̃i+1

With Cholesky decompositions B̃ = RB′RB we define the following symbols, where we use a hat
to distinguish them from their full-space counterparts:

X̂ := X̃RB−1
, A := X̃ B̃−1X̃ ′+ P̃i+1B̃−1

i+1P̃′i+1 = X̂ X̂ ′+ P̂i+1P̂′i+1, (4.35a)

P̂ := P̃RB−1
, B := X̃ B̃−1P̃′ = X̂ P̂′, (4.35b)

ĝ := RB−T
g̃, a :=−h̃+ X̃ B̃−1g̃+ P̃i+1B̃−1

i+1g̃i+1 =−h̃+ X̂ ĝ+ P̂i+1ĝi+1. (4.35c)

Equation (4.34) can be written in terms of these values for 0≤ i≤ m−1 as

Bδλi−1 +Aδλ +B′i+1δλi+1 = a. (4.36)

In matrix form, the remaining symmetric positive definite system reads
A0 B′1

B1 A1
. . .

. . . . . . B′m−1

Bm−1 Am−1




δλ0

δλ1
...

δλm−1

=


a0

a1
...

am−1

 . (4.37)
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4.4.4 Solving the banded system

In the symmetric positive definite banded system (4.37), only the matching condition duals
δλi ∈Rnx remain as unknowns. Since in classical condensing, exactly these matching conditions
were used for elimination of a part of the primal unknowns, this new method is in a sense com-
plementary to the classical condensing method. For optimal control problems with dimensions
nq ≥ nx, the presented approach obviously is computationally more favorable than retaining un-
knowns of dimension nq. System (4.37) can be solved for δλ by means of a tridiagonal block
Cholesky decomposition [11] and two backsolves with the block Cholesky factors.
Once δλ is known, the primal null space step δ z can be recovered using equation (4.33). The full
primal step δw is then obtained from δw = Y δy+Zδ z. Finally, the decoupled point constraint
multipliers step δ µ can be recovered by insertion into (4.29b).

4.4.5 Computational complexity

In Table 4.1 a detailed list of the linear algebra operations required to carry out the individual
steps of the complementary condensing method can be found. A clear distinction between matrix
operations of quadratic or cubic runtime complexity on the one hand, and vector operations of
linear or quadratic runtime complexity on the other hand has been made. The number of floating
point operations required for the linear algebra operations, depending on the system dimensions
n = nx + nq and nr

i , is given in Table 4.2. The numbers ny and nz with ny + nz = nr
i denote the

range–space and null-space dimension resulting from the QR decomposition (4.26), respectively.
All FLOP counts are given on a per shooting node basis. It’s easy to see that the method’s runtime
complexity is O(m), in sharp contrast to the classical condensing method, as the shooting grid
length m does not appear as a dependency in Table 4.2. In addition, the run time of a significant
part of the complementary condensing, the decomposition of the banded system (4.37), even is
independent of the number nq of discrete choices.

4.4.6 Pivoting

Both the classical condensing of Section 4.3 and the proposed complementary condesing KKT
solver fix a part of the pivoting sequence. The question of improving numerical stability of the
proposed method and its applicability to ill–conditioned systems therefore is of interest.
Several extensions are thinkable here. First, within the QR decomposition of the active decou-
pled point constraints one can of course make use of pivoting to improve the behavior for almost
linear dependent active sets. Second, the Cholesky decompositions of both the null-space Hes-
sian B̃ and the diagonal blocks of system (4.37) can employ pivoting strategies. Probably the
most interesting strategy is a block pivoting strategy for the decomposition of system (4.37).
Based on cheap estimates of the conditions of the blocks Ai and the norms of the blocks Bi,
block row and column interchanges can be determined. The block fill-in can be shown to intro-
duce at most one additional nonzero block subdiagonal.
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Matrix Vector

Action dec bs mul add bs mul add

Decompose Ri 1 – – –

Solve for δy, Y δy 1 1 –

Build B̃i – – 2 –

Build X̃i, P̃i – – 2 –

Build g̃i, h̃i – 4 3

Decompose B̃i 1 – – –

Build X̂i, P̂i – 2 – –

Build Ai, Bi – – 3 1

Build ĝi, ai 1 2 2

Decompose (4.37) 1 1 1 –

Solve for δλi 2 2 2

Solve for δ zi, Zδ zi 1 3 2

Solve for δ µi 1 4 3

Table 4.1: Number of matrix and vector operations per node required for the individual parts of the pro-
posed block structured QP solver, separated into decompositions (dec), backsolves (bs), multi-
plications (mul), and additions (add).

4.5 Example: a vehicle control problem with gear shift

In this section we review a vehicle control problem that is due to [105, 106] as a test bed for both
presented approaches to solving the block structured quadratic problems within a direct multiple
shooting method for optimal control. The same benchmark problem is described in Section 7.9.

4.5.1 Vehicle model

We consider a single–track model of a vehicle as depicted in Figure 4.1 whose dynamics are
modeled by a system of ordinary differential equations (ODEs) described in Section 7.9 with
7 states as briefly listed in Table 4.3. As this is a time optimal problem, an additional differen-
tial state representing the current time t is introduced for the transformation from a fixed time
horizon τ ∈ [0,1] to the one of variable length t ∈ [0, tf]. The length tf of the time horizon is a
global model parameter subject to optimization, which for simplicity of the implementation is
introduced as a constant differential state as well. Finally, together with the objective function of
Lagrangian type, the problem has a total of nx = 10 differential states.
The driver, in our case the optimal control problem solver, exercises control over the steering
wheel, the pedal, the brakes, and the choice of the gear, as listed in Table 4.4. A more exten-
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Action Floating point operations

Decompose Ri nr
i
2n

Solve for δy, Y δy nr
in

y +nyn

Build B̃i nz2n+nzn2

Build X̃i, P̃i 2nxnzn

Build g̃i, h̃i 2nxn+nzn+n2 +2nx +n

Decompose B̃i
1
3 nz3

Build X̂i, P̂i 2nxnz2

Build Ai, Bi 3nx
2nz +nx

2

Build ĝi, ai nz2 + 2nxnz +2nx

Decompose (4.37) 7
3 nx

3

Solve for δλi 4nx
2 +2nx

Solve for δ zi, Zδ zi nz2 +2nxnz +nzn+2nz

Solve for δ µi nr
in

y +nyn+2nxn+n2 +3n

Table 4.2: Number of floating point operations (FLOPs) per shooting node required for the individual
parts of the proposed block structured QP solver. One FLOP comprises one scalar floating point
multiplication and addition. The numbers ny and nz with ny +nz = nr

i denote the range–space
and null-space dimension resulting from the QR decomposition (4.26), respectively. Further,
we use n := nx +nq to denote the system’s dimension.

sive description of this optimal control problem, its differential equations, model parameters,
objective function, and constraints can be found in [147] together with optimal solutions and
computation times for a test driving scenario.

4.5.2 Outer Convexification of the integer control

We treat the integer gear choice µ(t) ∈ {1, . . . ,nµ}, wherein nµ denotes the number of available
gears, by outer convexification as detailed in Chapters 2 and 3 and in [213, 147]. Reasonable
choices for nµ range from 4 up to 24 in heavy–duty trucks, cf. [125, 237]. Outer convexification
basically amounts to replacing the right hand side f (·) of the car model’s ODE system

ẋ(t) = f (t,x(t),u(t),µ(t)) (4.38)

wherein x =
(
cx,cy,v,δ ,β ,ψ,wz

)
and u = (wδ ,FB,φ), by its outer convexified reformulation

ẋ(t) =
nµ

∑
i=1

wi(t) · f (t,x(t),u(t),µi),
nµ

∑
i=1

wi(t) = 1, ∀ t ∈T . (4.39)
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Figure 4.1: Coordinates, angles, and forces in the single–track car model used as a test bed.

State Unit Description

cx m Horizontal position of the car

cy m Vertical position of the car

v m
s Magnitude of directional velocity of the car

δ rad Steering wheel angle

β rad Side slip angle

ψ rad Yaw angle

wz
rad
s Yaw angle velocity

Table 4.3: Coordinates and states used in the single–track car model.

For each element µi ∈ {1, . . . ,nµ} a separate binary control wi(·) ∈ {0,1} is introduced, subject
to the Special Ordered Set 1 (SOS1) constraint ensuring that for all t ∈ [t0, tf] exactly one of the
choices is attained. The same is done for every constraint function that involves µ(·). The total
number of control parameters for this car model then is nq = 3+nµ . Note that this formulation is
still equivalent to the original one. The optimal control problem is solved with relaxed controls
wi(t) ∈ [0,1] ⊂ R, making the wi(t) convex multipliers. We refer to [147, 204] for a discussion
of the favorable properties of the obtained relaxed solution as well as a detailed presentation of
possibilities to reconstruct an integer solution from the relaxed one.

4.5.3 Classical condensing for the example problem

The application of the classical condensing algorithm of Section 4.3 to the exemplary vehicle
control problem reveals some shortcomings of the condensing algorithm for OCPs with many
controls, e.g. due to outer convexification of integer controls. Clearly from Table 4.5 it can al-
ready be deduced that the classical condensing algorithm is suitable for problems with limited
grid lengths m and with considerably more states than controls, i.e. nx � nq, which is exactly
contrary to the situation encountered for MIOCPs. Nonetheless, using this approach we could
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Control Unit Description

wδ
rad
s Steering wheel angular velocity

FB N Total braking force

φ – Accelerator pedal position

µ – Selected gear

Table 4.4: Controls used in the single–track car model.

Classical Condensing and Dense QP Solver

Computing the Hessian B O(m2nx
3)+O(m2nx

2nq)

Computing the Constraints X , R O(m2nx
3)+O(m2nx

2nq)

Dense QP solver on (4.19), startup O((mnq +nx)
3)

Dense QP solver on (4.19), per iteration O((mnq +nx)
2)

Recovering δv O(mnx
2)

Complementary Condensing

Startup O(mn2)+O(mnx
3)

Per Iteration O(mn2)+O(mnx
3)

Table 4.5: Run time complexity of the presented algorithms, given in terms of the optimal control problem
dimensions. The symbol m denotes the shooting grid length, while n = nx + nq is the total
number of unknowns per shooting node.

solve several challenging mixed–integer optimal control problems to optimality with little com-
putational effort, as reported in [147, 214, 204].
In Table 4.6 the dimensions and amount of sparsity present in the Hessian and constraints ma-
trices are given for the exemplary vehicle control problem for nµ = 4 and nµ = 16 available
gears. Here, the shooting grid lengths of m = 20 and m = 50 intervals were examined. As can
be seen in the left part of the table, the block structured QP is only sparsely populated with the
number of nonzero matrix entries never exceeding 3 percent. The number of nonzero elements
per row of system (4.25) ranges from approximately 15 for the smallest example to 27 for the
largest one. After the condensing step, the sparsity of both Hessian and constraints has been lost
almost completely, as expected. This would be of no concern if the overall dimension of the QP
had reduced considerably, as is the case for optimal control problems with nx� nq. For the case
of an outer convexified MIOCP, however, this is not achieved. Worse yet, the dense active set
method is unable to exploit what sparsity remains in the condensed constraints matrix, impairing
the QP solver’s performance further.
The results shown in Table 4.6 indicate that for larger values of m or nµ , a considerable increase
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Block structured Condensed Dense QP solver

m nµ Matrix Size nnz Size nnz nnz seen

20 4 Hess. 330× 330 5,136 130×130 16,900 16,900 ( 3.3×)
Constr. 264× 330 2,005 64×130 3,116 8,320 ( 4.1×)

50 4 Hess. 810× 810 12,816 310×310 96,100 96,100 ( 7.5×)
Constr. 654× 810 4,756 154×310 16,767 47,740 (10.0×)

20 16 Hess. 570× 570 15,624 370×370 136,900 136,900 ( 8.8×)
Constr. 264× 570 3,585 64×370 8,876 23,680 ( 6.6×)

50 16 Hess. 1410×1410 39,144 910×910 828,100 828,100 (21.2×)
Constr. 654×1410 8,956 154×910 49,167 140,140 (15.6×)

Table 4.6: Comparison of dimensions and number of nonzero elements (nnz) of the Hessian and con-
straints matrix of QPs (4.11) and (4.19) for the exemplary vehicle control problem. All num-
bers for nx = 10, nq = 3+nµ , m and nµ varied. The last column gives the number of nonzero
elements seen by the dense QP solver. In parentheses the increase compared to the number of
nonzero elements in the block structured QP is given.

of the run time is to be expected. The matrices’ size has been reduced only marginally, while the
number of matrix entries treated by the dense QP solver has, for the largest instance examined,
risen by a more than a factor of 15 when compared to the block structured QP.

This concern is supported by the results shown in tables 4.7 and 4.8. Here we list the run times
in milliseconds of the classical condensing algorithm and of a single iteration of the dense null–
space active–set QP solver QPOPT [111]. Averages have been taken over the all SQP iterations
required to solve the optimal control problem to a precision of 10−6. All run times have been
obtained for an ANSI C99 (direct multiple shooting, condensing) and Fortran 77 (QPOPT) im-
plementation running under Ubuntu Linux 9.04 on a single core of an Intel Core i7 920 machine
at 2.67 GHz. BLAS linear algebra operations were done by ATLAS [246] in all parts of the
implementation.

While the condensing algorithm’s quadratic run time growth with the number m of multiple
shooting nodes is acceptable for small systems, it becomes very noticeable for a larger number
of integer decisions nµ . The cubic complexity of the dense QP solver’s initial setup with re-
spect to m is clearly visible. The run time per iteration grows quadratically with both problem
dimensions. When many active set iterations are required to find the QP’s solution, this quickly
becomes the bottleneck of the entire optimal control problem solution process as m or nµ grow.

Summarizing the results presented in this section, we have seen that the dense QP solver’s per-
formance on the unnecessarily large QP is worse than what could be achieved by a suitable
exploitation of the block structure for the case nq ≥ nx.
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Number of nodes m

nµ 20 30 40 50

4 4 12 25 45

8 7 20 44 81

12 11 31 68 126

16 15 43 97 183

Table 4.7: Run times in milliseconds of the classi-
cal condensing algorithm of Section 4.3
for the presented vehicle control prob-
lem with increasing number of shooting
nodes m and number of gears nµ .

Number of nodes m

nµ 20 30 40 50

4 0.3 0.9 2.0 3.7

8 0.6 1.6 4.7 8.7

12 1.2 2.9 7.6 11.1

16 2.2 3.9 13.2 20.7

Table 4.8: Average run times in milliseconds per it-
eration of QPOPT running on the con-
densed QPs for the presented vehicle con-
trol problem with increasing number of
shooting nodes m and number of gears nµ .

(a) Classical condensing runtime (b) Average run time per iteration of the
dense active–set QP solver.

Figure 4.2: Average run times in milliseconds for the presented vehicle control problem when solved us-
ing the dense null–space active–set QP solver QPOPT running on the condensed QPs obtained
from the classical condensing algorithm of Section 4.3.
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4.5.4 Complementary condensing for the example problem

In this final section we apply the proposed complementary condensing technique to the introduc-
tory vehicle control example. Table 4.9 lists the run times obtained for an ANSI C99 implemen-
tation of a primal active set QP code using the presented complementary condensing technique
for the factorization of the KKT system. We compare the run times obtained for the exemplary
vehicle control problem for different values of the shooting grid length m and the number nµ of
available gears.
The claimed run time complexity of O(m) is easily seen in Figure 4.3(a), while the O(nq2) com-
plexity is not noticeable for the examined instances, as the computationally demanding parts of
the complementary condensing approach are independent of the number nq of discrete choices.
The growth of the run time of a single QP iteration with growing problem dimensions is very
small. The total number of required QP iterations still grows, though. For the largest instance
examined, we find an average per iteration speedup of more than a factor of 20 when comparing
the proposed block structured active set solver to the dense active–set solver QPOPT running on
the condensed QP. In addition, the run time required for condensing, up to 200 milliseconds per
SQP iteration, is saved entirely.
In a model–predictive control setup, giving fast feedback close to the controlled process’ ref-
erence trajectory enables an active–set QP solver to complete in one or very few iterations, cf.
[88, 89]. In this case, the proposed algorithm substitutes condensing plus one dense QP itera-
tion for one block structured QP iteration, and the achievable speedup is as high as a factor of
(200 ms+20.7 ms)/1.0 ms > 200.
Table 4.10 compares the performance of the complementary condensing approach, which effec-
tively proposes a factorization of the KKT system with special block structure, to the highly ef-
ficient multifrontal symmetric indefinite factorization subroutine MA57 [79, 80] available from
the Harwell Subroutine Library (HSL). Diagonal pivoting based on the minimum degree cri-
terion as provided by MA57A was used. Our proposed method has a performance advantage
of up to a factor of 8 for the largest examined instance. Our method does not currently exploit
model–inherent sparsity, i.e. structures of the KKT matrix induced by the model rather than by
the multiple shooting discretization. It should be noted, though, that the computation times listed
include the necessary reassembly of the KKT matrix in triplets storage format. This overhead
could be avoided. In addition, as noted in Section 4.5.3 the number of nonzero elements per row
increases as the problem’s dimensions grow, which explains the increasing performance gap be-
tween MA57 and our method. Finally, MA57 is likely to be numerically more stable, as our
method does not currently make use of pivoting.

4.6 Extensions

Additional work on the complementary condensing algorithm presented in Section 4.4 includes
the following topics.
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Number of nodes m

nµ 20 30 40 50

4 0.3 0.3 0.6 0.7

8 0.4 0.6 0.7 0.9

12 0.4 0.6 0.8 0.9

16 0.4 0.6 0.9 1.0

Table 4.9: Average computation time in millisec-
onds per iteration of the proposed struc-
ture exploiting block structured QP
solver.

Number of nodes m

nµ 20 30 40 50

4 0.9 1.5 2.1 2.5

8 1.5 2.2 3.0 3.8

12 2.3 3.1 4.7 5.0

16 2.6 4.3 6.0 8.1

Table 4.10: Average computation time in millisec-
onds per iteration of a symmetric indef-
inite factorization of the QP’s KKT sys-
tem using HSL MA57.

(a) Average run time per iteration of the
proposed block structured solver.

(b) Average run time per iteration when
solving the KKT system using HSL
MA57.

Figure 4.3: Average run times in milliseconds per iteration of the proposed block structured active set QP
solver. The KKT system was solved with the proposed factorization (a) and with the highly
efficient sparse symmetric indefinite factorization code HSL MA57 (b).
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A first improvement to the presented approach inside an active–set loop is the exploitation of so–
called simple bounds wi ≤ δwi ≤ wi on the unknowns by introducing the notion of free and fixed
unknowns. Since the block structure of system (4.25) can be maintained, this effectively reduces
the size of the matrices Bi, Ri, and Xi. Decompositions and multiplications during solution of the
KKT system on the smaller matrices can be expected to perform faster.

The formulation of the optimal control problem (4.1) can be extended to include more general
classes of constraints, such as periodicity, boundary conditions, or fully coupled constraints.
Such extensions destroy the block structure of system (4.25) to some extent, though, and prevent
the factorizations to work on a per-block level. Certain subclasses, such as periodicity conditions,
can still be treated by introduction of artificial constraints taking the role of residuals.

The proposed method’s stability on severely ill-conditioned systems has to be investigated. Piv-
oting strategies improving the stability can work on both the block level and inside the block-
local factorizations. To this end, several pivoting strategies have been briefly mentioned in Sec-
tion 4.4.6.

Within the active–set loop of the QP solver, all decompositions have to be recomputed whenever
a point constraint enters or leaves the active set. When exploiting simple bounds, the same holds
true whenever an unknown hits or leaves one of its bounds. From dense null–space and range–
space methods it is common knowledge that certain decompositions can be updated during an
active set change in O(n2) time [110]. Such update techniques would essentially remove all
matrix decompositions and matrix–matrix operations listed in Table 4.1 from the active–set loop.
This yields an O(mn2) block structured active set method with only an initial factorization in
O(mn3) time.
Details on these more specific issues can be found in the PhD thesis of Christian Kirches [143]
and in the publication [146].

4.7 Summary

We have considered the solution of mixed–integer optimal control problems in ordinary differ-
ential equations. We treated the integer control by outer convexification [203] and reviewed the
direct multiple shooting method [191, 44, 168] to obtain a discretized optimal control problem.
Sequential quadratic programming methods have been our motivation to investigate the solution
of the highly structured quadratic subproblems. We reviewed the classical condensing algorithm
[191, 44, 168] that works as a preprocessing step for the quadratic subproblems, and enables
the efficient usage of a wealth of available dense quadratic programming codes. Application of
this approach to an exemplary vehicle control problem with gear shift revealed that for longer
horizons or larger numbers of choices for the integer control, the classical condensing algorithm
leaves room for improvement. To address this issue, we presented a new approach at solving the
highly structured quadratic program by devising a new factorization of the QP’s KKT matrix
that respects the block structure introduced by direct multiple shooting. We employed this new

71



CHAPTER 4
∣∣ B L O C K S T R U C T U R E D Q U A D R A T I C P R O G R A M M I N G

method to solve the exemplary vehicle control problem and compared it a) to the classical con-
densing approach, and b) to the highly efficient sparse symmetric indefinite factorization code
MA57 which was used as an alternative means to obtain a factorization of the highly structured
QP’s KKT matrix. The presented computational results indicate that the proposed method is able
to deliver promising run times for all examined instances of the vehicle control problem.
We derived an O(mn3) runtime complexity for our method, in contrast to O(m2n3) for the clas-
sical condensing, where m is the number of nodes and n is the number of process states and
control parameters per node. A speedup of a factor of 20 was obtained for the largest instance
of the example problem examined, and we proposed a speedup of a factor of 200 for a special
model predictive control scenario.
The mentioned extensions in Section 4.6 allow a further reduction. Especially the updating of
factorizations reduces the runtime complexity per iteration to O(mn2).
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5 Combinatorial Integral Approximation

The contents of this chapter are based on the paper

[212] S. Sager, M. Jung, C. Kirches. Combinatorial Integral Approximation. Mathematical
Methods for Operations Research, 2011, Vol. 73(3):363–380.

Chapter Summary. We are interested in structures and efficient methods for mixed-integer
nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to time-
dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on com-
binatorial constraints, in particular on restrictions on the number of switches on a fixed time
grid.
We propose a novel approach that is based on a decomposition of the MINLP into a NLP and a
MILP. We discuss the relation of the MILP solution to the MINLP solution and formulate bounds
for the gap between the two, depending on Lipschitz constants and the control discretization grid
size. The MILP solution can also be used for an efficient initialization of the MINLP solution
process.
The speedup of the solution of the MILP compared to the MINLP solution is considerable al-
ready for general purpose MILP solvers. We analyze the structure of the MILP that takes switch-
ing constraints into account and propose a tailored Branch and Bound strategy that outperforms
cplex on a numerical case study and hence further improves efficiency of our novel method.

5.1 Introduction

Again, our main motivation are mixed-integer optimal control problems in ordinary differential
equations that are of the form (2.1), compare page 8. However, we look at a more specific
problem formulation that allows to formulate constraints on the number of switches that take
place.
We assume that one of the controls needs to take binary values and can only change these values
on a prefixed time grid

0 = t1 < .. . < tnt+1 = tf, (5.1)

which we use for a discretization of the control in a first discretize, then optimize approach,
compare Chapter 4. For the sake of notational simplicity we consider a problem with linearly
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entering piecewise constant binary control functions,

ωk(t) = pk,i, t ∈ [ti, ti+1], k = 1 . . .nω , i = 1 . . .nt (5.2)

with pk,i ∈ {0,1}. We want to minimize a Mayer term

min
x,p

Φ(x(tf)) (5.3a)

over the differential states x(·) and the discretized binary control p subject to the nx-dimensional
ODE system

ẋ(t) = f0(x(t))+
nω

∑
k=1

fk(x(t)) pk,i, t ∈ [ti, ti+1], (5.3b)

fixed initial values

x(0) = x0, (5.3c)

integrality of the control function ω(·)

pk,i ∈ {0,1}, k = 1 . . .nω , i = 1 . . .nt, (5.3d)

and switching constraints

nt−1

∑
i=1
|pk,i+1− pk,i| ≤ σk,max, k = 1 . . .nω . (5.3e)

Note that the generalization towards the more general case in which ω(·) enters in a nonlinear
way into the right-hand side can be achieved by means of an SOS1 constraint. Also additional
continuous controls, path constraints, or multi-stage formulations can be included, compare the
results in [214, 204] and Chapter 2. For the sake of notational simplicity, however, we concen-
trate on the special case stated above.

Although in practice we use a simultaneous approach, e.g., collocation [136] or direct multiple
shooting [168], we consider the differential states as dependent variables in the theoretical part
that can be determined uniquely, whenever the controls are fixed. This transforms (5.3) into a
MINLP with finitely many degrees of freedom. The difference to MIOCPs as they are defined,
e.g., in [214, 204] are the additional switching restriction (5.3e) and the fixed time grid (5.1)
which do not allow the usage of a switching time optimization. More remotely related is the
question of the maximum number of switches for equivalent reachable sets. For a special case
of a switched system it is shown in [225] that 4 switches are enough. A counterexample based
on Fuller’s phenomenon is given in [172]. However, these approaches are based on continuous
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time, not on fixed switching grids. Therefore we focus on combinatorial approaches, i.e., integer
programming.
Progress in mixed-integer linear programming (MILP) started with the fundamental work of
Dantzig and coworkers on the Traveling Salesman problem in the 1950s. Since then, enormous
progress has been made in areas such as linear programming (and especially in the dual simplex
method that is the core of almost all MILP solvers because of its restart capabilities), in the
understanding of branching rules and more powerful selection criteria such as strong branch-
ing, the derivation of tight cutting planes, novel preprocessing and bound tightening procedures,
and of course the computational advances roughly following Moore’s law. For specific prob-
lem classes problems with millions of integer variables can now be routinely solved [13]. Also
generic problems can often be solved very efficiently in practice, despite the known exponential
complexity from a theoretical point of view [38].
The situation is different in the field of Mixed-Integer Nonlinear Programming (MINLP). Only
at first sight many properties of MILP seem to carry over to the nonlinear case. Restarting non-
linear continuous relaxations within branching trees is essentially more difficult than restarting
linear relaxations (which some global solvers also use for nonlinear problems), as no dual al-
gorithm comparable to the dual simplex is available in the general case. Nonconvexities lead to
local minima and do not allow for easy calculation of subtrees, which is important to avoid an
explicit enumeration. Additionally, nonlinear solvers are slower and less robust than LP solvers.
However, the last decade saw great progress triggered by cross-disciplinary work of integer and
nonlinear optimizers, resulting in generic MINLP solvers, e.g., [1, 45], or efficient heuristics
such as the Feasibility Pump [46]. Most of them, however, still require the underlying functions
to be convex. Comprehensive surveys on algorithms and software for convex MINLPs are given
in [120, 47]. Recent progress in the solution of nonconvex MINLPs is in most cases based on
methods from global optimization, in particular convex under- and overestimation. See, e.g.,
[30, 92, 235] for references on general under– and overestimation of functions and sets. In our
study we use the solver Bonmin [45] for comparison and show how important it is to exploit
problem-class specific structures.
The basic idea of our new approach to solve problem (5.3) consists of a decomposition of the
MINLP into an NLP and an MILP, which we can both solve comparatively efficiently. This
idea is related to ideas of [54]. The authors reformulate the MIOCP as a large-scale, structured
nonlinear program (NLP) and solve a small scale linear integer program on a second level to ap-
proximate the calculated continuous aggregated output of all pumps in a water works. However,
their decomposition is tailored to the special structure of the water network application, while
our approach targets generic problems of the form (5.3).
To guarantee error bounds on the obtained solution compared to the MINLP solution, we revise
some theoretical results in Section 5.2. In Section 5.3 we discuss our new method that is based on
a combinatorial approximation of the integral over control deviations. In Section 5.4 we analyze
the structure of the MILP and provide a structure exploiting Branch and Bound algorithm. In
Section 5.5 we present results for a numerical benchmark example. Finally, we conclude and

75



CHAPTER 5
∣∣ C O M B I N A T O R I A L I N T E G R A L A P P R O X I M A T I O N

give an outlook in Section 5.6.

5.2 Approximation results

We often leave the argument (t) away for the sake of notational simplicity. In the following ‖ · ‖
denotes the maximum norm.
For our error-bounded decomposition approach we need the results from Chapter 3. Theo-
rem 3.2.2 on page 36 postulates an upper bound on the difference between differential states
that depends on the value η in ∥∥∥∥ ∫ t

0
α(τ)−ω(τ) dτ

∥∥∥∥ ≤ η . (5.4)

We repeat the definition of the Sum Up Rounding strategy that was first given in (3.7, 3.8). We
assume we have an optimal trajectory (x∗(·),α(·)) with

αk(t) = qk,i, k = 1 . . .nω , t ∈ [ti, ti+1]. (5.5)

Again, we write ∆ti := ti+1− ti and ∆t for the maximum distance between two time points, ∆t :=
maxi=1...nt ∆ti = maxi=1...nt{ti+1− ti}. Let then a function ω(·) : [0, t f ] 7→ {0,1}nω be defined by

ωk(t) = pSUR
k,i , k = 1 . . .nω , t ∈ [ti, ti+1] (5.6)

where the pSUR
k,i are binary values given for k = 1 . . .nω by

pSUR
k,i =

 1 if ∑
i
j=1 qk, j∆t j−∑

i−1
j=1 pSUR

k, j ∆t j ≥ 0.5∆ti

0 else
. (5.7)

Additionally, we define σSUR
k to be the minimal number for which inequality (5.3e) holds for

pSUR
k . For convenience we repeat Theorem 3.3.1.

Theorem 5.2.1. Let the functions α : [0, t f ] 7→ [0,1]nω and ω : [0, t f ] 7→ {0,1}nω be given by
(5.5) and (5.6, 5.7), respectively. Then it holds∥∥∥∥ ∫ t

0
α(τ)−ω(τ) dτ

∥∥∥∥≤ η

with η = 0.5 ∆t.

Note that for the more general case in which the integer control functions enter in a nonlinear
way into the differential equations the SUR strategy can be modified to incorporate the SOS1
constraint, see Theorem 3.4.2. Theorem 5.2.1 still holds with a constant η which is a function
of nω multiplied by ∆t.
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5.3 Approximating the integral over the controls by MILP
techniques

The results of Section 5.2 have been used in several ways. Most importantly they imply that,
if the control discretization grid is fine enough, no integer gap exists [214], because ∆t can be
chosen arbitrarily small and the estimation carries over to continuous objective and constraint
functions. Also, the specific way of constructing a binary solution (5.6,5.7) can be used, e.g., in
the adaptive algorithm MINTOC, Section 2.7.4. However, both uses require that the constructed
binary control is feasible for the original problem. This is not a problem if only constraints on
the differential states are present when ∆t → 0, but constraints of the type (5.3e) are typically
violated if ∆t is small.
Therefore we propose to change the point of view: while before it was argued that the difference
between integer and relaxed solution becomes arbitrarily small if ∆t → 0, we now consider ∆t
to be fixed and allow a larger constant to obtain a feasible solution.
To be able to include constraint (5.3e) we determine p not by (5.6,5.7), but as the solution of the
MILP

min
p

max
k=1...nω

max
i=1...nt

∣∣∣∣∣ i

∑
j=1

(qk, j− pk, j)∆t j

∣∣∣∣∣
subject to

σk,max ≥ ∑
nt−1
i=1 |pk,i− pk,i+1| , k = 1 . . .nω ,

pk,i ∈ {0,1}, k = 1 . . .nω , i = 1 . . .nt.

(5.8)

To get rid of the minmax formulation and the absolute values, we introduce slack variables
η ∈ R and s ∈ [0,1]nω×(nt−1) and obtain

min
η ,s,p

η

subject to

η ≥ ∑
i
j=1(qk, j− pk, j)∆t j, k = 1 . . .nω , i = 1 . . .nt,

η ≥ −∑
i
j=1(qk, j− pk, j)∆t j, k = 1 . . .nω , i = 1 . . .nt,

sk,i ≥ pk,i− pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

sk,i ≥ −pk,i + pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

σk,max ≥ ∑
nt−1
i=1 sk,i, k = 1 . . .nω ,

pk,i ∈ {0,1}, k = 1 . . .nω , i = 1 . . .nt,

(5.9)
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for fixed control values q that stem from the solution of the relaxed problem (5.3) and given
upper bounds on the number of switches, σk,max.

Although problem (5.9) is a MILP and thus typically hard to solve, for certain values σk,max

the solution can be calculated in polynomial time using the Sum Up Rounding strategy (5.6,
5.7). This is the content of the following theorem. In analogy to the maximal interval length
∆t := maxi=1...nt ∆ti we also define the minimal one, δ t := mini=1...nt ∆ti.

Theorem 5.3.1. Assume pSUR to be the solution obtained by Sum Up Rounding (5.6, 5.7). The
following claims hold for the optimal solution (η∗,s∗, p∗) of the MILP (5.9):

(a) η
∗ < 0.5 δ t = 0.5 min

i=1...nt
∆ti

⇒ (b) p∗ = pSUR

⇒ (c) σk,max ≥ σ
SUR
k ∀ k = 1 . . .nω

⇒ (d) η
∗ ≤ 0.5 ∆t = 0.5 max

i=1...nt
∆ti

where the solution p∗ = pSUR in (b) is unique.

Proof. “(a) ⇒ (b)”. Assume first η∗ < 0.5 δ t and p∗ 6= pSUR. Then there must exist indices
k ∈ {1, . . . ,nω} and i ∈ {1, . . . ,nt} such that p∗k, j = pSUR

k, j for all j < i and p∗k,i 6= pSUR
k,i .

We have two cases for the binary variables p∗k,i 6= pSUR
k,i . If p∗k,i = 0 and pSUR

k,i = 1, then from (5.7)
it follows that

i

∑
j=1

qk, j∆t j−
i−1

∑
j=1

pSUR
k, j ∆t j ≥ 0.5 ∆ti

and hence

i

∑
j=1

(qk, j− p∗k, j)∆t j =
i

∑
j=1

qk, j∆t j−
i−1

∑
j=1

pSUR
k, j ∆t j ≥ 0.5 ∆ti. (5.10)

Equivalently, if p∗k,i = 1 and pSUR
k,i = 0 then

i

∑
j=1

qk, j∆t j−
i−1

∑
j=1

pSUR
k, j ∆t j < 0.5 ∆ti

and therefore

i

∑
j=1

(qk, j− p∗k, j)∆t j =−∆ti +
i

∑
j=1

qk, j∆t j−
i−1

∑
j=1

pSUR
k, j ∆t j <−0.5 ∆ti. (5.11)
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As (η∗,s∗, p∗) is a feasible solution of (5.9), with (5.10) and (5.11) we have the contradiction

η
∗ ≥

∣∣∣∣∣ i

∑
j=1

(qk, j− p∗k, j)∆t j

∣∣∣∣∣≥ 0.5 ∆ti ≥ 0.5 δ t (5.12)

to the assumption η∗ < 0.5 δ t. Therefore p∗ = pSUR.

“(b)⇒ (c)”. Assume now p∗ = pSUR. As (η∗,s∗, p∗) is a feasible solution of (5.9), the number
of switches of pSUR given by σSUR

max is necessarily at least σmax, componentwise.

“(c)⇒ (d)”. If it holds that σk,max ≥ σSUR
k for all k = 1 . . .nω , then the vector given by

η = 0.5∆t,

p = pSUR,

sk,i = |pk,i− pk,i+1|, k = 1 . . .nω , i = 1 . . .nt−1

is a feasible solution of (5.9) as follows from Theorem 5.2.1, and yields hence an upper bound
on the objective function value η∗.

Remark 5.3.2. The asymmetry in Theorem 5.3.1 even for an equidistant grid with δ t = ∆t = ∆ti
is due to the degenerate case where η∗= 0.5∆t. While pSUR always yields a solution with ηSUR≤
0.5∆t, this solution might switch more often than another control resulting in η∗ = 0.5∆t. The
easiest example is qk = (0.5,0, . . . ,0), which results in pSUR

k = (1,0, . . . ,0) with one switch. The
same value of η∗ = 0.5∆t is obtained by pk = (0,0, . . . ,0). This is also the optimal solution of
the MILP instance with qk and σk,max = 0 for which pSUR is infeasible, but still η∗ = 0.5∆t.

Remark 5.3.3. It holds ηSUR ≤ 0.5∆t, and therefore also the optimal objective function values
η∗ of MILP (5.9) decrease, as ∆t is decreased. However, this is not necessarily strictly mono-
tonic, as the amount of reduction depends heavily on the values of q and ∆ti.

Theorem 5.3.1 is particularly interesting, as we know from Corollary 3.5.3 that if nt→ ∞, then
Φ(xSUR)→ Φ∗, i.e., the solution obtained with Sum Up Rounding, pSUR, yields an objective
function value that converges against the lower bound Φ∗ obtained by solving the relaxed version
of (5.3).

However, the solution pSUR may violate the switching constraint (5.3e). Hence, solving the
MILP yields a compromise between the approximation of the control integral, which has been
shown to imply convergence towards the objective’s lower bound if the control discretization is
refined, and the incorporation of switching constraints — and possibly all other types of linear
constraints on p — by means of a mixed-integer linear program.
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5.4 Solving the MILP

The mixed-integer linear program (5.9) can be solved with standard solvers, such as cplex. How-
ever, as the structure is generic for all MIOCPs with switching restrictions, we have a closer look
at the facets of the convex hull of all feasible points in Section 5.4.1. To speed up computational
runtimes we also propose a tailored Branch and Bound strategy in Section 5.4.2.

5.4.1 Facet defining inequalities

Important insight can be gained by investigating the feasibility polytope. An investigation of min
down/up polytopes, for example, can be found in [166].

The MILP (5.9) has a specific structure, partly independent of the values of q and σmax. To iden-
tify the structure – especially the facets – of the convex hull of all feasible points of MILP (5.9)
we use the software-package PORTA [64, 65]. The following constraints define facets of this
polytope,

sk,i ≥ pk,i− pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

sk,i ≥ −pk,i + pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

sk,i ≤ pk,i + pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

sk,i ≤ 2− pk,i− pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1.

(5.13)

Depending on whether the σk,max are fixed to a certain value or not, the corresponding facets are
different. If σk,max is free, they read as

σk,max ≥ ∑
nt−1
i=1 sk,i, k = 1 . . .nω . (5.14a)

If σk,max is fixed to an even value, then as

σk,max ≥ pk,1− pk,nt +∑
nt−1
i=1 sk,i, k = 1 . . .nω ,

σk,max ≥ pk,nt− pk,1 +∑
nt−1
i=1 sk,i, k = 1 . . .nω ,

(5.14b)

and alternatively if σk,max is fixed to an odd value as

σk,max ≥ 1− pk,1− pk,nt +∑
nt−1
i=1 sk,i, k = 1 . . .nω ,

σk,max ≥ pk,1 + pk,nt−1+∑
nt−1
i=1 sk,i, k = 1 . . .nω .

(5.14c)
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Control values q1, j fixed to:

nt 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4 16 18 23 33 29 33 23 18 16

5 21 31 87 189 54 189 87 31 21

6 30 60 745 612 248 612 745 60 30

7 47 150 4838 4840 922 4840 4838 150 47

8 83 899 37470 29884 4212 29884 37470 899 83

Table 5.1: Number of all facets for problems with only one control and all the given q1, j fixed to a certain
value, all the σk,max are free.

Unfortunately, the facets arising from the approximation inequalities

η ≥ ∑
i
j=1(qk, j− pk, j)∆t j, k = 1 . . .nω , i = 1 . . .nt,

η ≥ − ∑
i
j=1(qk, j− pk, j)∆t j, k = 1 . . .nω , i = 1 . . .nt.

(5.15)

cannot be expressed as easily, as far as we know. They mainly depend on the values of q and
generally are dense in both pk,i and sk,i. Additionally, their number strongly increases with the
size of the problem, as can be seen in Table 5.1. Therefore it is hard to identify structures in the
corresponding facets which would possibly enable cutting plane methods.

5.4.2 Solving the MILPs efficiently

As an alternative to cutting planes we implemented a structure exploiting pure Branch and Bound
algorithm. It uses the structure of the approximation inequalities (5.15) that model the minmax
formulation. We branch on controls p and determine s as dependent variables. We branch in
increasing order of the time index i in pk,i. This way 2 nω inequalities are fixed for each i, i.e., all
variables sk, j and pk, j with j ≤ i are fixed and we can give a new bound on η using constraints
(5.15). Because of this lower bound it is not necessary to solve an LP relaxation.
We present a short outline of the algorithm. Each node of the branching tree contains the four
components
• depth d of the node, i.e., the number of timesteps for which the controls are fixed,
• the fixed control variables pk, j for j ≤ d,
• the fixed slack variables sk, j for j ≤ d,
• the corresponding lower bound on η .

The priority queue in Algorithm 5.1 models the search strategy, in our case a best-first search
(if two nodes have the same objective value, the deeper one is preferred). Note that the algo-
rithm does not solve any relaxed linear programs, but is purely based on efficient branching and
constraint/objective evaluation.
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Algorithm 5.1: Combinatorial Branch and Bound
Input : Relaxed controls q, time grid {ti}, i = 1 . . .nt, max. numbers of switches

σk,max,k = 1 . . .nω .
Result : Optimal solution (η∗,s∗, p∗) of (5.9).
begin

Create empty priority queue Q ordered by a.η (non-decreasing), if equal by a.d
(non-increasing).
Push an empty node (0, {}, {}, 0.0) into the queue.
while Q is not empty do

a = top node of Q and remove the node from Q.
/* 1st solution found is optimal since best-�rst search is used */
if a.d = nt then

Return optimal solution (a.η ,a.s,a.p).
end
/* Create child nodes, use strong branching. */
else

forall possible permutations φ of {0,1}nω do
Create new node n with n.d = d +1, n.p = a.p, n.s = a.s.
Set n.pk,d+1 = φk, calculate n.sk,d+1.
if n.s fulfills switching constraint (5.3e) until time d +1 then

n.η = max
{

a.η ,maxnω

k=1{±∑
d+1
j=1 (qk, j− pk, j)∆t j}

}
Push n into Q.

end
end

end
end

end
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5.5 Numerical results

An open online benchmark library for the problem class of MIOCPs is available at [202]. Here
we present numerical results for the Lotka-Volterra benchmark fishing problem from Section 7.4
extended with an additional switching constraint (5.3e),

min
x,w

x2(tf) (5.16a)

subject to ẋ0(t) = x0(t)− x0(t)x1(t)− c0x0(t) w(t), (5.16b)

ẋ1(t) =−x1(t)+ x0(t)x1(t)− c1x1(t) w(t), (5.16c)

ẋ2(t) = (x0(t)−1)2 +(x1(t)−1)2, (5.16d)

x(0) = (0.5,0.7,0)T , (5.16e)

w(t) = pi ∈ {0,1}, t ∈ [ti, ti+1], (5.16f)

σmax ≥
nt−1

∑
i=1
|pi+1− pi|, (5.16g)

with c0 = 0.4, c1 = 0.2, tf = 12, and different equidistant grids {t1, . . . , tnt+1}. This problem is
particularly suited for our study, because the optimal relaxed solution contains a singular arc
[203].

The differential equations have been discretized with an implicit Euler method and 10000 equidis-
tant time steps, independent of the control discretization. All computational times refer to a two
core Intel CPU with 3GHz and 8GB RAM run under Ubuntu 9.10. We used Bonmin 1.2 trunk
revision 16011 and cplex 8.1 with standard options, respectively.

Numerical results are shown in Tables 5.2 and 5.4. Here τ is the computing time in seconds, Φ

denotes the objective function value. The number of switches of a solution is given by σ , while
η is the maximum deviation of the integrated difference between relaxed and integer control
over the time horizon. Note, however, that the values of η have been scaled by tf

nt
for better

comparability. The upper script rel refers to the relaxed version of the OCP (5.3), milp to the
solution of the MILP (5.9) obtained with either cplex 8.1 or with our own code (bb) as described
in Section 5.4.2, and minlp to the solution of the MINLP resulting from a discretization of (5.16)
and solution with Bonmin 1.2.

We used an upper time limit of 1800 seconds, indicated by an * in Table 5.2 whenever active.
If no feasible solution could be found within this upper time limit, this is indicated by an *,
otherwise the value of the upper bound feasible solution is listed. In Table 5.4 a value for σmax

and a * indicate that no better solution than the one from the MILP initialization could be found.

1using Cbc 2.4stable and Ipopt 3.8stable
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5.5.1 MILP and MINLP solutions

Numerical results for the solution of problem (5.16) with different upper limits on the number
of switchings of pi between 0 and 1 and different equidistant discretizations (5.1) are shown in
Table 5.2. The first rows show the behavior of the solution of the relaxed MINLP (5.16). As
predicted by theory, compare Section 5.2, the objective function values of the relaxed problem
Φrel and the Sum Up Rounding solutions ΦSUR converge towards a Φ∗ that is the solution of the
non-discretized, relaxed optimal control problem. However, the number of switches σmax of the
SUR solution increases significantly. All values of 1

∆t ηSUR = nt
tf

ηSUR are below 0.5, as predicted
by Theorem 5.2.1. It is interesting to observe that these values approach 0.5 as nt increases, due
to the increased probability to find a maximum close to the upper bound 0.5.
The next blocks show results for the solutions of MILPs and MINLPs corresponding to different
upper limits σmax. If this limit is large enough, then in accordance with Theorem 5.3.1 the MILP
and SUR solutions coincide (e.g., nt = 25,σmax ≥ 4). If not, the value of 1

∆t ηmilp necessarily
increases above 0.5. The objective function values Φmilp and Φminlp both converge against the
value of Φrel, as nt→∞ and σmax large enough. If switching constraints are active, the objective
function value is bounded by a constant multiple of η . Although the MILP is not necessarily
optimal for the MINLP, it has the advantage to be feasible, to have asymptotic properties, and to
be a priori bounded.
As can be observed, the CPU times for the Branch and Bound algorithm are below those of
cplex (τbb vs. τcplex), which in turn are considerably below those of the MINLP solver (τcplex vs.
τbonmin). For all larger problems Bonmin violated the upper time limit of 1800 seconds.

Remark 5.5.1. It is interesting to observe that, as σmax increases for given nt, the computational
effort increases, due to the fact that more Branch and Bound subtrees need to be evaluated.
However, once the value σmax reaches σSUR, the solution of MILP (5.9) can be determined in
linear time with the Sum Up Rounding strategy, compare Theorem 5.3.1.

5.5.2 Using the MILP solution for cutoff in the MINLP tree

The MILP solution can itself be used as a solution that gets arbitrarily close to the lower bound,
if nt and σmax are large enough. If the global solution on a given grid is an issue, and MINLP
solvers have to be used, the solution can still be used to obtain a reduction in the MINLP Branch
and Bound tree. The MILP solution is a feasible solution that respects the switching constraint
(5.3e). Bonmin provides a bonmin.cuto� option that can be used to eliminate branches with a
lower bound exceeding this value. In Table 5.4 numerical results are presented that show the
effect of this additional information.
It results either in a reduction of the overall computation time (up to approximately 50%) when
comparing τmilp init to τscratch, or in better solutions Φmilp init compared to Φscratch, if the compu-
tation time is bounded. For the rightmost column with nt = 200 all results obtained by making
use of the information from the MILP solution resulted in a better solution.
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nt 10 20 25 50 80 100 200

τ rel 2.59616 2.61616 2.75217 2.18814 2.25214 2.33214 1.89612

Φrel 1.34915 1.34741 1.34718 1.34683 1.34659 1.34649 1.34626

τSUR 0 0 0 0 0 0 0

ΦSUR 1.60251 1.40651 1.37175 1.38366 1.35234 1.35561 1.35328

σSUR 2 4 4 8 10 14 24
nt
tf

ηSUR 0.316526 0.47577 0.492702 0.499711 0.483694 0.497768 0.49956

Maximum of σmax = 3 switches:

τbb 0.00 0.00 0.00 0.00 0.00 0.01 0.14

τcplex 0.008001 0.016001 0.020002 0.100006 0.412026 0.584037 5.54835

Φmilp 1.60251 1.60251 1.52323 1.67052 1.48912 1.55515 1.70474

σmilp 2 2 3 2 2 3 3
nt
tf

ηmilp 0.316526 0.753893 0.807746 0.970736 1.55474 1.85555 3.49649

τbonmin 63.212 134.204 164.106 420.134 998.922 1600.61 1800*

Φminlp 1.60251 1.57489 1.52323 1.38746 1.39481 1.38741 *

σminlp 2 3 3 2 3 3 *

Maximum of σmax = 4 switches:

τbb 0.00 0.00 0.00 0.00 0.00 0.01 0.09

τcplex 0.008 0.016001 0.020001 0.080006 0.428027 1.00806 4.8443

Φmilp 1.60251 1.40651 1.37175 1.36718 1.4576 1.39684 1.40632

σmilp 2 4 4 4 4 4 4
nt
tf

ηmilp 0.316526 0.47577 0.492702 0.671702 0.951219 1.17408 1.98732

τbonmin 62.8599 106.903 145.381 610.482 1800* 1800* 1800*

Φminlp 1.60251 1.40651 1.37175 1.35883 1.36079 1.35643 3.36001

σminlp 2 4 4 4 4 4 4

Maximum of σmax = 5 switches:

τbb 0.00 0.00 0.00 0.00 0.00 0.02 0.56

τcplex 0.008001 0.016001 0.020001 0.088006 1.36809 3.1562 32.378

Φmilp 1.60251 1.40651 1.37175 1.36718 1.4576 1.41056 1.40632

σmilp 2 4 4 4 4 5 4
nt
tf

ηmilp 0.316526 0.47577 0.492702 0.671702 0.951219 1.17408 1.98732

τbonmin 60.0358 114.095 153.706 979.285 1800* 1800* 1800*

Φminlp 1.60251 1.40651 1.37175 1.35883 1.37073 1.35896 *

σminlp 2 4 4 4 5 5 *

Table 5.2: Results for Lotka Volterra fishing problem with MILP (5.9) solved by our structure exploiting
Branch and Bound algorithm (bb) or cplex. For reference the original MINLP is solved relaxed
(rel), with Sum Up Rounding (SUR), and with Bonmin. τ CPU time, Φ MINLP objective, η

MILP objective, σ number of switches. To be continued in Table 5.3. 85
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nt 10 20 25 50 80 100 200

Maximum of σmax = 6 switches:

τbb 0.00 0.00 0.00 0.00 0.00 0.01 0.71

τcplex 0.012001 0.016001 0.016002 0.096007 0.884056 2.92418 41.9546

Φmilp 1.60251 1.40651 1.37175 1.3654 1.45852 1.39149 1.39471

σmilp 2 4 4 6 6 6 6
nt
tf

ηmilp 0.316526 0.47577 0.492702 0.505287 0.793561 0.86204 1.50351

τbonmin 59.7637 114.447 147.777 374.347 1800* 1800* 1800*

Φminlp 1.60251 1.40651 1.37175 1.35233 1.35122 1.35211 1.90096

σminlp 2 4 4 6 6 6 6

Maximum of σmax = 7 switches:

τbb 0.00 0.00 0.00 0.00 0.00 0.02 2.39

τcplex 0.008 0.016001 0.020001 0.096006 1.73611 6.59241 250.428

Φmilp 1.60251 1.40651 1.37175 1.36533 1.45852 1.35481 1.39471

σmilp 2 4 4 7 6 7 6
nt
tf

ηmilp 0.316526 0.47577 0.492702 0.50359 0.793561 0.858368 1.50351

τbonmin 57.8996 111.763 147.473 364.447 1800* 1800* 1800*

Φminlp 1.60251 1.40651 1.37175 1.35233 1.35439 1.3539 *

σminlp 2 4 4 6 6 6 *

Maximum of σmax = 8 switches:

τbb 0.00 0.00 0.00 0.00 0.00 0.01 1.15

τcplex 0.008 0.008 0.016002 0.084005 0.780049 5.34833 388.74

Φmilp 1.60251 1.40651 1.37175 1.38366 1.34997 1.38437 1.35297

σmilp 2 4 4 8 8 8 8
nt
tf

ηmilp 0.316526 0.47577 0.492702 0.499711 0.602692 0.725728 1.23938

τbonmin 57.8636 112.363 139.653 356.37 1800* 1800* 1800*

Φminlp 1.60251 1.40651 1.37175 1.35233 1.34964 1.34956 1.43779

σminlp 2 4 4 6 8 8 8

Table 5.3: Continuation of Table 5.2.
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nt 10 20 25 50 80 100 200

Maximum of σmax = 3 switches:

τscratch 63.212 134.204 164.106 420.134 998.922 1600.61 1800*

Φscratch 1.60251 1.57489 1.52323 1.38746 1.39481 1.38741 *

σ scratch 2 3 3 2 3 3 *

τmilp init 32.75 118.675 128.58 425.671 912.821 1391.44 1800*

Φmilp init 1.60251 1.57489 1.52323 1.38746 1.39481 1.38741 1.70474

σmilp init 2 3 3 2 3 3 3*

Maximum of σmax = 4 switches:

τscratch 62.8599 106.903 145.381 610.482 1800* 1800* 1800*

Φscratch 1.60251 1.40651 1.37175 1.35883 1.36079 1.35643 3.36001

σ scratch 2 4 4 4 4 4 4

τmilp init 31.522 73.2166 89.9296 522.173 1800* 1800* 1800*

Φmilp init 1.60251 1.40651 1.37175 1.35883 1.36079 1.35643 1.40632

σmilp init 2 4 4 4 4 4 4*

Maximum of σmax = 5 switches:

τscratch 60.0358 114.095 153.706 979.285 1800* 1800* 1800*

Φscratch 1.60251 1.40651 1.37175 1.35883 1.37073 1.35896 *

σ scratch 2 4 4 4 5 5 *

τmilp init 30.0979 79.965 119.463 824.568 1800* 1800* 1800*

Φmilp init 1.60251 1.40651 1.37175 1.35883 1.36917 1.35896 1.40632

σmilp init 2 4 4 4 5 5 4*

Table 5.4: Results for Lotka Volterra fishing problem as MINLP resulting from (5.3). Solutions and com-
putation times for Bonmin runs without initialization (scratch) as in Table 5.2 and using the
solution Φmilp of (5.9) for initial cutoff in the Branch & Bound tree (milp init). To be continued
in Table 5.5.
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nt 10 20 25 50 80 100 200

Maximum of σmax = 6 switches:

τscratch 59.7637 114.447 147.777 374.347 1800* 1800* 1800*

Φscratch 1.60251 1.40651 1.37175 1.35233 1.35122 1.35211 1.90096

σ scratch 2 4 4 6 6 6 6

τmilp init 30.3499 80.8731 129.78 377.04 1800* 1800* 1800*

Φmilp init 1.60251 1.40651 1.37175 1.35233 1.35122 1.35098 1.38382

σmilp init 2 4 4 6 6 6 6

Maximum of σmax = 7 switches:

τscratch 57.8996 111.763 147.473 364.447 1800* 1800* 1800*

Φscratch 1.60251 1.40651 1.37175 1.35233 1.35439 1.3539 *

σ scratch 2 4 4 6 6 6 *

τmilp init 29.9899 78.4889 114.931 350.93 1800* 1800* 1800*

Φmilp init 1.60251 1.40651 1.37175 1.35233 1.35354 1.35471 1.39471

σmilp init 2 4 4 6 6 6 6*

Maximum of σmax = 8 switches:

τscratch 57.8636 112.363 139.653 356.37 1800* 1800* 1800*

Φscratch 1.60251 1.40651 1.37175 1.35233 1.34964 1.34956 1.43779

σ scratch 2 4 4 6 8 8 8

τmilp init 30.1859 79.313 112.163 359.162 1800* 1800* 1800*

Φmilp init 1.60251 1.40651 1.37175 1.35233 1.34952 1.34977 1.35297

σmilp init 2 4 4 6 8 8 8*

Table 5.5: Continuation of Table 5.4.
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5.6 Summary

We presented a novel method to solve optimal control problems including control functions
with a discrete feasible set and switching constraints. The approach is based on a first discretize,
then optimize approach which results in MINLPs that need to be solved. To avoid the high
computational burden of solving the MINLP with standard methods, we propose to decompose
the problem into a NLP and a MILP.
Although the MILP solution is not necessarily optimal for the MINLP, it has the advantage to
be feasible, to have asymptotic properties as nt increases, and to be a priori bounded. We proved
that it converges against the solution of the nonlinear mixed-integer optimal control problem,
if the switching constraint does not become active and the time discretization is refined. If the
switching constraint is active, knowledge of system properties, such as the Lipschitz constant
of the right-hand side function of the differential equation, allows to formulate an upper bound
on the deviation of the MILP based solution from the solution of the relaxed optimal control
problem. This upper bound depends linearly on the objective function value of the MILP.
We furthermore analyzed the structure of the convex hull of feasible points to the MILP and dis-
cussed why tailored cutting planes are not likely to be computationally beneficial. We presented
a tailored Branch and Bound algorithm to cope with this specific structure. We presented numer-
ical results for a benchmark problem in nonlinear mixed-integer optimal control that illustrate
the efficiency of our approach.
Future work may concentrate on related optimization problems, such as the minimization of the
number of switches subject to a maximal deviation from the optimal solution without switching
constraints, or a weighted sum between penalization of switching and performance with respect
to the objective. Open questions include also an efficient determination of model-dependent
constants that are needed for the error estimations, and the question of reusage of information in
adaptive or moving horizon schemes.
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6 Uncertainty and Delays in a Conspicuous
Consumption Model

The contents of this chapter are based on the paper

[128] T. Huschto, G. Feichtinger, P. Kort, R.F. Hartl, S. Sager, A. Seidl. Numerical Solution of a
Conspicuous Consumption Model with Constant Control Delay. Automatica, 2011, DOI
10.1016/j.automatica.2011.06.004.

Chapter Summary. We derive optimal pricing strategies for conspicuous consumption products
in periods of recession. To that end, we formulate and investigate a two-stage economic optimal
control problem that takes uncertainty of the recession period length and delay effects of the
pricing strategy into account.
This non-standard optimal control problem is difficult to solve analytically, and solutions de-
pend on the variable model parameters. Therefore, we use a numerical result-driven approach.
We propose a structure-exploiting direct method for optimal control to solve this challenging
optimization problem. In particular, we discretize the uncertainties in the model formulation by
using scenario trees and target the control delays by introduction of slack control functions.
Numerical results illustrate the validity of our approach and show the impact of uncertainties
and delay effects on optimal economic strategies. During the recession, delayed optimal prices
are higher than the non-delayed ones. In the normal economic period, however, this effect is
reversed and optimal prices with a delayed impact are smaller compared to the non-delayed
case.
This chapter is special, because the control problem under consideration does not include integer
controls. However, it could be easily extended by requiring that the prices need to be from a finite
set, as is often the case for airlines, hotels, and so on. Hence, this control problem can be seen as
the relaxed control problem, for which an integer solution can be determined in a second step.
The optimal control problem is interesting, because it includes an uncertain scenario in which
an expected value is optimized subject to worst case constraints. Additionally, it contains delays
in the control functions.

6.1 Introduction

We are interested in optimal pricing strategies for conspicuous consumption products in periods
of recession, such as the credit crunch recession that started in 2007. Besides a reduction in
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demand, which is quite usual for a recession, in the credit crunch recession capital markets
cease to function. Hence, firms cannot borrow or issue new shares to finance their operations.
They need to self-finance their investments [81]:
“...the only option is to try to ride out the recession. But companies can do this only if they have
enough liquidity...”
For conspicuous goods demand does not only depend on price, but in addition it depends on the
good’s reputation, which increases in price. The product’s reputation as being expensive allows
people to signal their wealth to observers, which in turn increases the reputation of the consumer.
Examples of conspicuous goods are luxury hotels [239], expensive cars, or fashionable clothes.
The topic of how to price conspicuous goods is treated in [9, 10, 159].
We treat the management of conspicuous goods during the credit crunch recession. The conspic-
uous goods’ manager faces the following trade off. To keep future demand at a high level the
manager likes to keep the price of its conspicuous good high. However, during the recession de-
mand as such is low and pricing the good high makes demand even lower. This has detrimental
effects for the firm’s cash flow, which can bring it into bankruptcy problems, because during the
recession capital markets do not function so that the firm needs to have a positive cash level in
order to prevent bankruptcy. In [60, 61] this problem was extensively analyzed.
The present chapter extends [60, 61] by establishing a new numerical methodology and by con-
sidering a delayed effect of the current price on the firm’s reputation. This implies that the good’s
reputation, which has been built up in the past, is not immediately affected by a price decrease.
It takes some time for consumers to get used to the new situation, before a price change really
starts to have an effect on the good’s reputation.
The very first paper including a delay in an economic model was [135] treating a descriptive
business cycle model. Much later, [83] analyzed an optimal growth model with time lags. Start-
ing with the nineties several so-called time-to-build (investment gestation lag) models have been
dealt with. Continuous-time deterministic optimal growth models have been enriched by assum-
ing that production occurs with a delay while new capital is installed; see [14, 48, 18, 19, 67].
The methodological background are functional differential equations; for a modified version of
Pontryagin’s Maximum Principle compare [153]. Additionally, in [247, 249] some related results
are presented. In [67] economic models characterized by advanced or delayed time arguments
in both the states and controls are discussed. The authors present an algorithm combining the
method of steps and a specially tailored shooting method.
It turns out that introducing this delayed effect has considerable qualitative implications for pric-
ing the conspicuous good. In particular, the delayed consumer reaction makes that it is optimal
for the firm to set a higher price during the recession and a lower one during the normal period.
We formulate and investigate a two-stage economic optimal control problem that takes uncer-
tainty of the recession period length and delay effects of the pricing strategy into account. This
non-standard optimal control problem is difficult to solve analytically, and solutions depend on
the variable model parameters. Therefore we use a numerical result-driven approach. We propose
a structure-exploiting direct method for optimal control to solve this challenging optimization
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problem. In particular, we discretize the uncertainties in the model formulation by using scenario
trees and target the control delays by introduction of slack control functions.
This chapter is organized as follows: In Section 6.2 we take a closer look at the model. We spec-
ify the underlying dynamics for each of the economic stages and deduce the objective function.
In Section 6.3 we first collect the algorithmic approaches used to solve a standard multi-stage
optimal control problem numerically. Then we reformulate the model using a scenario tree ap-
proach and rearrange the emerging scheme to improve performance and simplify the incorpora-
tion of the delay via slack control functions. Section 6.4 treats analytical and numerical results
and their economic interpretations in detail.

6.2 Model formulation

We consider an economic setting with a recession period followed by a normal economic period.
In the following, the value τ denotes the endpoint of the crisis, compare Figure 6.1.

t0 = 0 τ tf

Stage 1: Stage 2:
Recession period Normal period

Figure 6.1: Stages [t0,τ] and [τ, tf] of the recession model.

The dynamics of our model includes two states. The brand image A of the firm evolves in both
periods according to the differential equation

Ȧ(t) = κ(γ p(t−σ)−A(t)) (6.1)

with a possible constant control delay σ ≥ 0 in the dynamics of the reputation A(·), retarding
the connection between changing the price p(·) and its consequence on the development of A(·).
Equation (6.1) covers that, as usual with conspicuous goods, the reputation of the brand goes
up with the price, which works positively on demand. Compared to the literature, the delay is
a new feature, which captures the fact that consumers first have to get used to a new situation
before they adjust their purchase decisions. In particular, if a good is known to be exclusive, a
sudden price reduction at first instance does not change this perception. However, after a while
consumers “forget” the old situation, implying that they start recognizing that the good is less
exclusive, and reputation starts to decrease. Note that if the recession ends at time τ , we still have
the direct influence of the price set during the final time interval of length σ of the recession. For
a fixed price p̄ equation (6.1) yields a steady state of Ā = γ p̄. The available cash B(·) depends
on the gains p(·) D(·), fixed costs C, and the short-time interest δ , leading to

Ḃ(t) = p(t)D(A(t), p(t))−C+δB(t).
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Therein the demand D is driven by the brand image and the pricing strategy p(·), which is the
control of our problem. It is essentially influenced by the economic stage, i.e., in the normal
period (N) we have

DN(A(t), p(t)) = m− p(t)
A(t)β

, (6.2a)

whereas in the recession (R) demand is reduced to

DR(A(t), p(t)) = DN(A(t), p(t))−α. (6.2b)

The positive constant α measures the strength of the crisis, the parameter 0 < β < 1 is given,
and m corresponds to the potential market size.

The objective of the company is to maximize the expected value of profit over the finite or
infinite time horizon [0, tf] of interest. The profit is composed of two parts: the gains of the
normal economic period (τ, tf] and an impulse dividend of the cash reserve at the end of the
recession phase, B(τ). This dividend is included as the capital market is assumed to become
functional again in the normal economic period and firms can freely borrow and lend cash there.
Thus, the firm does not need a positive B(·) on (τ, tf]. For a fixed τ and a given discount rate r,
the objective function is calculated as

Φ(τ) := e−rτB(τ)+
∫ tf

τ

e−rt (p(t)DN(A(t), p(t))−C) dt, (6.3)

being the sum of these two components, resulting in the optimal control problem

max
p(·)

Φ(τ)

s.t. Ȧ(t) = κ(γ p(t−σ)−A(t)), t ∈ [0, tf],

p(t) = η(t), t ∈ [−σ ,0],

Ḃ(t) = p(t)DR(A(t), p(t))−C+δB(t), t ∈ [0,τ],

A(0) = A0, B(0) = B0,

0≤ DR/N(A(t), p(t)), t ∈ [0, tf],

p(t)≥ 0, t ∈ [0, tf],

B(t)≥ 0, t ∈ [0,τ]

(6.4)

with DR/N(A(t), p(t)) given as in (6.2) and B(t) negligible in the normal period (τ, tf]. However,
typically the recession length τ is not known beforehand to decision makers. An individual firm
also has no influence on when the recession ends. Therefore, we assume that the length of the
recession period τ is an exponentially distributed random variable. The goal is to maximize
the expectation value of the net present value (NPV) at time τ , i.e., the objective function Φ
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weighted by the exponential probability density function with rate parameter λ ,

max
p(·)

E [NPV(τ)] := max
p(·)

∫ tf

0
λ e−λτ

Φ(τ) dτ (6.5)

subject to the constraints given in (6.4) for all 0≤ τ ≤ tf.
This problem is a non-standard optimal control problem in the sense that uncertainty and control
delays are present, making analytical investigations difficult.1 Therefore, we propose a different
approach in the next section.

6.3 Numerical treatment

We propose to use reformulations to transfer the optimal control problem (6.5) into a more
standard form that can be efficiently solved. In Section 6.3.1 we present such a standard multi-
stage formulation that is more general than the one in Section 4.2.1 and give references to Bock’s
direct multiple shooting method. In Section 6.3.2 we present a discretization of the uncertainty,
and in Section 6.3.3 a reformulation of the time delays. In both cases alternatives are discussed.

6.3.1 The Direct Multiple Shooting Approach

Efficient numerical methods have been developed to solve multi-stage, nonlinear optimal control
problems of the following form

max
xi(·),ui(·),q,ti

M−1

∑
i=0

∫ ti+1

ti
Li(xi(t),ui(t),q) dt +Ei(x(ti+1),q) (6.6a)

s.t. ẋi = fi(xi(t),ui(t),q), (6.6b)

xi+1(ti+1) = ftr,i(xi(ti+1),q), (6.6c)

0≤ ci(xi(t),ui(t),q) (6.6d)

0 = req(x0(t0),x1(t1), . . . ,q), (6.6e)

0≤ rineq(x0(t0),x1(t1), . . . ,q), (6.6f)

with t ∈ [ti, ti+1] and i = 0, . . . ,M− 1. The optimization problem (6.6) couples M model stages
via explicit transitions (6.6c) and interior point constraints (6.6e-6.6f). The differential states
xi : [t0, tM] 7→ Rnxi and the control functions ui : [t0, tM] 7→ Rnui and control values q ∈ Rnq need
to be feasible for the path- and control constraints (6.6d) and the ordinary differential equations
(ODEs) (6.6b).

1In [62] it is shown that an important class of models with delays can be transformed into equivalent
problems without delays. However, the present model does not fit in this family. This is because the
control p appears with a delay in one state equation and without in the other one. Hence, it is not
possible to eliminate the delay using a time transformation.
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An overview of different methods can be found, e.g., in [37]. We propose to use Bock’s di-
rect multiple shooting method to solve problems of type (6.6). It transforms the optimal control
problem into a Nonlinear Program (NLP) by discretizing the space of admissible control func-
tions u(·) and the path constraints (6.6d). The solutions of the ODEs (6.6b) are obtained by a
decoupled integration on a multiple shooting grid, starting from artificial intermediate variables.
Continuity of the differential states is assured by means of an inclusion of matching conditions
into the NLP.

For details on this method we refer as in Section 4.2.1 to [44, 167, 168, 143]. At this place we
would only like to remind the reader of one of the advantages of the direct multiple shooting
method. As control functions, constraints, and multiple shooting variables are discretized on a
common time grid, the Hessian of the Lagrangian is block structured for linearly coupled point
constraints r·(·). For i 6= j we have

∇2L (w1, . . . ,wN)

∂wi ∂w j
= 0 (6.7)

for variable vectors wi that subsume all variables of the i-th multiple shooting interval. This
allows applying Broyden–Fletcher–Goldfarb–Shanno (BFGS) updates to every single one of the
N multiple shooting blocks [44]. These high-rank updates typically lead to a fast accumulation
of higher order information and thus to fast convergence [181]. This feature becomes important
in the context of the following reformulations of problem (6.5).

6.3.2 Discretizing the probability density function

To solve problem (6.5) at least approximatively, we need to reformulate it. We discretize the
exponential distribution of the random variable τ by defining a time grid

0 = τ0 < τ1 < .. . < τn < tf.

In the following, switches from recession period to normal stage are only possible at these times
τi with i= 1, . . . ,n. The recession ends at τi with probability Pi. We use an equidistant discretiza-
tion, resulting in a geometric distribution

Pi =
∫

τi

τi−1

λ e−λ t dt = e−λτi−1− e−λτi , (6.8a)

for i = 1, . . . ,n−1, and

Pn = 1−
n−1

∑
j=1

P j. (6.8b)
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Figure 6.2: Controls and variables in the multi-stage formulation of problem (6.4) with associated proba-
bilities and in a (R)ecession or a (N)ormal period.

The discretized distribution can be used to reformulate the maximization of the expected value
as a multi-stage optimal control problem of type (6.6), by using a scenario tree. However, this
formulation is not unique. One possibility is to use a staircase-like approach, increasing the
number of variables as the number of possible recession ends τi increases. This approach is
illustrated schematically in Figure 6.2 and results in M = n+ 1 model stages, where n is the
number of discretizations of the probability density function. The dimensions nxi = 2 + i of
differential states and nui = 1 + i of control functions, i = 0, . . . ,M− 1, are different on the
model stages. The transition functions (6.6c) are defined by

Ai, j(τi) = Ai−1, j(τi), 1≤ j ≤ i, (6.9a)

Ai,i+1(τi) = Ai−1,1(τi), (6.9b)

Bi,1(τi) = Bi−1,1(τi), (6.9c)

for all model stages i = 1, . . . ,n−1, and

An,n+1(τn) = An−1,1(τn). (6.9d)

At each τi one has to distinguish between transitions (6.9a), (6.9c) of the brand image A and the
cash B for the ongoing recession and the initialization (6.9b), (6.9d) of the additional differential
states Ai,i+1 for the normal period beginning at τi, compare Figure 6.2.

The second possibility is to use linearly coupled point constraints of type (6.6e) instead of tran-
sitions to initialize the new variables. All possible scenarios at τi are concatenated, resulting in
M = 2n model stages. This “flat” arrangement of stages is shown in Figure 6.3.

In contrast to the first formulation, the model stage dimensions nxi = 2 for i = 0, . . . ,n− 1 and
nxi = 1 for i = n, . . . ,M−1 of differential states and nui = 1 for i = 0, . . . ,M−1 of controls are
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Figure 6.3: Rearranged scheme for the discretization of the random end time τ of the recession. Again, the
symbols denote the (R)ecession and (N)ormal stage, as well as the appropriate probabilities.

(almost) constant. The coupled point constraints (6.6e) are given by

Ai,1(ti−n) = Ai−n−1,1(τi−n), n+1≤ i≤ 2n−1. (6.10a)

The first n stages are recession periods with continuous transitions of all states. They differ in
the objective function. The transition from the last recession stage n to the subsequent normal
period that starts at t = τn is continuous, too. However, the model stage lengths of this approach
vary. While all n recession stages have the constant duration h = τi− τi−1, the n normal period
stages have a length of tf− τi, i = 1, . . . ,n.

Then we obtain for the staircase-like approach to discretize the probability density function,
k = 1, the objective function

Φ
1
i (τi,Ai,·(t),Bi−1,1(τi), p(t), P̄i)

= Pi e−rτiBi−1,1(τi)+
i

∑
j=1

P j

∫
τi+1

τi

e−rt (p(t)DN(Ai, j+1(t), p(t))−C)dt

for i = 1, . . . ,n, the transition (tr) functions

f 1
trA,i(Ai−1, j(τi)) =

Ai−1, j(τi); 1≤ i≤ n−1, 1≤ j ≤ i,

Ai−1,1(τi); 1≤ i≤ n, j = i+1,
(6.11a)

f 1
trB,i(Bi−1,1(τi)) = Bi−1,1(τi), 1≤ i≤ n−1, (6.11b)

and the coupled point constraints functions

r1
eq,i ≡ 0, (6.11c)

where P̄i = (P1,P2, . . . ,Pi).

The concatenated approach, k = 2, is defined by the respective functions

Φ
2
i (τi,An+i,1(t),Bi−1,1(τi), p(t),Pi)

= Pi e−rτiBi−1,1(τi)+Pi

∫ tf

τi

e−rt (p(t)DN(An+i,1(t), p(t))−C) dt,
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for i = 1, . . . ,n,

f 2
trA,i(Ai−1,1(τi)) = Ai−1,1(τi), 1≤ i≤ n, (6.12a)

f 2
trB,i(Bi−1,1(τi)) = Bi−1,1(τi), 1≤ i≤ n−1, (6.12b)

and

r2
eq,i(Ai,1(ti−n),Ai−n−1,1(τi−n)) = Ai,1(ti−n)−Ai−n−1,1(τi−n), n+1≤ i≤M−1. (6.12c)

6.3.3 Reformulation of the time delays

In [49] two possibilities are given to reformulate an optimal control problem with delayed equa-
tion of motion as in (6.4) into an instantaneous problem.
The first approach splits the time horizon tf into m parts of length σ and formulates the system
dynamics separately on each of the resulting intervals. By interpreting them as independent and
introducing new state and control variables we can formulate a system of m differential equations
on the time horizon [0,σ ]. This can be used to reformulate the original optimal control problem.
Furthermore, one has to introduce coupled boundary conditions to ensure the continuity of the
state variable. The approach may give additional insight from an analytical point of view, com-
pare [49]. However, it requires the determination of m−1 control paths in the interval [0,σ ]. For
small values of the delay σ this results in a large number of state and control functions.
Therefore, we prefer a different reformulation. We introduce a second control function u2(t) =
p(t) that denotes the unretarded control at time t, whereas u1(t) = p(t −σ) characterizes the
delayed one. They are coupled via equalities u1(t) = u2(t−σ) for t ≥ σ and u1(t) = η(t−σ)

for 0≤ t ≤ σ .
Taking either staircase (6.11) or flat (6.12) discretization of uncertainty presented in the previous
Section, k = 1,2, we obtain

max
u1(·),u2(·)

n

∑
i=1

Φ
k
i (τi,Aχk(i),·(t),Bi−1,1(τi),u2(t), P̄i) (6.13a)

s.t. Ȧi, j(t) = κ(γu1(t)−Ai, j(t)), t ∈ [0, tf],0≤ i≤M−1, j ∈ Jk, (6.13b)

Ḃi,1(t) = u2(t)DR(Ai,1(t),u2(t))−C+δBi,1(t), t ∈ [0,τi],0≤ i≤ n−1, (6.13c)

u1(t) = η(t−σ), t ∈ [0,σ ], (6.13d)

u1(t) = u2(t−σ), t ∈ [σ , tf], (6.13e)

A0,1(0) = A0, B0,1(0) = B0,

0≤ DR,N(Ai, j(t),u2(t)), t ∈ [0, tf], (6.13f)

u1(t)≥ 0, u2(t)≥ 0, t ∈ [0, tf], (6.13g)

Bi,1(t)≥ 0, t ∈ [0,τi],1≤ i≤ n−1, (6.13h)
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Ai, j(τi) = f k
trA,i(Ai−1, j(τi)),1≤ i≤ n, j ∈ Jk, (6.13i)

Bi,1(τi) = f k
trB,i(Bi−1,1(τi)), 1≤ i≤ n−1, (6.13j)

0 = rk
eq,i(Ai,1(ti−n),Ai−n−1,1(τi−n)), n+1≤ i≤M−1, (6.13k)

where χ1(i) := i, χ2(i) := n+ i, J1 := { j |1≤ j ≤ i+1}, J2 := { j | j = 1}.
This problem still contains a delayed term, but it is not apparent in the system dynamics anymore.
It has moved to a constraint (6.13e) on the controls. This can be efficiently dealt with the multiple
shooting method we introduced in Section 6.3.1 for the special case of a constant delay.

6.4 Results

As suggested in [60, 61], we use the following set of parameters in our numerical treatment:

κ = 2.0, γ = 5.0, C = 7.5, δ = 0.05,

m = 3.0, β = 0.5, r = 0.1, λ = 0.5, (6.14a)

α1 = 0.7, α2 = 0.836, α3 = 1.25.

The choice for parameters r, δ , and λ is based on the assumption that we measure time in years
and that the expected duration of the recession is two years. We set β assuming that an increase
in reputation will influence less and less customers. The more fashionable the product is, the
more specialized is its market niche. See [61] for a motivation of the remaining parameters.

A key result of [61] was that the authors were able to distinguish three different types of reces-
sions corresponding to the severity of the demand reduction and the resulting optimal strategy.
Following their results, the values of the parameter α indicate a mild (α1 = 0.7), intermediate
(α2 = 0.836), and severe (α3 = 1.25) economic crisis.

Due to the discretization of τ we need to further specify the last possible endpoint of the reces-
sion,

τn = 20. (6.14b)

This implies that in this context the probability that the recession persists longer than that is low,
i.e., P[τ > 20] = 4.54 ·10−5. For the control delay we choose

σ = 0.25. (6.14c)

To accomplish this, two equidistant discretization step lengths are applied, first with n1 = 20,
i.e., h = τi−τi−1 = 1.0, and n2 = 40, i.e., h = 0.5. Each of them is combined with four shooting
nodes per time unit, i.e., per year. Then condition (6.13e) can be implemented via interior point
constraints applied on the shooting nodes.
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For convenience, the overall final time tf is chosen to be

tf = 21 (years), (6.14d)

so that we definitely have a small normal period of one year in all possible stages.
Finally, in the subsequent sections we provide some computational results. They are obtained
with the following combinations of number of discretization points n, recession parameter α ,
initial values (A0,B0), and initial price paths η for the delayed model, cf. Table 6.1.
In Section 6.4.1 we analyze the computational performance of the various reformulations pre-
sented in the previous section. In Section 6.4.2 we derive some analytical insight into the prob-
lem structure. More economic insight can be gained from the computational results in Sec-
tion 6.4.3.

6.4.1 Computational performance

As discussed in Sections 6.3.2 and 6.3.3 different mathematically equivalent reformulations of
the optimal control problem (6.4) exist. However, they are by no means equivalent from a com-
putational point of view.
Table 6.2 compares the computational performance of the two different approaches to discretize
the uncertainty. With the staircase formulation (6.11) (Figure 6.2) the overall time horizon is
quite small. However, the number of state variables is increased compared to the concatenated
arrangement, leading to more steps of the error-controlled, adaptive integrator. More significant,
however, is the impact of more blocks in the Hessian of the Lagrangian. They are used for high-
rank updates, compare Section 6.3.1. This leads to a drastic increase in local convergence and
hence to a decrease of the number of sequential quadratic programming (SQP) iterations [168]
and overall computation time, as can be seen in Table 6.2 for the case σ = 0. These results carry
over to the case with σ > 0, therefore we concentrate on the formulation (6.12) visualized in
Figure 6.3.
As already observed in [49], the first approach suggested in Section 6.3.3 to handle time lags σ

is computationally inferior to the second one, although it might be interesting from an analytical
point of view. E.g., for scenarios 4–12 the number of 1800 additional state and 1799 control
functions needs to be included. Therefore, we use the second formulation in the following for
our calculations. Table 6.3 gives an overview over the moderate increase in the dimension of the
resulting nonlinear program.
Table 6.4 gives an indication of the computational expense for including delays. The main part
of the computation is needed for the condensing algorithm, see [44, 167], which is almost iden-
tical for both cases, as the state dimension is independent of σ . The main extra cost is solving
the quadratic programs, as the runtime depends crucially on the number of control variables.
Therefore, asymptotically for σ > 0 getting smaller and smaller, the quadratic programming
(QP) runtime becomes more and more dominant.
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Scenario n α A0 B0 η

1 20 0.7 10.0 5.0 -

2 20 0.836 20.0 5.0 -

3 20 1.25 100.0 100.0 -

4 40 0.7 10.0 5.0 7.406785

5 40 0.7 0.1 5.0 4.296460

6 40 0.7 10.0 2.0 7.088001

7 40 0.7 ĀN
d 5.0 p̄N

d

8 40 0.7 ĀN
d 1.0 p̄N

d

9 40 0.7 ĀN
d 0.1 p̄N

d

10 40 0.836 0.1 10.0 3.917962

11 40 0.836 0.1 10.0 3.5

12 40 0.836 0.1 10.0 3.0

13 40 0.836 0.1 10.0 2.5

14 40 0.836 20.0 5.0 8.153575

15 40 0.836 0.1 8.0 3.917948

16 40 0.836 25.0 3.5 8.671824

17 40 0.836 ĀN
d 1.0 p̄N

d

18 40 0.836 0.1 7.05 -

19 40 0.836 63.0 0.05 -

20 40 0.836 0.1 9.8 3.5

21 40 0.836 73.5 0.1 12.517549

22 40 1.25 100.0 100.0 10.751307

23 40 1.25 0.1 100.0 2.924618

24 40 1.25 40.0 80.0 7.855208

25 40 1.25 80.0 50.0 9.922934

26 40 1.25 0.1 60 2.924617

27 40 1.25 ĀN
d 50.0 p̄N

d

28 40 1.25 ĀN
d 70.0 -

29 40 1.25 0.1 76.0 -

30 40 1.25 ĀN
d 71.5 p̄N

d

31 40 1.25 0.1 79.5 2.924580

Table 6.1: Different scenarios used for computational performance tests and visualizations. Note that
some of these scenarios are used in both a delayed (σ = 0.25) and undelayed model (σ = 0),
others in only one of them. In undelayed settings η is obsolete and denoted by “-”.
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Scheme (6.11) Scheme (6.12)

Scenario # of SQP t (s) # of SQP t (s)

1 846 5259 51 1341

2 829 1312 35 835

3 858 1411 102 2969

4 1254 67131 102 21443

14 1716 93773 48 9615

22 915 47285 102 24163

Table 6.2: Comparison of the different schemes for discretizing τ , see (6.11), (6.12), and Figures 6.2,
6.3, respectively. The results correspond to the undelayed case, i.e., σ = 0. The faster conver-
gence of (6.12) (recognizable in SQP iterations and runtime) is due to the high-rank updates
mentioned in Section 6.3.1. The scenarios are listed in Table 6.1.

Undelayed model Delayed model

n = 20 n = 40 n = 20 n = 40

discr. points 940 1840 940 1840

variables 3797 7437 4738 9278

eq. constraints 2855 5595 3797 7437

ineq. constraints 7594 14874 9476 18556

Table 6.3: Comparison of the size of the resulting NLP for the delayed and the undelayed model.

Undelayed model Delayed Model

Scenario # of SQP t (s) # of SQP t (s)

6 71 14103 60 20238

7 102 24515 98 28422

16 70 12896 102 28787

17 69 14796 82 24466

24 81 18114 81 22166

27 101 24456 101 29404

Table 6.4: Number of iterations and CPU time for undelayed and delayed scenarios. The computational
effort is moderately higher, when delays are taken into account.
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6.4.2 Analytical results

We deduce analytical results that help us to obtain a better insight into the qualitative changes
related to the introduction of the time lag σ . We investigate the steady state in the normal period
of our model (6.4) and compare it with the result of the undelayed case, i.e., σ = 0.

The integral term of Φ(·) in (6.3) corresponds to the normal economic period, where the cap-
ital markets are working again and we are not using the cash state B anymore. Let ĀN

d/nd and
p̄N

d/nd denote the normal period’s steady state brand image and price in the (d)elayed and the
u(nd)elayed case, respectively.

By using Pontryagin’s Maximum Principle [118] we calculate

ĀN
nd =

(
γm(r+κ)

2(r+κ)−βκ

) 1
1−β

, p̄N
nd =

ĀN
nd
γ

. (6.15a)

In the model’s delayed version the maximum principle is far more complex, see [83]. However,
in the normal period the stationary state of the corresponding one-dimensional problem can be
derived using the results in [248]. We substitute

F(t) := F(A(t), p(t)) = p(t)
(

m− p(t)
A(t)β

)
−C

and obtain the Hamiltonian

H = e−rtF(t)+µ(t +σ) ·κγ p(t)−µ(t) ·κA(t)

with the co-state variable µ(t). This induces the system

Ȧ(t) = κ(γ p(t−σ)−A(t))

ṗ(t) =
1

Fpp(t)

(
(r+κ)Fp(t)+κγ e−rσ FA(t +σ)−FpA(t)Ȧ(t)

)
that directly gives us the stationary price p̄N

d . Further on, it yields

(r+κ) erσ

κγ
=−FA(t +σ)

Fp(t)

and, therefore, the equality

(r+κ) erσ =−
βκ(ĀN

d )
1−β

γm−2(ĀN
d )

1−β
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that determines the stationary state of the brand image

ĀN
d =

(
γm(r+κ) erσ

2(r+κ) erσ −βκ

) 1
1−β

, p̄N
d =

ĀN
d

γ
. (6.15b)

The latter result obviously includes the special case (6.15a). Our parameters (6.14) determine
the values

ĀN
nd = 96.899414, p̄N

nd = 19.379883, (6.16a)

ĀN
d = 95.421259, p̄N

d = 19.084252. (6.16b)

Those coincide with the numerical results we obtained. One can see the impact of the delay
very clearly. The benefit of keeping the price up is obtained later in the delayed world, while the
benefit of reducing it (with instantaneous profit) is still obtained immediately.
In the recession period the verification and calculation of steady states cannot be done this
straightforwardly. Further on, the so-called weak Skiba curves2 play an important role. While
the authors of [60] were able to derive several results of the non-delayed case analytically, for
the delayed model this is impeded much more.

6.4.3 Computational results

In our approach to discretize problem (6.4) we assume a finite and discrete grid of possible
switching times τi. We think that this transformation to the finite-time case is well justified,
as the influence of the errors caused by the discretization are small. The intervals between τi

are short and the probability (6.8b) for switching the stage at the last possible time τn is only
marginally higher than it would be in the infinite case.
In [60] possible pricing strategies in recession periods are explained depending on the value of
α . Additionally, the impact of these pricing policies on the development of the reputation A and
the cash B is depicted. In the delayed world the behavior of the firm is qualitatively similar.
In a severe crisis (α3 = 1.25) the brand image and/or cash required to avoid bankruptcy are
particularly large. The milder the crisis is the less reputation/cash is needed. In all cases the cash
state diverges to infinity if the firm survives with certainty.
The main result of our analysis of problem (6.4) is the relation

pd(t)> pnd(t), 0≤ t ≤ τ, pd(t)< pnd(t), τ ≤ t ≤ tf, (6.17)

which can be seen in Figure 6.4.

2Also known as threshold or weak DNSS curve referring to early contributions of [71], [220, 221], and
[226]; see also [118]. Weak Skiba refers to the threshold property of this curve separating different
long-term solutions. Which strategy has to be applied is history-dependent and, thus, particularly
depends on the initial state values.
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Figure 6.4: Exemplary price paths of
(a) a recession period lasting until τn (using Scenario 22). During the recession pd > pnd
holds, but the difference in between depends on the size of the rate parameter λ .
(b) a normal economic stage for the same scenario setting. By way of better illustration this
figure shows price paths of a normal period beginning already at time τ1. Note that neither λ

nor the strength α of the recession have any influence on these paths.
For comparison, ps shows the static optimization price.

The optimal solution of the normal period follows the results of Section 6.4.2. Due to the delay
σ there is a less direct effect of the price pd on the dynamics of the brand image Ȧ. This reduces
the incentive to set a high price, as a lower price raises revenues, which consequently raises the
value of the objective function immediately.
In the recession period, however, the opposite relation holds. A direct consequence of this is
visible in Figures 6.5 and 6.6: The vertical line indicating the divergence of the cash state B in
an infinite horizon setting is shifted to a value ĀR

d of reputation that is higher than the respective
value ĀR

nd in the non-delayed case.
While the negative effect of smaller revenues with higher prices (independent of the economic
period) is the same for both the delayed and the undelayed case, there are also two positive
aspects of increasing the price pd.
The first effect is that the brand image A increases as well during the recession, implying that the
bankruptcy probability reduces. This effect is stronger the less the delay σ is. Hence, this first
impact is the strongest in the non-delayed case.
Given that the recession terminates somewhere during the next time interval of duration σ , the
second effect of increasing pd is that the reputation goes up after the recession, implying that the
revenue of the normal period rises. This effect occurs with the probability P[τ ∈ [t, t +σ ]] that
the recession will be over during the next interval of length σ , hence, it is stronger the larger the
delay is. But it is completely absent in the undelayed case.
According to the first effect, which is comparable to the impact in the normal period, it holds
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Figure 6.5: Evolution of optimal trajectories over time in a phase diagram with brand image A(·) and
capital B(·). They start in (A0,B0) according to Table 6.1 and evolve until (A(τn),B(τn)).
Optimal solutions of a delayed (σ = 0.25) and the undelayed (σ = 0) model are shown for a
mild recession (α1 = 0.7), if we assume that for t ∈ [−σ ,0]
(a) the recession has been present (Scenarios 4–6 (from top to bottom)),
(b) a steady state normal economic period existed, i.e., A0 = ĀN

d , η = p̄N
d (Scenarios 7–9).

Due to the introduction of the delay the recession’s steady state of the brand image ĀR
d (and

correspondingly p̄R
d ) is greater than in the undelayed case.
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(a) α2 = 0.836
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Figure 6.6: Phase diagram as in Figure 6.5(a) for an intermediate and severe recession.
(a) Scenarios 10, 14–16, (b) Scenarios 22–26.
In analogy to weak Skiba curves, the dotted lines based on Scenarios (a) 18–21, (b) 28–31
indicate the initial values which separate the state space into the ones (above) that do not
lead to bankruptcy and the ones (below) that do. After the introduction of the time lag σ the
bankruptcy region becomes larger. This results in an upwards-adjustment of the weak Skiba
curve in the delayed case.
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that pd < pnd then. The second effect implies the opposite relation during the recession stage.
Note that this second impact only occurs with P[τ ∈ [t, t +σ ]], i.e., it depends on the size of σ

and the probability density function.
In our case (with σ = 0.25) the second effect dominates, meaning that the mentioned proba-
bility is large enough. For the first effect to dominate we have to decrease this probability by
either reducing the time lag or end of recession probability parameter λ . The results of the latter
possibility can be seen in Figure 6.4(a).
In a more vivid way we can interpret this second effect by assuming that the crisis ends at
time τ̂ . In the undelayed case the firm can start building up their reputation immediately after
the realization of τ̂ by charging higher prices (supposing that it has survived). The effect on A
comes directly. If σ > 0 the impact of rising prices after τ̂ only starts to have a positive outcome
from time τ̂ +σ onwards. In the initial phase of the normal period [τ̂, τ̂ +σ ] the demand is
directly influenced by the price set in the last interval of the recession. Hence, increasing prices
in [τ̂−σ , τ̂] leads to a higher reputation σ time units later. That is, the demand is also higher in
the period [τ̂, τ̂+σ ], which generates higher revenues during the first phase of the normal period.
As the firm does not know beforehand when the recession is over, there is always a positive
probability that the current time t is located in the period [τ̂ −σ , τ̂]. Keeping this in mind, the
firm has an additional incentive to keep prices up in recession periods when a delay is apparent,
avoiding damaging the reputation too much. Otherwise their product will still perceived to be
comparatively cheap for some time period after the recession is over.
Another important result can be observed in Figure 6.6. As observed in [61], in cases of an
intermediate or severe recession there is a weak Skiba curve separating the regions of possible
bankruptcy and certain survival. If σ > 0 this curve is adjusted upwards to some extent. With the
incorporation of the delay in our model it is less easy for the firm to survive the crisis because the
effect of changing the price p on the brand image is less direct. This explains why the bankruptcy
region becomes larger.
At the end of this Section we want to remark that the condition (6.13d) causes two main scenarios
we have to distinguish in the delayed model. The economic stage that is apparent in the time prior
to the planning period [0, tf] can either be a normal or a recession stage. We consider two slightly
simplified cases.
In the first one we assume a steady state corresponding to the normal economic period in the
interval [−σ ,0], i.e., we have already one “switching” occurrence at the beginning of the hori-
zon. We initialize the retarded control with η = p̄N

d and the brand image with A0 = ĀN
d . Then the

system evolves as shown in Figure 6.5(b). The non-smooth behavior of the trajectories there is
quite natural. At t = 0 the recession begins and the demand is reduced immediately due to the
influence of α . Hence, prices will drop and the firm’s cash decreases. However, the brand image
in the time interval [0,σ ] develops according to the high steady state price p̄N

d , i.e., it remains
at its level. Only thereafter the condition (6.13e) becomes active and the reputation reacts to the
lower prices.
The second case is more complicated. If we suppose a persisting recession stage, it is very hard
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Figure 6.7: Phase diagram as in Figure 6.5(a) for Scenarios 10–13 (gray lines from top to bottom). It
is obvious that the initial control path η has a considerable influence on the firm’s future
situation.

to find a satisfying initialization η for the retarded price in the interval [0,σ ]. In our calculations
we started with the optimal price obtained in the first interval of the non-delayed model. This
causes the kink in the initial part of the trajectories in Figures 6.5 and 6.6. Experiments of
varying the value of η changed the amplitude of this deformation slightly, see Figure 6.7. In this
special scenario the different initializations also had a qualitative influence on the bankruptcy
probability of the firm. If the combination of brand image and cash moves below the weak Skiba
curve, the firm has to face bankruptcy in the long run. This happens for small initial prices,
whereas high ones lead to certain survival.

6.5 Summary

We showed that a constant control delay in a two-stage model of a firm selling conspicuous
consumption goods has a qualitative influence on the optimal pricing strategy the firm should
apply in periods of economic uncertainties. In the recession stage of the delayed case the firm
should use higher prices than in the corresponding scenario in the undelayed world, whereas in
the normal economic stage after the recession is over the pricing policy is optimal if the reversed
relation is true. This behavior is strongly depending on the probability that the recession ends
during the next σ periods, i.e., on the size of the delay and the rate parameter λ . We also showed
that the bankruptcy region is larger if σ > 0.
Our approach to solve this non-standard optimal control problem by a scenario tree approach
deduced from the discretization of the random variable τ as the end point of the crisis and
combining this with the introduction of a slack control function to incorporate price delays has
proven to be successful. The application of structure-exploiting direct numerical methods is an
adequate means to gain insight into solution structures of complex economical systems, also and
especially if additional analytical studies are required.
Possible extensions of our model can include state equations with delays in both the control and
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the state [67], the inclusion of quality as additional control, or an reversion of the order of stages,
i.e., beginning with a normal period followed by a recession. Another variant can be obtained by
a redefinition of the brand image

A(t) =
∫ t

t−σ

p(z) dz,

yielding Ȧ(t) = p(t)− p(t−σ) = p(t)−δ (t)A(t), where the depreciation rate δ (t) depends on
the delayed price [48, 67]. Further on, the recession parameter α might be regarded as a random
variable as well, possibly even as a random process.
Airlines or hotels often use a company-internal staircase system for their prices. This motivates
integer requirements on the control function. They can be addressed with theory and methods
that have been presented in Chapters 2 and 3. Integer controls can be easily deduced by applying
either the Sum Up Rounding strategy, or if combinatorial constraints are present, the decompo-
sition approach from Chapter 5. Hence, we showed how multiple setpoint scenarios, worst case
constraints, and control delays can be treated in the framework of mixed-integer optimal control
as well.
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7 A MIOC Benchmark Library

The contents of this chapter are based on the paper

[205] S. Sager. A benchmark library of mixed-integer optimal control problems. Proceedings
MINLP09 IMA Minneapolis, accepted.

Chapter Summary. Numerical algorithm developers need standardized test instances for em-
pirical studies and proofs of concept. There are several libraries available for finite-dimensional
optimization, such as the netlib or the miplib. However, for mixed-integer optimal control prob-
lems (MIOCP) this is not yet the case. One explanation for this is the fact that no dominant
standard format has been established yet. In many cases instances are used in a discretized form,
but without proper descriptions on the modeling assumptions and discretizations that have been
applied. In many publications crucial values, such as initial values, parameters, or a concise
definition of all constraints are missing.
We intend to establish the basis for a benchmark library of mixed-integer optimal control prob-
lems that is meant to be continuously extended online on the open community web page located
at http://mintoc.de. The guiding principles are comprehensiveness, a detailed description of
where a model comes from and what the underlying assumptions are, a clear distinction between
problem and method description (such as a discretization in space or time), reproducibility of
solutions and a standardized problem formulation. Also, the problems are classified according to
model and solution characteristics. We do not benchmark MIOCP solvers, but provide a library
infrastructure and sample problems as a basis for future studies.
A second objective is to formulate mixed-integer nonlinear programs (MINLPs) originating from
these MIOCPs. The snag is of course that we need to apply one out of several possible method-
specific discretizations in time and space in the first place to obtain a MINLP. Yet the resulting
MINLPs originating from control problems with an indication of the currently best known so-
lution are hopefully a valuable test set for developers of generic MINLP solvers. The problem
specifications can also be downloaded from http://mintoc.de.

7.1 Introduction

The algorithms that have been presented in the previous chapters have been applied to a variety
of mixed integer optimal control problems. In this section we collect them in short form as a
reference for algorithm developers.
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For empirical studies and proofs of concept, developers of optimization algorithms need stan-
dardized test instances. There are several libraries available, such as the netlib for linear pro-
gramming (LP) [16], the Schittkowski library for nonlinear programming (NLP) [215], the mi-
plib [173] for mixed-integer linear programming (MILP), or more recently the MINLPLib [57]
and the CMU-IBM Cyber-Infrastructure for for mixed-integer nonlinear programming (MINLP)
collaborative site [66]. Further test libraries and related links can be found on [58]. A comprehen-
sive testing environment is CUTEr [115]. The solution of these problems with different solvers
is facilitated by the fact that standard formats such as the standard input format (SIF) or the
Mathematical Programming System format (MPS) have been defined.
Collections of optimal control problems (OCPs) in ordinary differential equations (ODE) and
in differential algebraic equations (DAE) have also been set up. The PROPT (a matlab toolkit
for dynamic optimization using collocation) homepage states over 100 test cases from different
applications with their results and computation time, [132]. With the software package dsoa [87]
come currently 77 test problems. The ESA provides a test set of global optimization spacecraft
trajectory problems and their best putative solutions [4].
This is a good starting point. However, no standard has evolved yet as in the case of finite-
dimensional optimization. The specific formats for which only few optimization / optimal con-
trol codes have an interface, insufficient information on the modeling assumptions, or missing
initial values, parameters, or a concise definition of all constraints make a transfer to different
solvers and environments very cumbersome. The same is true for hybrid systems, which incor-
porate MIOCPs as defined in this thesis as a special case. Two benchmark problems have been
defined at [182].
Although a general open library would be highly desirable for optimal control problems, we
restrict ourselves here to the case of MIOCPs, in which some or all of the control values and
functions need to take values from a finite set. MIOCPs are of course more general than OCPs
as they include OCPs as a special case, however the focus in this library is on integer aspects. We
want to be general in our formulation, without becoming too abstract. It allows to incorporate
ordinary and partial differential equations, as well as algebraic constraints. Most hybrid systems
can be formulated by means of state-dependent switches. Closed-loop control problems are on a
different level, because a unique and comparable scenario would include well-defined external
disturbances. We try to leave our approach open to future extensions to nonlinear model pre-
dictive control (NMPC) problems, but do not incorporate them yet. The formulation allows for
different kinds of objective functions, e.g., time minimal or of tracking type, and of boundary
constraints, e.g., periodicity constraints. Abstract problem formulations, together with a pro-
posed categorization of problems according to model, objective, and solution characteristics are
given in Section 7.2.
As discussed in Chapter 2, there is a large variety of different reformulations, solvers, and meth-
ods that have been proposed to analyze and solve MIOCPs. We would like to point out that they
all discretize the optimization problem in function space in a different manner, and hence result
in different mathematical problems that are actually solved on a computer.
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We have two objectives. First, we intend to establish the basis for a benchmark library of mixed-
integer optimal control problems that is meant to be continuously extended online on the open
community web page http://mintoc.de. The guiding principles are comprehensiveness, a de-
tailed description of where a model comes from and what the underlying assumptions are, a
clear distinction between problem and method description (such as a discretization in space or
time), reproducibility of solutions and a standardized problem formulation that allows for an
easy transfer, once a method for discretization has been specified, to formats such as AMPL or
GAMS. Also, the problems are classified according to model and solution characteristics.

Although our focus is on formulating MIOCPs before any irreversible reformulation and nu-
merical solution strategy has been applied, a second objective is to provide specific MINLP for-
mulations as benchmarks for developers of MINLP solvers. Powerful commercial MILP solvers
and advances in MINLP solvers as described in the other contributions to this book make the
usage of general purpose MILP/MINLP solvers more and more attractive. Please be aware how-
ever that the MINLP formulations we provide here are only one out of many possible ways to
formulate the underlying MIOCP problems.

In Section 7.2 a classification of problems is proposed. Sections 7.3 to 7.11 describe the respec-
tive control problems and currently best known solutions. In Section 7.12 two specific MINLP
formulations are presented for illustration. Section 7.13 gives a conclusion and an outlook.

7.2 Classifications

The MIOCPs in our benchmark library have different characteristics. In this section we describe
these general characteristics, so we can simply list them later on where appropriate. Beside its
origins from application fields such as mechanical engineering, aeronautics, transport, systems
biology, chemical engineering and the like, we propose three levels to characterize a control
problem. First, characteristics of the model from a mathematical point of view, second the for-
mulation of the optimization problem, and third characteristics of an optimal solution from a
control theory point of view. We address these three in the following subsections.

Although we strive for a standardized problem formulation, we do not formulate a specific
generic formulation as such. Such a formulation is not even agreed upon for PDEs, let alone the
possible extensions in the direction of algebraic variables, network topologies, logical connec-
tions, multi-stage processes, MPEC constraints, multiple objectives, functions including higher-
order derivatives and much more that might come in. Therefore we chose to start with a very
abstract formulation, formulate every control problem in its specific way as is adequate and to
connect the two by using a characterization. On the most abstract level, we want to solve an
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optimization problem that can be written as

min
x,u,v

Φ[x,u,v])

s.t. 0 = F [x,u,v],

0≤C[x,u,v],

0 = Γ[x].

(7.1)

Here x(·) : Rd 7→ Rnx denotes the differential-algebraic states1 in a d-dimensional space. Until
now, for most applications we have d = 1 and the independent variable time t ∈ [t0, t f ], the case
of ordinary or algebraic differential equations. u(·) : Rd 7→ Rnu and v(·) : Rd 7→ Ω are controls,
where u(·) are continuous values that map to Rnu , and v(·) are controls that map to a finite set
Ω. We allow also constant-in-time or constant-in-space control values rather than distributed
controls.

We also use the term integer control for v(·), while binary control refers to ω(t) ∈ {0,1}nω

that shall be introduced later. We use the expression relaxed, whenever a restriction v(·) ∈ Ω is
relaxed to a convex control set, which is typically the convex hull, v(·) ∈ conv Ω.

Basically two different kinds of switching events are at the origin of hybrid systems, control-
lable and state-dependent ones. The first kind is due to degrees of freedom for the optimization,
in particular with controls that may only take values from a finite set. The second kind is due
to state-dependent switches in the model equations, e.g., ground contact of a robot leg or over-
flow of weirs in a distillation column. The focus in the benchmark library is on the first kind
of switches, whereas the second one is of course important for a classification of the model
equations, as for certain MIOCPs both kinds occur.

The model equations are described by the functional F [·], to be specified in Section 7.2.1. The
objective functional Φ[·], the constraints C[·] that may include control- and path-constraints,
and the interior point constraints Γ[x] that specify also the boundary conditions are classified in
Section 7.2.2. In Section 7.2.3 characteristics of an optimal solution from a control theory point
of view are listed.

The formulation of optimization problems is typically not unique. Sometimes, as in the case
of MPEC reformulations of state-dependent switches [26], disjunctive programming [120], or
outer convexification [214], reformulations may be seen as part of the solution approach in the
sense of the modeling for optimization paradigm [184]. Even in obvious cases, such as a Mayer
term versus a Lagrange term formulation, they may be mathematically, but not necessarily algo-
rithmically equivalent. We propose to use either the original or the most adequate formulation
of the optimization problem and list possible reformulations as variants.

1Note that we use the notation common in control theory with x as differential states and u as controls,
not the PDE formulation with x as independent variable and u as differential states.
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7.2.1 Model classification

This Section addresses possible realizations of the state equation

0 = F [x,u,v]. (7.2)

We assume throughout that the differential-algebraic states x are uniquely determined for appro-
priate boundary conditions and fixed (u,v).
ODE model. This category includes all problems constrained by the solution of explicit ordinary
differential equations (ODE). In particular, no algebraic variables and derivatives with respect to
one independent variable only (typically time) are present in the mathematical model. Equation
(7.2) reads

ẋ(t) = f (x(t),u(t),v(t)), t ∈ [0, tf], (7.3)

for t ∈ [t0, t f ] almost everywhere. We often leave the argument (t) away for notational conve-
nience.
DAE model. If the model includes algebraic constraints and variables, for example from con-
versation laws, a problem is categorized as a DAE model. Equality (7.2) then includes both dif-
ferential equations and algebraic constraints that determine the algebraic states in dependence of
the differential states and the controls. A more detailed classification includes the index of the
algebraic equations.
PDE model. If d > 1 the model equation (7.2) becomes a partial differential equation (PDE).
Depending on whether convection or diffusion prevails, a further classification into hyperbolic,
elliptic, or parabolic equations is necessary. A more elaborate classification shall evolve as more
PDE constrained MIOCPs are described on http://mintoc.de. In this work one PDE-based
instance is presented in Section 7.11.
Outer convexification. For time-dependent and space- independent integer controls often an-
other formulation is beneficial, e.g., [147]. For every element vi of Ω a binary control function
ωi(·) is introduced. Equation (7.2) can then be written as

0 =
nω

∑
i=1

F [x,u,vi] ωi(t), t ∈ [0, tf]. (7.4)

If we impose the special ordered set type one condition

nω

∑
i=1

ωi(t) = 1, t ∈ [0, tf], (7.5)

there is a bijection between every feasible integer function v(·) ∈Ω and an appropriately chosen
binary function ω(·) ∈ {0,1}nω , compare [214]. The relaxation of ω(t) ∈ {0,1}nω is given by
ω(t) ∈ [0,1]nω . We refer to (7.4) and (7.5) as outer convexification of (7.2). This characteristic
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applies to the control problems in Sections 3.6, 7.3, 7.6, 7.9, 7.10, and 7.11.
State-dependent switches. Many processes are modelled by means of state-dependent switches
that indicate, e.g., model changes due to a sudden ground contact of a foot or a weir overflow in
a chemical process. Mathematically, we write

0 = Fi[x,u,v] if σi(x(t))≥ 0. (7.6)

with well defined switching functions σi(·) for t ∈ [0, tf]. This characteristic applies to the control
problems in Sections 7.6 and 7.8.
Boolean variables. Discrete switching events can also be expressed by means of Boolean vari-
ables and logical implications. E.g., by introducing logical functions δi : [0, tf] 7→ {true, false}
that indicate whether a model formulation Fi[x,u,v] is active at time t, both state-dependent
switches and outer convexification formulations may be written as disjunctive programs, i.e.,
optimization problems involving Boolean variables and logical conditions. Using disjunctive
programs can be seen as a more natural way of modeling discrete events and has the main ad-
vantage of resulting in tighter relaxations of the discrete decisions, when compared to integer
programming techniques. More details can be found in [120, 183, 184].
Multistage processes. Processes of interest are often modelled as multistage processes. At tran-
sition times the model can change, sometimes in connection with a state-dependent switch. The
equations read as

0 = Fi[x,u,v] t ∈ [ti, ti+1] (7.7)

on a time grid {ti}i. With smooth transfer functions also changes in the dimension of optimiza-
tion variables can be incorporated, [167].
Unstable dynamics. For numerical reasons it is interesting to keep track of instabilities in pro-
cess models. As small changes in inputs lead to large changes in outputs, challenges for opti-
mization methods arise. This characteristic applies to the control problems in Sections 7.3 and
7.7.
Network topology. Complex processes often involve an underlying network topology, such as
in the control of gas or water networks [174, 55] . The arising structures should be exploited by
efficient algorithms.

7.2.2 Classification of the optimization problem

The optimization problem (7.1) is described by means of an objective functional Φ[·] and in-
equality constraints C[·] and equality constraints Γ[·]. The constraints come in form of multipoint
constraints that are defined on a time grid t0 ≤ t1 ≤ ·· · ≤ tm = t f , and of path-constraints that
need to hold almost everywhere on the time horizon. The equality constraints Γ[·] often fix the
initial values or impose a periodicity constraint. In this classification we assume all functions to
be sufficiently often differentiable.
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In the future, the classification shall also include problems with nondifferentiable objective func-
tions, multiple objectives, online control tasks including feedback, indication of nonconvexities,
and more characteristics that allow for a specific choice of test instances.

Minimum time. This is a category with all control problems that seek for time-optimal so-
lutions, e.g., reaching a certain goal or completing a certain process as fast as possible. The
objective function is of Mayer type, Φ[·] = tf. This characteristic applies to the control problems
in Sections 7.3, 7.9, and 7.10.

Minimum energy. This is a category with all control problems that seek for energy-optimal
solutions, e.g., reaching a certain goal or completing a certain process with a minimum amount of
energy. The objective function is of Lagrange type and sometimes proportional to a minimization
of the squared control (e.g., acceleration) u(·), e.g., Φ[·] =

∫ tf
t0 u2 dt. Almost always an upper

bound on the free end time tf needs to be specified. This characteristic applies to the control
problems in Sections 7.6 and 7.8.

Tracking problem. This category lists all control problems in which a tracking type Lagrange
functional of the form

Φ[·] =
∫ t f

t0
||x(τ)− xref||22 dτ. (7.8)

is to be minimized. This characteristic applies to the control problems in Sections 3.6, 7.4, 7.5,
and 7.7.

Optimum Experimental Design. This category lists all control problems in which a function
of either the Fisher information matrix F(·) or the covariance matrix C(·) of an underlying
parameter estimation problem is to be minimized. See Chapter 9 for details. This characteristic
applies to the control problems in Sections 9.6.1, and 9.6.2.

Periodic processes. This is a category with all control problems that seek periodic solutions,
i.e., a condition of the kind

Γ[x] = P(x(t f ))− x(t0) = 0, (7.9)

has to hold. P(·) is an operation that allows, e.g., for a perturbation of states (such as needed for
the formulation of Simulated Moving Bed processes, Section 7.11, or for offsets of angles by a
multiple of 2π such as in driving on closed tracks, Section 7.10). This characteristic applies to
the control problems in Sections 7.8, 7.10, and 7.11.

Equilibrium constraints. This category contains mathematical programs with equilibrium con-
straints (MPECs). An MPEC is an optimization problem constrained by a variational inequality,
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which takes for generic variables / functions y1,y2 the following general form:

min
y1,y2

Φ(y1,y2)

s.t. 0 = F(y1,y2),

0≤C(y1,y2),

0≤ (µ− y2)
T

φ(y1,y2), y2 ∈ Y (y1), ∀µ ∈ Y (y1)

(7.10)

where Y (y1) is the feasible region for the variational inequality and given function φ(·). Varia-
tional inequalities arise in many domains and are generally referred to as equilibrium constraints.
The variables y1 and y2 may be controls or states.

Complementarity constraints. This category contains optimization problems with complemen-
tarity constraints (MPCCs), for generic variables / functions y1,y2,y3 in the form of

min
y1,y2,y3

Φ(y1,y2,y3)

s.t. 0 = F(y1,y2,y3),

0≤C(y1,y2,y3),

0≤ y1 ⊥ y2 ≥ 0

(7.11)

The complementarity operator ⊥ implies the disjunctive behavior

y1,i = 0 OR y2,i = 0 ∀ i = 1 . . .ny.

MPCCs may arise from a reformulation of a bilevel optimization problem by writing the opti-
mality conditions of the inner problem as variational constraints of the outer optimization prob-
lem, or from a special treatment of state-dependent switches, [26]. Note that all MPCCs can be
reformulated as MPECs.

Vanishing constraints. This category contains mathematical programs with vanishing con-
straints (MPVCs). The problem

min
y

Φ(y)

s.t. 0≥ gi(y)hi(y), i ∈ {1, . . . ,m}
0≤ h(y)

(7.12)

with smooth functions g,h : Rny 7→ Rm is called MPVC. Note that every MPVC can be trans-
formed into an MPEC [3, 133]. Examples for vanishing constraints are engine speed constraints
that are only active if the corresponding gear control is nonzero. This characteristic applies to
the control problems in Sections 7.9, and 7.10.
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7.2.3 Solution classification

The classification that we propose for switching decisions is based on insight from Pontryagin’s
maximum principle, [192], applied here only to the relaxation of the binary control functions
ω(·), denoted by α(·) ∈ [0,1]nω . In the analysis of linear control problems one distinguishes
three cases: bang-bang arcs, sensitivity-seeking arcs, and path-constrained arcs, [228], where an
arc is defined to be a nonzero time-interval. Of course a problem’s solution can show two or
even all three behaviors at once on different time arcs.
Bang-bang arcs. Bang-bang arcs are time intervals on which the control bounds are active, i.e.,
αi(t)∈ {0,1} ∀ t. The case where the optimal solution contains only bang-bang arcs is in a sense
the easiest. The solution of the relaxed MIOCP is integer feasible, if the control discretization
grid is a superset of the switching points of the optimal control. Hence, the main goal is to
adapt the control discretization grid such that the solution of the relaxed problem is already
integer. Also on fixed time grids good solutions are easy to come up with, as rounded solutions
approximate the integrated difference between relaxed and binary solution very well.
A prominent example of this class is time-optimal car driving, see Section 7.9 and see Sec-
tion 7.10. Further examples of “bang-bang solutions” include free switching of ports in Simu-
lated Moving Bed processes, see Section 7.11, unconstrained energy-optimal operation of sub-
way trains see Section 7.6, a simple F-8 flight control problem see Section 7.3, and phase reset-
ting in biological systems, such as in Section 7.7.
Path–constrained arcs. Whenever a path constraint is active, i.e., it holds ci(x(t)) = 0 ∀ t ∈
[tstart, tend] ⊆ [0, tf], and no continuous control u(·) can be determined to compensate for the
changes in x(·), naturally α(·) needs to do so by taking values in the interior of its feasible
domain. An illustrating example has been given in [214], where velocity limitations for the
energy-optimal operation of New York subway trains are taken into account, see Section 7.6. The
optimal integer solution does only exist in the limit case of infinite switching (Zeno behavior), or
when a tolerance is given. Another example is compressor control in supermarket refrigeration
systems, see Section 7.8. Note that all applications may comprise path-constrained arcs, once
path constraints need to be added, as has been done in Section 3.6.
Sensitivity–seeking arcs. We define sensitivity–seeking (also compromise–seeking) arcs in the
sense of Srinivasan and Bonvin, [228], as arcs which are neither bang–bang nor path–constrained
and for which the optimal control can be determined by time derivatives of the Hamiltonian. For
control–affine systems this implies so-called singular arcs.
A classical small-sized benchmark problem for a sensitivity-seeking (singular) arc is the Lotka-
Volterra Fishing problem, see Section 7.4. Also in Section 3.6 a sensitivity–seeking arc is present.
The treatment of sensitivity–seeking arcs is very similar to the one of path–constrained arcs. As
above, an approximation up to any a priori specified tolerance is possible, probably at the price
of frequent switching.
Chattering arcs. Chattering controls are bang–bang controls that switch infinitely often in a fi-
nite time interval [0, tf]. An extensive analytical investigation of this phenomenon can be found in
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[252]. An example for a chattering arc solution is the famous example of Fuller, see Section 7.5.
Sliding Mode. Solutions of model equations with state-dependent switches as in (7.6) may show
a sliding mode behavior in the sense of Filippov systems [90]. This means that at least one of
the functions σi(·) has infinitely many zeros on the finite time interval [0, tf]. In other words, the
right hand side switches infinitely often in a finite time horizon.
The two examples with state-dependent switches in Sections 7.6 and 7.8 do not show sliding
mode behavior.

7.3 F-8 flight control

The F-8 aircraft control problem is based on a very simple aircraft model. The control problem
was introduced by Kaya and Noakes [140] and aims at controlling an aircraft in a time-optimal
way from an initial state to a terminal state. The mathematical equations form a small-scale
ODE model. The interior point equality conditions fix both initial and terminal values of the
differential states. The optimal, relaxed control function shows bang bang behavior. The problem
is furthermore interesting as it should be reformulated equivalently. Despite the reformulation
the problem is nonconvex and exhibits multiple local minima.

7.3.1 Model and optimal control problem

The F-8 aircraft control problem is based on a very simple aircraft model in ordinary differential
equations, introduced by Garrard [104]. The differential states consist of x0 as the angle of
attack in radians, x1 as the pitch angle, and x2 as the pitch rate in rad/s. The only control function
w = w(t) is the tail deflection angle in radians. The control objective is to control the airplane
from one point in space to another in minimum time. For t ∈ [0,T ] almost everywhere the mixed-
integer optimal control problem is given by

min
x,w,T

T

s.t. ẋ0 = −0.877 x0 + x2−0.088 x0 x2 +0.47 x2
0−0.019 x2

1

− x2
0 x2 +3.846 x3

0

−0.215 w+0.28 x2
0 w+0.47 x0 w2 +0.63 w3

ẋ1 = x2

ẋ2 = −4.208 x0−0.396 x2−0.47 x2
0−3.564 x3

0

−20.967 w+6.265 x2
0 w+46 x0 w2 +61.4 w3

x(0) = (0.4655,0,0)T , x(T ) = (0,0,0)T ,

w(t) ∈ {−0.05236,0.05236}, t ∈ [0,T ].

(7.13)

In the control problem, both initial and terminal values of the differential states are fixed. The
control w(t) is restricted to take values from a finite set only. Hence, the control problem can be
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reformulated equivalently to

min
x,w,T

T

s.t. ẋ0 = −0.877 x0 + x2−0.088 x0 x2 +0.47 x2
0−0.019 x2

1

− x2
0 x2 +3.846 x3

0

+ 0.215 ξ −0.28 x2
0 ξ +0.47 x0 ξ

2−0.63 ξ
3

−
(
0.215 ξ −0.28 x2

0 ξ −0.63 ξ
3) 2w

ẋ1 = x2

ẋ2 = −4.208 x0−0.396 x2−0.47 x2
0−3.564 x3

0

+ 20.967 ξ −6.265 x2
0 ξ +46 x0 ξ

2−61.4 ξ
3

−
(
20.967 ξ −6.265 x2

0 ξ −61.4 ξ
3) 2w

x(0) = (0.4655,0,0)T , x(T ) = (0,0,0)T ,

w(t) ∈ {0,1}, t ∈ [0,T ]

(7.14)

with ξ = 0.05236. Note that there is a bijection between optimal solutions of the two problems,
and that the second formulation is an outer convexification, compare Section 7.2.1.

7.3.2 Results

We provide in Table 7.1 a comparison of different solutions reported in the literature. The num-
bers show the respective lengths ti− ti−1 of the switching arcs with the value of w(t) on the
upper or lower bound (given in the second column). The infeasibility shows values obtained by
a simulation with a Runge-Kutta-Fehlberg method of 4th/5th order and an integration tolerance
of 10−8. The best known optimal objective value of this problem given is given by T = 3.78086.
The trajectories are shown in Figure 7.1.

Arc w(t) Lee[165] Kaya[140] Sager[203] Schlüter Sager[205]

1 1 0.00000 0.10292 0.10235 0.0 1.13492

2 0 2.18800 1.92793 1.92812 0.608750 0.34703

3 1 0.16400 0.16687 0.16645 3.136514 1.60721

4 0 2.88100 2.74338 2.73071 0.654550 0.69169

5 1 0.33000 0.32992 0.32994 0.0 0.0

6 0 0.47200 0.47116 0.47107 0.0 0.0

Infeasibility 1.75E-3 1.64E-3 5.90E-6 3.29E-6 2.21E-7

Objective 6.03500 5.74218 5.72864 4.39981 3.78086

Table 7.1: Results for the F-8 flight control problem. The solution in the second last column is a personal
communication by Martin Schlüter and Matthias Gerdts.
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Figure 7.1: Trajectories for the F-8 flight control problem from Table 7.1. Top: corresponding to the
Sager[203] column. Middle: Schlüter column. Bottom: Sager[205] column.
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7.3.3 Variants

The F-8 control problem has recently been reformulated as a mixed-integer optimal control
benchmark for an index 1 DAE system [107]. The authors use it as an example of a boundary
value problem that is deduced directly from the necessary conditions of optimality and follow
a first optimize, then discretize approach. The authors reformulated (7.13) with the help of two
artificial algebraic variables. This is not necessarily helpful from a computational point of view,
but allows to compare the results to the ones above and it is clear that the index one assumption
is valid for this MIOCP in DAE:

min
x,w,T

T

s.t. ẋ0 = y0x0 + x2−0.019x2
1−0.215w+0.63w3

ẋ1 = x2

ẋ2 = −4.208x0−0.396x2−0.47x2
0−3.564x3

0

−20.967w+6.265x0y1 +46y1w+61.4w3

0 = − y0−0.877−0.088x2 +0.47x0− x0x2

+3.846x2
0 +0.28y1 +0.47w2

0 = − y1 + x0w

x(0) = (0.4655,0,0)T , x(T ) = (0,0,0)T ,

w(t) ∈ {−0.05236,0.05236}, t ∈ [0,T ].

(7.15)

The problem formulation (7.13) can be easily regained by substituting first y1(·) and then y0(·)
back in the differential equations. With `0 = 1, the Hamiltonian of Problem (7.15) is given by

H (·) = 1+λ
>
f f (x,y,u)+λ

>
g g(x,y,u)

= 1+λ f 0(y0x0 + x2−0.019x2
1−0.215w+0.63w3) (7.16)

+λ f 1x2

+λ f 2(−4.208x0−0.396x2−0.47x2
0−3.564x3

0

−20.967w+6.265x0y1 +46y1w+61.4w3)

+λg0(−y0−0.877−0.088x2 +0.47x0

−x0x2 +3.846x2
0 +0.28y1 +0.47w2)

+λg1(−y1 + x0w)

The adjoint equations read

− ˙λ f 0 =
∂H (·)

∂x0
= λ f 2(−4.208−2 ·0.47x0−3 ·3.564x2

0 +6.265y1) (7.17)

+λ f 0y0 +λg0(0.47− x2 +2 ·3.846x0)+λg1w
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− ˙λ f 1 =
∂H (·)

∂x1
= −0.038λ f 0x1 (7.18)

− ˙λ f 2 =
∂H (·)

∂x2
= λ f 0 +λ f 1−0.396λ f 2 +λg0(−0.088− x0) (7.19)

0 =
∂H (·)

∂y0
= λ f 0x0−λg0 (7.20)

0 =
∂H (·)

∂y1
= λ f 2(6.265x0 +46w)+0.28λg0−λg1 (7.21)

with the transversality conditions

λ f i(t0) =−
∂ϕ(·)+σ>ψ(·)

∂xi(t0)
= σ0i, λ f i(tf) =−

∂ϕ(·)+σ>ψ(·)
∂xi(tf)

= σ f i, (7.22)

for i = 0 . . .2. In other words, the initial and terminal values of the differential adjoint states are
free, because all initial and terminal values of the differential states xi(·) are fixed. However, the
value of the Hamiltonian at the free end time is fixed to 0,

H (·, tf) = 0. (7.23)

The value of the optimal control w(t) is determined according to the global minimum principle
in [107] as the pointwise minimizer

w∗(t) = argmin{H (·,w≡−0.05236),H (·,w≡ 0.05236)}. (7.24)

It results in an optimal integer control

w∗(t) =

{
0.05236 if t ∈ [0,τ1]∪ [τ2,τ3]

−0.05236 if t ∈ [τ1,τ2]∪ [τ3, tf]

with τ1 = 1.135007,τ2 = 1.482512,τ3 = 3.088809, tf = 3.780858. Figures 7.2 and 7.3 show the
optimal trajectories and the competing Hamiltonians. The solution is similar to the bottom row
in Figure 7.1 which has been used for initialization of the boundary value problem.
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Figure 7.2: Left: differential states of the optimal trajectory. Right: the two competing Hamiltonians and
the optimal control. Note that the minimizing Hamiltonian (7.24) is identical 0, in accordance
to its end value (7.23) and the requirement to be constant.
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Figure 7.3: Left: the adjoint states plotted over time. Right: the algebraic states. The discontinuity in w∗(·)
is accounted for by jumps in y1(·).
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7.4 Lotka Volterra fishing problem

The Lotka Volterra fishing problem seeks an optimal fishing strategy to be performed on a fixed
time horizon to bring the biomasses of both predator as prey fish to a prescribed steady state.
The problem was set up as a small-scale benchmark problem in [209] and has since been used
for the evaluation of algorithms, e.g., [233].
The mathematical equations form a small-scale ODE model. The interior point equality condi-
tions fix the initial values of the differential states. The optimal integer control shows chattering
behavior, making the Lotka Volterra fishing problem an ideal candidate for benchmarking of
algorithms.

7.4.1 Model and optimal control problem

The biomasses of two fish species — one predator, the other one prey — are the differential
states of the model, the binary control is the operation of a fishing fleet. The optimization goal
is to penalize deviations from a steady state,

min
x,w

t f∫
t0
(x0−1)2 +(x1−1)2 dt

s.t. ẋ0 = x0− x0x1− c0x0 w

ẋ1 =−x1 + x0x1− c1x1 w,

x(0) = (0.5,0.7)T ,

w(t) ∈ {0,1}, t ∈ [0, tf],

(7.25)

with tf = 12, c0 = 0.4, and c1 = 0.2.

7.4.2 Results

If the problem is relaxed, i.e., we demand that w(·) be in the continuous interval [0,1] instead
of the binary choice {0,1}, the optimal solution can be determined by means of Pontryagin’s
maximum principle [192]. The optimal solution contains a singular arc, [209].
The optimal objective value of this relaxed problem is Φ = 1.34408. As follows from the results
of Chapter 3, this is the best lower bound on the optimal value of the original problem with the
integer restriction on the control function. In other words, this objective value can be approxi-
mated arbitrarily close, if the control only switches often enough between 0 and 1. As no optimal
solution exists, a suboptimal one is shown in Figure 7.4.

7.4.3 Variants

There are several alternative formulations and variants of the above problem, in particular

• a prescribed time grid for the control function [209],

125



CHAPTER 7
∣∣ A M I O C B E N C H M A R K L I B R A R Y

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Time t

Relaxed control function α(·)

α(·)

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10 11 12

Time t

Relaxed states

Prey x0(·)
Predator x1(·)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Time t

Control function ω(·) obtained by Sum Up Rounding

ω(·)

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10 11 12

Time t

SUR differential states

Prey x0(·)
Predator x1(·)

Figure 7.4: Trajectories for the Lotka Volterra Fishing problem. Top: optimal relaxed solution on grid
with 64 intervals. Bottom: feasible integer solution.

• a time-optimal formulation to get into a steady-state [203],

• the usage of a different target steady-state, as the one corresponding to w(·) = 1 which is
(1+ c1,1− c0),

• different fishing control functions for the two species,

• different parameters and start values,

• the usage as an optimum experimental design problem, see Chapter 9.

7.5 Fuller’s problem

The first control problem with an optimal chattering solution was given by [97]. An optimal
trajectory does exist for all initial and terminal values in a vicinity of the origin. As Fuller
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showed, this optimal trajectory contains a bang-bang control function that switches infinitely
often. The mathematical equations form a small-scale ODE model. The interior point equality
conditions fix initial and terminal values of the differential states, the objective is of tracking
type.

7.5.1 Model and optimal control problem

The MIOCP reads

min
x,w

∫ 1
0 x2

0 dt

s.t. ẋ0 = x1

ẋ1 = 1−2 w

x(0) = (0.01,0)T , x(T ) = (0.01,0)T ,

w(t) ∈ {0,1}, t ∈ [0,1].

(7.26)

7.5.2 Results

The optimal trajectories for the relaxed control problem on different equidistant grids G 0 with
nms = 20,30,60 are shown in Figure 7.5. Note that this solution is not bang–bang due to the
discretization of the control space. Even if this discretization is made very fine, a trajectory with
w(·) = 0.5 on an interval in the middle of [0,1] will be found as a minimum.

The application of Algorithm 2.1 yields an objective value of Φ = 1.52845 · 10−5, which is
better than the limit of the relaxed problems, Φ20 = 1.53203 · 10−5, Φ30 = 1.53086 · 10−5, and
Φ60 = 1.52958 ·10−5. A sample integer solution is also shown in Figure 7.5.

7.5.3 Variants

An extensive analytical investigation of this problem and a discussion of the ubiquity of Fuller’s
problem can be found in [252].

7.6 Subway ride

The optimal control problem we treat in this section goes back to work of [43] for the city of
New York. In an extension, also velocity limits that lead to path–constrained arcs appear. The
aim is to minimize the energy used for a subway ride from one station to another, taking into
account boundary conditions and a restriction on the time.
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Figure 7.5: Trajectories for Fuller’s problem for different discretizations. Bottom right shows a feasible
integer solution. The scales for the differential state x0(·) are given on the right axis.

7.6.1 Model and optimal control problem

The MIOCP reads
min
x,w

∫ tf
0 L(x,w) dt

s.t. ẋ0 = x1

ẋ1 = f1(x,w)

x(0) = (0,0)T , x(tf) = (2112,0)T ,

w(t) ∈ {1,2,3,4}, t ∈ [0, tf].

(7.27)

The terminal time tf = 65 denotes the time of arrival of a subway train in the next station. The
differential states x0(·) and x1(·) describe position and velocity of the train, respectively. The
train can be operated in one of four different modes, w(·) = 1 series, w(·) = 2 parallel, w(·) = 3
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coasting, or w(·) = 4 braking that accelerate or decelerate the train and have different energy
consumption. Acceleration and energy comsumption are velocity-dependent. Hence, we will
need switching functions σi(x1) = vi− x1 for given velocities vi, i = 1..3. The Lagrange term
reads

L(x,1) =


e p1 if σ1 ≥ 0

e p2 else if σ2 ≥ 0

e ∑
5
i=0 ci(1)

( 1
10 γ x1

)−i else

(7.28)

L(x,2) =


∞ if σ2 ≥ 0

e p3 else if σ3 ≥ 0

e ∑
5
i=0 ci(2)

( 1
10 γ x1−1

)−i else

(7.29)

L(x,3) = L(x,4) = 0. (7.30)

The right hand side function f1(x,w) reads is

f1(x,1) =


f 1A
1 := g e a1

Weff
if σ1 ≥ 0

f 1B
1 := g e a2

Weff
else if σ2 ≥ 0

f 1C
1 := g (e T (x1,1)−R(x1)

Weff
else

(7.31)

f1(x,2) =


0 if σ2 ≥ 0

f 2B
1 := g e a3

Weff
else if σ3 ≥ 0

f 2C
1 := g (e T (x1,2)−R(x1)

Weff
else

(7.32)

f1(x,3) = −g R(x1)

Weff
−C, (7.33)

f1(x,4) = −u =−umax. (7.34)

The braking deceleration u(·) can be varied between 0 and a given umax. It can be shown that for
problem (7.27) only maximal braking can be optimal, hence we fixed u(·) to umax without loss
of generality. Occurring forces are

R(x1) = ca γ
2x1

2 +bWγx1 +
1.3

2000
W +116, (7.35)

T (x1,1) =
5

∑
i=0

bi(1)
(

1
10

γx1−0.3
)−i

, (7.36)

T (x1,2) =
5

∑
i=0

bi(2)
(

1
10

γx1−1
)−i

. (7.37)

Parameters are listed in Table 7.2, while bi(w) and ci(w) are given by
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Symbol Value Unit Symbol Value Unit

W 78000 lbs v1 0.979474 mph

Weff 85200 lbs v2 6.73211 mph

S 2112 ft v3 14.2658 mph

S4 700 ft v4 22.0 mph

S5 1200 ft v5 24.0 mph

γ
3600
5280

sec
h / ft

mile a1 6017.611205 lbs

a 100 ft2 a2 12348.34865 lbs

nwag 10 - a3 11124.63729 lbs

b 0.045 - umax 4.4 ft / sec2

C 0.367 - p1 106.1951102 -

g 32.2 ft
sec2 p2 180.9758408 -

e 1.0 - p3 354.136479 -

Table 7.2: Parameters used for the subway MIOCP and its variants.

b0(1) −0.1983670410E02,

b1(1) 0.1952738055E03,

b2(1) 0.2061789974E04,

b3(1) −0.7684409308E03,

b4(1) 0.2677869201E03,

b5(1) −0.3159629687E02,

b0(2) −0.1577169936E03,

b1(2) 0.3389010339E04,

b2(2) 0.6202054610E04,

b3(2) −0.4608734450E04,

b4(2) 0.2207757061E04,

b5(2) −0.3673344160E03,

c0(1) 0.3629738340E02,

c1(1) −0.2115281047E03,

c2(1) 0.7488955419E03,

c3(1) −0.9511076467E03,

c4(1) 0.5710015123E03,

c5(1) −0.1221306465E03,

c0(2) 0.4120568887E02,

c1(2) 0.3408049202E03,

c2(2) −0.1436283271E03,

c3(2) 0.8108316584E02,

c4(2) −0.5689703073E01,

c5(2) −0.2191905731E01.
Details about the derivation of this model and the assumptions made can be found in [43] or in
[160].

7.6.2 Results

The optimal trajectory for this problem has been calculated by means of an indirect approach in
[43, 160], and based on the direct multiple shooting method in [214]. The resulting trajectory is
listed in Table 7.3.
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Time t w(·) f1 = x0 [ft] x1 [mph] x1 [ftps] Energy

0.00000 1 f 1A
1 0.0 0.0 0.0 0.0

0.63166 1 f 1B
1 0.453711 0.979474 1.43656 0.0186331

2.43955 1 f 1C
1 10.6776 6.73211 9.87375 0.109518

3.64338 2 f 2B
1 24.4836 8.65723 12.6973 0.147387

5.59988 2 f 2C
1 57.3729 14.2658 20.9232 0.339851

12.6070 1 f 1C
1 277.711 25.6452 37.6129 0.93519

45.7827 3 f1(3) 1556.5 26.8579 39.3915 1.14569

46.8938 3 f1(3) 1600 26.5306 38.9115 1.14569

57.1600 4 f1(4) 1976.78 23.5201 34.4961 1.14569

65.0000 - − 2112 0.0 0.0 1.14569

Table 7.3: Optimal trajectory for the subway MIOCP as calculated in [43, 160, 214].

7.6.3 Variants

The given parameters have to be modified to match different parts of the track, subway train
types, or amount of passengers. A minimization of travel time might also be considered.
The problem becomes more challenging, when additional point or path constraints are consid-
ered. First we consider the point constraint

x1 ≤ v4 if x0 = S4 (7.38)

for a given distance 0 < S4 < S and velocity v4 > v3. Note that the state x0(·) is strictly mono-
tonically increasing with time, as ẋ0 = x1 > 0 for all t ∈ (0,T ).
The optimal order of gears for S4 = 1200 and v4 = 22/γ with the additional interior point con-
straints (7.38) is 1,2,1,3,4,2,1,3,4. The stage lengths between switches are 2.86362, 10.722,
15.3108, 5.81821, 1.18383, 2.72451, 12.917, 5.47402, and 7.98594 with Φ = 1.3978. For dif-
ferent parameters S4 = 700 and v4 = 22/γ we obtain the gear choice 1, 2, 1, 3, 2, 1, 3, 4 and
stage lengths 2.98084, 6.28428, 11.0714, 4.77575, 6.0483, 18.6081, 6.4893, and 8.74202 with
Φ = 1.32518.
A more practical restriction are path constraints on subsets of the track. We will consider a
problem with additional path constraints

x1 ≤ v5 if x0 ≥ S5. (7.39)

The additional path constraint changes the qualitative behavior of the relaxed solution. While
all solutions considered this far were bang–bang and the main work consisted in finding the
switching points, we now have a path–constrained arc. The optimal solutions for refined grids
yield a series of monotonically decreasing objective function values, where the limit is the best
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value that can be approximated by an integer feasible solution. In our case we obtain

1.33108,1.31070,1.31058,1.31058, . . . (7.40)

Figure 7.6 shows a possible integer realization. Note that the solutions approximate the optimal
driving behavior (a convex combination of two operation modes) by switching between the two
and causing a touching of the velocity constraint from below as many times as we switch. Hence,
there is a trade-off between energy consumption and number of switches.
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Figure 7.6: Left: the operation mode w(t) ∈ {1,2,3,4}. Right: the differential state velocity of a sub-
way train over time. The dotted horizontal line indicates the maximum velocity after S5. The
energy-optimal solution needs to stay as close as possible to the maximum velocity on this
time interval to avoid even higher energy-intensive accelerations in the start-up phase to match
the terminal time constraint tf ≤ 65 to reach the next station.

7.7 Resetting calcium oscillations

The aim of the control problem is to identify strength and timing of inhibitor stimuli that lead
to a phase singularity which annihilates intra-cellular calcium oscillations. This is formulated
as an objective function that aims at minimizing the state deviation from a desired unstable
steady state, integrated over time. A calcium oscillator model describing intra-cellular calcium
spiking in hepatocytes induced by an extracellular increase in adenosine triphosphate (ATP)
concentration is described. The calcium signaling pathway is initiated via a receptor activated
G-protein inducing the intra-cellular release of inositol triphosphate (IP3) by phospholipase C.
The IP3 triggers the opening of endoplasmic reticulum and plasma membrane calcium channels
and a subsequent inflow of calcium ions from intra-cellular and extracellular stores leading to
transient calcium spikes.
The mathematical equations form a small-scale ODE model. The interior point equality condi-
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tions fix the initial values of the differential states. The problem is, despite of its low dimension,
very hard to solve, as the target state is unstable.

7.7.1 Model and optimal control problem

The model for the calcium oscillator comprises four system states xi ∈C1[0,T ]. They describe
the concentrations of activated G-protein x1(t), active phospholipase C x2(t), intracellular cal-
cium x3(t) and intra-ER calcium x4(t). The model takes into account well known feedback-
regulations of the pathway, in particular CICR (calcium induced calcium release) and active
transport of calcium from the cytoplasm across both ER-membrane and plasma membrane via
SERCA (sarco-endoplasmic reticulum Ca2+-ATPase) and PMCA (plasma membrane Ca2+-
ATPase) pumps.
We introduce control functions u,v ∈ L∞[0,T ] representing the influence of drug stimuli. The
control function u(·) represents the temporally varying concentration of an uncompetitive in-
hibitor of the PMCA ion pump. The control function v(·) is the inhibitor of PLC activation.
In the interest of notational simplicity we write v,u,xi for v(t),u(t),xi(t) and formulate the initial
value problem for given u(·) and v(·) as ẋ(t) = f Ca(x(t),u(t),v(t)):

ẋ1 = k1 + k2x1−
k3x1x2

x1 +K4
− k5x1x3

x1 +K6
(7.41a)

ẋ2 = (1− v) · k7x1−
k8x2

x2 +K9
(7.41b)

ẋ3 =
k10x2x3x4

x4 +K11
+ k12x2 + k13x1−

k14x3

u x3 +K15
− k16x3

x3 +K17
+

x4

10
(7.41c)

ẋ4 = −k10x2x3x4

x4 +K11
+

k16x3

x3 +K17
− x4

10
, (7.41d)

x(0) = x0 := (0.03966,1.09799,0.00142,1.65431)T ,x0, (7.41e)

for t ∈ [0,T ] with fixed initial values x0 and parameter values k1 = 0.09,k2 = 2.30066,k3 =

0.64,K4 = 0.19,k5 = 4.88,K6 = 1.18,k7 = 2.08,k8 = 32.24,K9 = 29.09,k10 = 5.0,K11 = 2.67,k12 =

0.7,k13 = 13.58,k14 = 153.0,K15 = 0.16,k16 = 4.85,K17 = 0.05.
The uncontrolled case u(t) ≡ 1,v(t) ≡ 0 with ū = 1.3 gives rise to bursting-type limit cycle
oscillations, compare Figure 7.7 left. The control aim is to identify drug stimuli u(t),v(t) leading
to a phase singularity which annihilates the intracellular calcium oscillations. This is equivalent
to driving the system into an unstable steady state. We fix the control function v(·) to zero in
this scenario. A solution with both inhibitors can be found in [163], along with references to the
origin of the model.
For practical reasons of applicability, we are interested in a {ūmin, ūmax} valued solution for the
control function u(·), where the upper bound ūmax may be subject to optimization, but will be a
constant-in time value for the time-dependent control function. This corresponds to a calibration
of technical equipment to a fixed dosage, that needs to stay constant over time once it has been
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a priori calibrated.

Again, a partial outer convexification with respect to the integer control functions is beneficial.
Applying it for u(t) ∈ {ūmin, ūmax}, we obtain instead of (7.41c) the equation

ẋ3 =
k10x2x3x4

x4 +K11
+ k12x2 + k13x1−

k16x3

x3 +K17
+

x4

10

−
(

ω
k14x3

ūmax x3 +K15
+(1−ω)

k14x3

ūmin x3 +K15

)
(7.42)

with a new control function ω(·) ∈ {0,1}, whereas the equations (7.41a, 7.41b, 7.41d) stay the
same. Let in the following f OC(x(t),ω(t),v(t)≡ 0) denote the function that consists of the right
hand sides of (7.41a,7.41b,7.42,7.41d) for v(·) fixed to zero. Note that by construction it holds

f OC(x(t),ω(t)≡ 1,v(t)) = f Ca(x(t),u(t)≡ ūmax,v(t))

f OC(x(t),ω(t)≡ 0,v(t)) = f Ca(x(t),u(t)≡ ūmin,v(t)).

We formulate a control problem with the minimization of the system state deviation from the
desired steady state and a penalization of control functions integrated over time as objective
function,

min
x,ω,ūmax

J(x, ūmax, p) :=
∫ T

0 ∑
4
i=1

(
xi(τ)−xs

i
xs

i

)2
+100ω(t) dτ (7.43a)

subject to

ẋ(t) = f OC(x(t),ω,v≡ 0), (7.43b)

x(0) = x0, (7.43c)

xi(t) ≥ 0, (7.43d)

ūmin = 1.0, (7.43e)

ūmax ∈ [1.1,1.3], (7.43f)

ω(t) ∈ {0,1} (7.43g)

with ω ∈ L∞[0,T ], a fixed time horizon T = 22, t ∈ [0,T ], and initial values and parameters as
above. The constants

xs
1 = 6.78677,xs

2 = 22.65836,xs
3 = 0.38431,xs

4 = 0.28977

refer to the concentrations corresponding to the unstable steady state of the uncontrolled system
surrounded by the limit cycle.

134



A M I O C B E N C H M A R K L I B R A R Y
∣∣ CHAPTER 7

0

5

10

15

20

25

30

35

40

0 5 10 15 20

Time t

Simulation of calcium oscillator

x1(·)
x2(·)
x3(·)
x4(·)

0

5

10

15

20

25

30

35

40

0 5 10 15 20

Time t

Optimal tracking solution for calcium transition

x1(·)
x2(·)
x3(·)
x4(·)

Figure 7.7: Left: simulation of periodic calcium oscillations on a stable orbit. The plot shows the four dif-
ferential states on the fixed time horizon [0,22] for u(·)≡ 1,v(·)≡ 0. Right: optimal tracking
transition of calcium oscillations towards the unstable steady state. The plot shows the four
differential states corresponding to the control from Figure 7.8.
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Figure 7.8: Transition of calcium oscillations towards the unstable steady state via the tracking-type ob-
jective (7.43a). The plot shows the bang-bang solution and the corresponding switching func-
tion for ω(·) given by (7.44). The right hand side plot shows a zoom into the area where
ω(·) = 1. The switching function has been calculated a posteriori for illustration.
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7.7.2 Results

The optimal trajectory for problem (7.43) is depicted in Figures 7.8 and 7.7. Figure 7.8 shows the
bang-bang solution for the control function ω(·) that consists of a pulse of length 0.149103 with
ω(t) ≡ 1 for t ∈ [4.694485,4.843588]. As was already shown and visualized in [203, pp. 152],
the sensitivity of the objective function with respect to the timing is extremly high, because of the
instability of the target steady-state. The gray curve in Figure 7.8 shows the switching function

Hω =−100−λ3(t)
(

k14x3

ūmax x3 +K15
− k14x3

ūmin x3 +K15

)
(7.44)

that is the partial derivative of the Hamiltonian H =−L(t)+λ (t)T f OC(x(t),ω,v≡ 0).We use a
direct method for optimal control and do not need the switching function. It has been calculated a
posteriori for visualization, making use of the Lagrangian multipliers of the matching conditions
as approximations of the continuous adjoints λ (·). As can be seen, the timings for Hv(t)> 0 and
ω(t) = 1 coincide, as expected from a control problem that is linear in ω(·).
Figure 7.7 shows the four corresponding differential states xi(·). As can be seen, the control
goal to drive the system into the unstable steady state and to keep it there on the time horizon is
accomplished.
For the switching time solution we get a Hessian approximation of

H =


6336620841 13780350694 −100.76

13780350694 85604174121 −622.76

−100.76 −622.76 105.12


where our variables are the three arc lengths t1, t2− t1 and T − t2. All other variables are at their
simple bounds or fixed. The linearized constraints (fixed end time T = 22) are

gx =
(
−1 −1 −1

)
If we eliminate the first stage (y = t1) and z = (t2− t1, tf− t2), we get a reduced Hessian of

Hred =

(
−g−1

y gz

I

)T

H

(
−g−1

y gz

I

)

with positive eigenvalues 6.53 ·1010 and 0.54 ·1010. Hence the reduced Hessian is positive defi-
nite and the second order sufficient conditions are fulfilled.

7.7.3 Variants

One may also be interested in a time-minimal formulation to reach the unstable steady state. Here
we fix the control u(·) that represents the temporally varying concentration of an uncompetitive
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Figure 7.9: Time-optimal transition of calcium oscillations towards the unstable steady state. Left: the
bang-bang solution and the corresponding switching function Hv = −λ2(t) · k7 · x1(t). Right:
the four corresponding differential states.

inhibitor of the PMCA ion pump, instead of the control function v(·) which is the inhibitor of
PLC activation.

These two changes give rise to the optimal control problem

min
x,v,T

T (7.45a)

subject to

ẋ(t) = f OC(x(t),u≡ ūmin,v), (7.45b)

x(0) = x0, (7.45c)

x(T ) ≤ xs + εe, (7.45d)

x(T ) ≥ xs− εe, (7.45e)

xi(t) ≥ 0, (7.45f)

v(t) ∈ {0,1} (7.45g)

for t ∈ [0,T ], the all ones vector e = (1,1,1,1)T and a small tolerance ε = 10−5 for the terminal
constraint x(t) = xs.

The optimal trajectory for problem (7.45) is depicted in Figure 7.9. The left plot shows the
bang-bang solution for the control function ω(·) that consists of two pulses with v(t) ≡ 1 for
t ∈ [0,1.914173] and t ∈ [6.195274,6.450467]. The minimum time is T = 6.896168, which is
obviously slower than what can be achieved with the control u(·), compare Figure 7.7 right.
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For the switching time solution we get a Hessian approximation of

H = 103 ·


−1.7312 −1.7376 −0.6022 −0.0190

−1.7376 −1.7431 −0.6090 −0.0191

−0.6022 −0.6090 0.8103 0.0044

−0.0190 −0.0191 0.0044 0.0158


where our variables are the four arc lengths t1, t2− t1, t3− t2, and T − t3. All other variables are
at their simple bounds or fixed. There are three active constraints in the solution, the constraints
(7.45e) for components x1, x2 and x4. Their linearizations yield

gx =


−4.9141 −4.9636 5.3257 −1.710−6

−3.9168 −3.8881 −9.8988 −3.210−5

0.6144 0.6188 −0.2928 0.0003


If we eliminate the first three stages (y = (t1, t2− t1, t3− t2) and z = T − t3), we get a reduced
Hessian of

Hred =

(
−g−1

y gz

1

)T

H

(
−g−1

y gz

1

)
= 1.299109

which is obviously positive definite.

Alternatively, also the annihilation of calcium oscillations with PLC activation inhibition, i.e.,
the use of two control functions is possible, compare [163]. Of course, results depend very much
on the scaling of the deviation in the objective function.

7.8 Supermarket refrigeration system

This benchmark problem was formulated first within the European network of excellence HY-
CON, [182] by Larsen et. al, [162]. The formulation lacks however a precise definition of initial
values and constraints, which are only formulated as “soft constraints”. The task is to control a
refrigeration system in an energy optimal way, while guaranteeing safeguards on the tempera-
ture of the showcases. This problem would typically be a moving horizon online optimization
problem, here it is defined as a fixed horizon optimization task.

The mathematical equations form a periodic ODE model.
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7.8.1 Model and optimal control problem

The MIOCP reads

min
x,w,tf

1
tf

∫ tf
0 (w2 +w3) ·0.5 ·ηvol ·Vsl · f dt

s.t. ẋ0 =

(
x4
(
x2−Te(x0)

)
+ x8

(
x6−Te(x0)

))
Vsuc · dρsuc

dPsuc
(x0)

· UAwrm

Mrm ·∆hlg(x0)

+
Mrc−ηvol ·Vsl ·0.5 (w2 +w3)ρsuc(x0)

Vsuc · dρsuc
dPsuc

(x0)

ẋ1 =−
UAgoods−air (x1− x3)

Mgoods ·Cp,goods

ẋ2 =
UAair−wall (x3− x2)−

UAwrm

Mrm
x4
(
x2−Te(x0)

)
Mwall ·Cp,wall

ẋ3 =
UAgoods−air (x1− x3)+ Q̇airload−UAair−wall (x3− x2)

Mair ·Cp,air

ẋ4 =

(
Mrm− x4

τ f ill

)
w0−

UAwrm(1−w0)

Mrm ·∆hlg(x0)
x4
(
x2−Te(x0)

)
ẋ5 =−

UAgoods−air (x5− x7)

Mgoods ·Cp,goods

ẋ6 =
UAair−wall (x7− x6)−

UAwrm

Mrm
x8
(
x6−Te(x0)

)
Mwall ·Cp,wall

ẋ7 =
UAgoods−air (x5− x7)+ Q̇airload−UAair−wall (x7− x6)

Mair ·Cp,air

ẋ8 =

(
Mrm− x8

τ f ill

)
w1−

UAwrm(1−w1)

Mrm ·∆hlg(x0)
x8
(
x6−Te(x0)

)
x(0) = x(tf),

650≤ tf ≤ 750,

x0 ≤ 1.7, 2≤ x3 ≤ 5, 2≤ x7 ≤ 5

w(t) ∈ {0,1}4, t ∈ [0, tf].

The differential state x0 describes the suction pressure in the suction manifold (in bar). The next
three states model temperatures in the first display case (in C). x1 is the goods’ temperature, x2

the one of the evaporator wall and x3 the air temperature surrounding the goods. x4 then models
the mass of the liquefied refrigerant in the evaporator (in kg). x5 to x8 describe the corresponding
states in the second display case. w0 and w1 describe the inlet valves of the first two display cases,
respectively. w2 and w3 denote the activity of a single compressor.
The model uses the parameter values listed in Table 7.4 and the polynomial functions obtained
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Symbol Value Unit Description

Q̇airload 3000.00 J
s Disturbance, heat transfer

ṁrc 0.20 kg
s Disturbance, constant mass flow

Mgoods 200.00 kg Mass of goods

Cp,goods 1000.00 J
kg·K Heat capacity of goods

UAgoods−air 300.00 J
s·K Heat transfer coefficient

Mwall 260.00 kg Mass of evaporator wall

Cp,wall 385.00 J
kg·K Heat capacity of evaporator wall

UAair−wall 500.00 J
s·K Heat transfer coefficient

Mair 50.00 kg Mass of air in display case

Cp,air 1000.00 J
kg·K Heat capacity of air

UAwrm 4000.00 J
s·K Maximum heat transfer coefficient

τ f ill 40.00 s Filling time of the evaporator

TSH 10.00 K Superheat in the suction manifold

Mrm 1.00 kg Maximum mass of refrigerant

Vsuc 5.00 m3 Total volume of suction manifold

Vsl 0.08 m3

s Total displacement volume

ηvol 0.81 − Volumetric efficiency

Table 7.4: Parameters used for the supermarket refrigeration problem.

from interpolations:

Te(x0) = −4.3544x2
0 +29.224x0−51.2005,

∆hlg(x0) = (0.0217x2
0−0.1704x0 +2.2988) ·105,

ρsuc(x0) = 4.6073x0 +0.3798,
dρsuc
dPsuc

(x0) = −0.0329x0
3 +0.2161x0

2−0.4742x0 +5.4817.

7.8.2 Results

For the relaxed problem the optimal solution is Φ = 12072.45. The integer solution plotted in
Figure 7.10 is feasible, but yields an increased objective function value of Φ = 12252.81, a
compromise between effectiveness and a reduced number of switches.

7.8.3 Variants

Since the compressors are parallel connected one can introduce a single control w2 ∈ {0,1,2}
instead of two equivalent controls. The same holds for scenarios with n parallel connected com-
pressors.
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Figure 7.10: Periodic trajectories for optimal relaxed (top 2 rows) and integer feasible controls (bottom
rows).
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In [162], the problem was stated slightly different:

• The temperature constraints weren’t hard bounds but there was a penalization term added
to the objective function to minimize the violation of these constraints.

• The differential equation for the mass of the refrigerant had another switch, if the valve
(e.g. w0) is closed. It was formulated as

ẋ4 =


Mrm− x4

τ f ill
if w0 = 1

− UAwrm

Mrm ·∆hlg(x0)
x4
(
x2−Te(x0)

)
if w0 = 0 and x4 > 0

0 if w0 = 0 and x4 = 0

This additional switch is redundant because the mass itself is a factor on the right hand
side and so the complete right hand side is 0 if x4 = 0.

• A night scenario with two different parameters was given. At night the following pa-
rameters change their value to Q̇airload = 1800.00 J

s and ṁrc = 0.00 kg
s . Additionally the

constraint on the suction pressure x0(t) is softened to x0(t)≤ 1.9.

• The number of compressors and display cases is not fixed. Larsen also proposed the prob-
lem with 3 compressors and 3 display cases. This leads to a change in the compressor
rack’s performance to Vsl = 0.095 m3

s . Unfortunately this constant is only given for these
two cases although Larsen proposed scenarios with more compressors and display cases.

7.9 Elchtest testdrive

We consider a time-optimal car driving maneuver to avoid an obstacle with small steering effort.
At any time, the car must be positioned on a prescribed track. This control problem was first
formulated in [105] and used for subsequent studies [106, 147]. It has also been investigated in
Section 4.5.
The mathematical equations form a small-scale ODE model. The interior point equality condi-
tions fix initial and terminal values of the differential states, the objective is of minimum-time
type.

7.9.1 Model and optimal control problem

We consider a car model derived under the simplifying assumption that rolling and pitching of
the car body can be neglected. Only a single front and rear wheel is modelled, located in the
virtual center of the original two wheels. Motion of the car body is considered on the horizontal
plane only.
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The MIOCP reads

min
tf,x(·),u(·)

tf +
∫ tf

0 w2
δ
(t) dt (7.46a)

s.t. ċx = v cos
(
ψ−β

)
(7.46b)

ċy = v sin
(
ψ−β

)
(7.46c)

v̇ =
1
m

((
Fµ

lr −FAx
)

cosβ +Flf cos
(
δ +β

)
(7.46d)

−
(
Fsr−FAy

)
sinβ −Fsf sin

(
δ +β

))
δ̇ = wδ (7.46e)

β̇ = wz−
1

m v

(
(Flr−FAx) sinβ +Flf sin

(
δ +β

)
(7.46f)

+
(
Fsr−FAy

)
cosβ +Fsf cos

(
δ +β

))
ψ̇ = wz (7.46g)

ẇz =
1

Izz

(
Fsf lf cosδ −Fsr lr−FAy eSP +Flf lf sinδ

)
(7.46h)

cy(t) ∈
[
Pl(cx(t))+ B

2 ,Pu(cx(t))− B
2

]
(7.46i)

wδ (t) ∈ [−0.5,0.5], FB(t) ∈ [0,1.5 ·104], φ(t) ∈ [0,1] (7.46j)

µ(t) ∈ {1, . . . ,5} (7.46k)

x(t0) =
(
−30, free,10,0,0,0,0

)T
, (cx,ψ)(tf) = (140,0) (7.46l)

for t ∈ [t0, tf] almost everywhere. The four control functions contained in u(·) are steering wheel
angular velocity wδ , total braking force FB, the accelerator pedal position φ and the gear µ . The
differential states contained in x(·) are horizontal position of the car cx, vertical position of the
car cy, magnitude of directional velocity of the car v, steering wheel angle δ , side slip angle β ,
yaw angle ψ , and the yaw angle velocity wz.

The model parameters are listed in Table 7.5, while the forces and expressions in (7.46b) to
(7.46h) are given for fixed µ by

Fsf,sr(αf,r) := Df,r sin
(

Cf,r arctan
(
Bf,r αf,r

−Ef,r(Bf,r αf,r− arctan(Bf,r αf,r))
))

,

αf := δ (t)− arctan
(

lf ψ̇(t)− v(t) sinβ (t)
v(t) cosβ (t)

)
αr := arctan

(
lr ψ̇(t)+ v(t) sinβ (t)

v(t) cosβ (t)

)
,

Flf :=−FBf−FRf,
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Fµ

lr :=
iµ
g it
R

Mµ

mot(φ)−FBr−FRr,

Mµ

mot(φ) := f1(φ) f2(w
µ

mot)+(1− f1(φ)) f3(w
µ

mot),

f1(φ) := 1− exp(−3 φ),

f2(wmot) :=−37.8+1.54 wmot−0.0019 w2
mot,

f3(wmot) :=−34.9−0.04775 wmot,

wµ

mot :=
iµ
g it
R

v(t),

FBf :=
2
3

FB, FBr :=
1
3

FB,

FRf(v) := fR(v)
m lr g
lf + lr

, FRr(v) := fR(v)
m lf g
lf + lr

,

fR(v) := 9 ·10−3 +7.2 ·10−5 v+5.038848 ·10−10 v4,

FAx :=
1
2

cw ρ A v2(t), FAy := 0.

The test track is described by setting up piecewise cubic spline functions Pl(x) and Pr(x) model-
ing the top and bottom track boundary, given a horizontal position x.

Pl(x) :=



0 if x ≤ 44,

4 h2 (x−44)3 if 44 < x ≤ 44.5,

4 h2 (x−45)3 +h2 if 44.5 < x ≤ 45,

h2 if 45 < x ≤ 70,

4 h2 (70− x)3 +h2 if 70 < x ≤ 70.5,

4 h2 (71− x)3 if 70.5 < x ≤ 71,

0 if 71 < x.

(7.47)

Pu(x) :=



h1 if x ≤ 15,

4 (h3−h1) (x−15)3 +h1 if 15 < x ≤ 15.5,

4 (h3−h1) (x−16)3 +h3 if 15.5 < x ≤ 16,

h3 if 16 < x ≤ 94,

4 (h3−h4) (94− x)3 +h3 if 94 < x ≤ 94.5,

4 (h3−h4) (95− x)3 +h4 if 94.5 < x ≤ 95,

h4 if 95 < x.

(7.48)

where B = 1.5 m is the car’s width and

h1 := 1.1 B+0.25, h2 := 3.5, h3 := 1.2 B+3.75, h4 := 1.3 B+0.25.
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Value Unit Description

m 1.239 ·103 kg Mass of the car
g 9.81 m

s2 Gravity constant

lf 1.19016 m Front wheel distance to c.o.g.
lr 1.37484 m Rear wheel distance to c.o.g.
R 0.302 m Wheel radius
Izz 1.752 ·103 kg m2 Moment of inertia
cw 0.3 – Air drag coefficient
ρ 1.249512 kg

m3 Air density

A 1.4378946874 m2 Effective flow surface
i1g 3.09 – Gear 1 transmission ratio

i2g 2.002 – Gear 2 transmission ratio

i3g 1.33 – Gear 3 transmission ratio

i4g 1.0 – Gear 4 transmission ratio

i5g 0.805 – Gear 5 transmission ratio

it 3.91 – Engine torque transmission
Bf 1.096 ·101 – Pacejka coeff. (stiffness)
Br 1.267 ·101 –
Cf,r 1.3 – Pacejka coefficients (shape)
Df 4.5604 ·103 – Pacejka coefficients (peak)
Dr 3.94781 ·103 –
Ef,r −0.5 – Pacejka coefficients (curv.)

Table 7.5: Parameters of the car model.

7.9.2 Results

In [105, 106, 147] numerical results for the benchmark problem have been deduced. Table 7.6
gives the optimal gear choice and the resulting objective function value (the end time) for dif-
ferent numbers N of control discretization intervals, which were also used for a discretization of
the path constraints.

The outer convexification approach (Section 2.6.5) led to a tremendous speed-up compared to
the published reference benchmark solution for a fixed control discretization grid by several
orders of magnitude as shown in Table 7.7. In [147] one can also find an explanation why a
bang-bang solution for the relaxed and convexified gear choices has to be optimal.
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N µ = 1 µ = 2 µ = 3 µ = 4 µ = 5 tf
10 0.0 0.435956 2.733326 – – 6.764174
20 0.0 0.435903 2.657446 6.467723 – 6.772046
40 0.0 0.436108 2.586225 6.684504 – 6.782052
80 0.0 0.435796 2.748930 6.658175 – 6.787284

Table 7.6: Gear choice depending on discretization in time N. Times when gear becomes active.

Inner convexification Outer convexification
and Branch&Bound and MS MINTOC

m tf CPU Time tf CPU Time

20 6.779751 00:23:52 6.779035 00:00:24

40 6.786781 232:25:31 6.786730 00:00:46

80 – – 6.789513 00:04:19

Table 7.7: Comparison of computational times for a Branch&Bound approach on a Pentium III machine
with 750 MHz, [105] (left), and for MS MINTOC on an AMD Athlon XP 3000+ with 2.166
GHz, [147] (right). m denotes the number of control discretization intervals, tf is the optimal
objective function value. The path constraints are discretized on the same grid, hence the non-
monotonicity of tf in m. CPU times are given in hh:min:sec. Note that the results based on MS
MINTOC were obtained on a computer that is approximately 4 times faster than the Pentium
III machine, which would normally make a comparison of computation times highly suspect.
However, here the computation times vary by at least 2 orders of magnitude with a difference
growing in m, which is clearly a significant improvement even with the difference in machines.

7.10 Elliptic track testdrive

This control problem is very similar to the one in Section 7.9. However, instead of a simple lane
change maneuver the time-optimal driving on an elliptic track with periodic boundary conditions
is considered, [213].
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7.10.1 Model and optimal control problem

With the notation of Section 7.9 the MIOCP reads

min
tf,x(·),u(·)

tf

s.t. (7.46b−7.46h), (7.46j), (7.46k),

(cx,cy) ∈X ,

x(t0) = x(tf)− (0,0,0,0,0,2π,0)T ,

cy(t0) = 0,

0≤ reng(v,µ),

(7.49a)

for t ∈ [t0, tf] almost everywhere.
The set X describes an elliptic track with axes of a= 170 meters and b= 80 meters respectively,
centered in the origin. The track’s width is W = 7.5 meters, five times the car’s width B = 1.5
meters,

X =
{[

(a+ r)cosη ,(b+ r)sinη
]∣∣∣ r ∈ [−W/2,W/2]⊂ R

}
,

with η = arctan cy
cx

. Note that the special case cx = 0 leading to η = ±π

2 requires separate han-
dling.
The model in Section 7.9 has a shortcoming, as switching to a low gear is possible also at high
velocities, although this would lead to an unphysically high engine speed. Therefore we extend
it by additional constraints on the car’s engine speed

800 =: nMIN
eng ≤ neng ≤ nMAX

eng := 8000, (7.50)

in the form of equivalent velocity constraints

πnMIN
eng R

30iti
µ
g
≤ v ≤

πnMAX
eng R

30iti
µ
g

(7.51)

for all t ∈ [0, tf] and the active gear µ . We write this as reng(v,µ)≥ 0.

7.10.2 Results

Parts of the optimal trajectory from [213] are shown in Figures 7.11 and 7.12. The order of gears
is (2,3,4,3,2,1,2,3,4,3,2,1,2). The gear switches take place after 1.87, 5.96, 10.11, 11.59,
12.21, 12.88, 15.82, 19.84, 23.99, 24.96, 26.10, and 26.76 seconds, respectively. The final time
is tf = 27.7372 s.
As can be seen in Fig. 7.12, the car uses the track width to its full extent, leading to active path
constraints. As was expected, the optimal gear increases in an acceleration phase. When the
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Figure 7.11: The control functions (top row), and selected differential states of the optimal solution: di-
rectional velocity, side slip angle β , and velocity of yaw angle wz plotted over time.

velocity has to be reduced, a combination of braking, no acceleration, and engine brake is used.
The result depends on the engine speed constraint reng(v,µ) that becomes active in the braking
phase. If the constraint is omitted, the optimal solution switches directly from the fourth gear
into the first one to maximize the effect of the engine brake. For nMAX

eng = 15000 braking occurs
in the gear order 4,2,1.
Although this was left as a degree of freedom, the optimizer yields a symmetric solution with
respect to the upper and lower parts of the track for all scenarios we considered.

7.10.3 Variants

By a more flexible use of Bezier patches more general track constraints can be specified, e.g., of
formula 1 race courses.

7.11 Simulated moving bed

We consider a simplified model of a Simulated Moving Bed (SMB) chromatographic separation
process that contains time–dependent discrete decisions. SMB processes have been gaining in-
creased attention lately, see [84, 137, 211] for further references. The related optimization prob-
lems are challenging from a mathematical point of view, as they combine periodic nonlinear
optimal control problems in partial differential equations (PDE) with time–dependent discrete
decisions.
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Figure 7.12: Elliptic race track seen from above with optimal position and gear choices of the car. Note
the exploitation of the slip (sliding) to change the car’s orientation as fast as possible, when
in first gear. The gear order changes when a different maximum engine speed is imposed.

7.11.1 Model and optimal control problem

SMB chromatography finds various industrial applications such as sugar, food, petrochemical
and pharmaceutical industries. A SMB unit consists of multiple columns filled with solid ab-
sorbent. The columns are connected in a continuous cycle. There are two inlet streams, desor-
bent (De) and feed (Fe), and two outlet streams, raffinate (Ra) and extract (Ex). The continuous
counter-current operation is simulated by switching the four streams periodically in the direc-
tion of the liquid flow in the columns, thereby leading to better separation. This is visualized in
Figure 7.13.
Due to this discrete switching of columns, SMB processes reach a cyclic or periodic steady state,
i.e., the concentration profiles at the end of a period are equal to those at the beginning shifted by
one column ahead in direction of the fluid flow. A number of different operating schemes have
been proposed to further improve the performance of SMB.
The considered SMB unit consists of Ncol = 6 columns. The flow rate through column i is de-
noted by Qi, i ∈ I := {1, . . . ,Ncol}. The raffinate, desorbent, extract and feed flow rates are de-
noted by QRa, QDe, QEx and QFe, respectively. The (possibly) time–dependent value wiα(t) ∈
{0,1} denotes if the port of flow α ∈ {Ra,De,Ex,Fe} is positioned at column i ∈ I. As in many
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Figure 7.13: Scheme of SMB process with 6 columns.

practical realizations of SMB processes only one pump per flow is available and the ports are
switched by a 0–1 valve, we obtain the additional special ordered set type one restriction

∑
i∈I

wiα(t) = 1, ∀ t ∈ [0,T ], α ∈ {Ra,De,Ex,Fe}. (7.52)

The flow rates Q1, QDe, QEx and QFe enter as control functions u(·) resp. time–invariant param-
eters p into the optimization problem, depending on the operating scheme to be optimized. The
remaining flow rates are derived by mass balance as

QRa = QDe−QEx +QFe (7.53)

Qi = Qi−1− ∑
α∈{Ra,Ex}

wiαQα + ∑
α∈{De,Fe}

wiαQα (7.54)

for i = 2, . . .Ncol. The feed contains two components A and B dissolved in desorbent, with con-
centrations cA

Fe = cB
Fe = 0.1. The concentrations of A and B in desorbent are cA

De = cB
De = 0.

A simplified equilibrium model is described in Diehl and Walther [75]. It can be derived from an
equilibrium assumption between solid and liquid phases along with a simple spatial discretiza-
tion. The mass balance in the liquid phase for K = A,B is given by:

εb
∂cK

i (x, t)
∂ t

+(1− εb)
∂qK

i (x, t)
∂ t

+ui(t)
∂cK

i (x, t)
∂x

= 0 (7.55)

with equilibrium between the liquid and solid phases given by a linear isotherm:

qK
i (x, t) =CKcK

i (x, t). (7.56)

Here εb is the void fraction, cK
i (x, t) is the concentration in the liquid phase of component K in

column i, qK
i is the concentration in the solid phase. Also, i is the column index and NColumn is

the number of columns. We can combine (7.55) and (7.56) and rewrite the model as:

∂cK
i (x, t)
∂ t

=−(ui(t)/K̄K)
∂cK

i (x, t)
∂x

(7.57)
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where K̄K = εb + (1− εb)CK . Dividing the column into NFEX compartments and applying a
simple backward difference with ∆x = L/NFEX leads to:

dcK
i, j

dt
=

ui(t)NFEX

K̄KL
[cK

i, j−1(t)− cK
i, j(t)] = kK [cK

i, j−1(t)− cK
i, j(t)] (7.58)

for j = 1, . . . ,NFEX , with kA = 2NFEX , kB = NFEX , and cK
i, j(t) is a discretization of cK

i ( j∆x, t) for
j = 0, . . . ,NFEX .

This simplified model for the dynamics in each column considers axial convection and axial mix-
ing introduced by dividing the respective column into Ndis perfectly mixed compartments. Al-
though this simple discretization does not consider all effects present in the advection–diffusion
equation for the time and space dependent concentrations, the qualitative behavior of the con-
centration profiles moving at different velocities through the respective columns is sufficiently
well represented. We assume that the compartment concentrations are constant. We denote the
concentrations of A and B in the compartment with index i by cA

i , cB
i and leave away the time

dependency. For the first compartment j = (i− 1)Ndis + 1 of column i ∈ I we have by mass
transfer for K = A,B

ċK
j

kK = Qi−cK
j−−QicK

j − ∑
α∈{Ra,Ex}

wiαQαcK
j−+ ∑

α∈{De,Fe}
wiαQαCK

α (7.59)

where i− is the preceding column, i− = Ncol if i = 1, i− = i−1, else and equivalently j− = N if
j = 1, j− = j−1, else. kK denotes the axial convection in the column, kA = 2Ndis and kB = Ndis.
Component A is less adsorbed, thus travels faster and is prevailing in the raffinate, while B
travels slower and is prevailing in the extract. For interior compartments j in column i we have

ċK
j

kK = Qi−cK
j−−QicK

j . (7.60)

The compositions of extract and raffinate, α ∈ {Ex,Ra}, are given by

ṀK
α = Qα ∑

i∈I
wiαcK

j(i) (7.61)

with j(i) the last compartment of column i−. The feed consumption is

ṀFe = QFe. (7.62)

These are altogether 2N+5 differential equations for the differential states x = (xA,xB,xM) with
xA = (cA

0 , . . . ,c
A
N), xB = (cB

0 , . . . ,c
B
N), and finally xM = (MA

Ex,M
B
Ex,M

A
Ra,M

B
Ra,MFe). They can be

summarized as

ẋ(t) = f (x(t),u(t),w(t), p). (7.63)
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We define a linear operator P : Rnx → Rnx that shifts the concentration profiles by one column
and sets the auxiliary states to zero, i.e.,

x 7→ Px := (PAxA,PBxB,PMxM) with

PAxA := (cA
Ndis+1, . . . ,c

A
N ,c

A
1 , . . . ,c

A
Ndis

),

PBxB := (cB
Ndis+1, . . . ,c

B
N ,c

B
1 , . . . ,c

B
Ndis

),

PMxM := (0,0,0,0,0).

Then we can impose periodicity after the unknown cycle duration T by requiring x(0) = Px(T ).
The purity of component A in the raffinate at the end of the cycle must be higher than pRa = 0.95
and the purity of B in the extract must be higher than pEx = 0.95, i.e., we impose the terminal
purity conditions

MA
Ex(T ) ≤

1− pEx

pEx
MB

Ex(T ), (7.64)

MB
Ra(T ) ≤

1− pRa

pRa
MA

Ra(T ). (7.65)

We impose lower and upper bounds on all external and internal flow rates,

0≤ QRa,QDe,QEx,QFe,Q1,Q2,Q3,Q4,Q5,Q6 ≤ Qmax = 2. (7.66)

To avoid draining inflow into outflow streams without going through a column,

Qi−wiDeQDe−wiFeQFe >= 0 (7.67)

has to hold for all i ∈ I. The objective is to maximize the feed throughput MFe(T )/T . Summa-
rizing, we obtain the following MIOCP

max
x(·),u(·),w(·),p,T

MFe(T )/T

s.t. ẋ(t) = f (x(t),u(t),w(t), p),

x(0) = Px(T ),

(7.64−7.67),

∑i∈I wiα(t) = 1, ∀ t ∈ [0,T ],

w(t) ∈ {0,1}4Ncol , ∀ t ∈ [0,T ].

(7.68)

with α ∈ {Ra,De,Ex,Fe}.
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Process Time 1 2 3 4 5 6

SMB fix 0.00 – 0.63 De Ex Fe Ra

SMB relaxed 0.00 – 0.50 De,Ex Ex Fe Ra

PowerFeed 0.00 – 0.56 De Ex Fe Ra

VARICOL 0.00 – 0.18 De Ex Fe Ra

0.18 – 0.36 De Ex Fe Ra

0.36 – 0.46 De,Ra Ex Fe

0.46 – 0.53 De,Ra Ex Fe

Superstruct 0.00 – 0.10 Ex De

0.10 – 0.18 De,Ex

0.18 – 0.24 De Ra

0.24 – 0.49 De Ex Fe Ra

0.49 – 0.49 De,Ex

Table 7.8: Fixed or optimized port assignment wiα and switching times of the process strategies.

7.11.2 Results

We optimized different operation schemes that fit into the general problem formulation (7.68):
SMB fix. The wiα are fixed as shown in Table 7.8. The flow rates Q· are constant in time,
i.e., they enter as optimization parameters p into (7.68). Optimal solution Φ = 0.7345. SMB
relaxed. As above. But the wiα are free for optimization and relaxed to wiα ∈ [0,1], allowing for
a ”splitting” of the ports. Φ = 0.8747. In PowerFeed the flow rates are modulated during one
period, i.e., the Q· enter as control functions u(·) into (7.68). Φ = 0.8452. VARICOL. The ports
switch asynchronically, but in a given order. The switching times are subject to optimization.
Φ = 0.9308. Superstruct. This scheme is the most general and allows for arbitrary switching of
the ports. The flow rates enter as continuous control functions, but are found to be bang–bang by
the optimizer (i.e., whenever the port is given in Table 7.8, the respective flow rate is at its upper
bound). Φ = 1.0154.

7.12 Discretizations to MINLPs

In this section we provide AMPL code for two discretized variants of the control problems
from Sections 7.3 and 7.4 as an illustration of the discretization of MIOCPs to MINLPs. More
examples will be collected in the future on http://mintoc.de.
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7.12.1 General AMPL code

In Listings 7.1 and 7.2 we provide two AMPL input files that can be included for MIOCPs with
one binary control w(t).

Listing 7.1: Generic settings AMPL model file to be included

param T > 0 ; # End t i m e
param n t > 0 ; # Number o f d i s c r e t i z a t i o n p o i n t s i n t i m e
param nu > 0 ; # Number o f c o n t r o l d i s c r e t i z a t i o n p o i n t s
param nx > 0 ; # Dimension o f d i f f e r e n t i a l s t a t e v e c t o r
param n t p e r u > 0 ; # n t / nu
s e t I := 0 . . n t ;
s e t U:= 0 . . nu−1;
param u idx { I } ; param f i x w; param f i x d t ;

var w {U} >= 0 , <= 1 b i n a r y ; # c o n t r o l f u n c t i o n
var d t {U} >= 0 , <= T ; # s t a g e l e n g t h v e c t o r

Listing 7.2: Generic settings AMPL data file to be included

i f ( f i x w > 0 ) t h e n { f o r { i in U} { f i x w[ i ] ; } }
i f ( f i x d t > 0 ) t h e n { f o r { i in U} { f i x d t [ i ] ; } }

# S e t i n d i c e s o f c o n t r o l s c o r r e s p o n d i n g t o t i m e p o i n t s
f o r { i in 0 . . nu−1} {

f o r { j in 0 . . n t p e r u −1} { l e t u idx [ i ∗ n t p e r u + j ] := i ; }
}
l e t u idx [ n t ] := nu−1;

7.12.2 Lotka Volterra Fishing Problem

The AMPL code in Listings 7.3 and 7.4 shows a discretization of the problem(7.25) with piece-
wise constant controls on an equidistant grid of length T/nu and with an implicit Euler method.
Note that for other MIOCPs, especially for unstable ones as in Section 7.7, more advanced inte-
gration methods such as Backward Differentiation Formulae need to be applied.

Listing 7.3: AMPL model file for Lotka Volterra Fishing Problem

var x { I , 1 . . nx} >= 0 ;
param c1 > 0 ; param c2 > 0 ; param r e f 1 > 0 ; param r e f 2 > 0 ;

minimize D e v i a t i o n :
0 . 5 ∗ ( d t [ 0 ] / n t p e r u ) ∗ ( ( x [0 ,1]− r e f 1 ) ˆ 2 + ( x [0 ,2]− r e f 2 ) ˆ 2 )
+ 0 . 5 ∗ ( d t [ nu−1] / n t p e r u ) ∗ ( ( x [ nt ,1]− r e f 1 ) ˆ 2 + ( x [ nt ,2]− r e f 2 ) ˆ 2 )
+ sum { i in I d i f f {0 , n t } } ( ( d t [ u idx [ i ] ] / n t p e r u ) ∗

( ( x [ i , 1 ] − r e f 1 ) ˆ 2 + ( x [ i , 2 ] − r e f 2 ) ˆ 2 ) ) ;

subj to ODE DISC 1 { i in I d i f f {0}} :
x [ i , 1 ] = x [ i −1 ,1] + ( d t [ u idx [ i ] ] / n t p e r u ) ∗

( x [ i , 1 ] − x [ i , 1 ] ∗x [ i , 2 ] − x [ i , 1 ] ∗c1∗w[ u idx [ i ] ] ) ;

subj to ODE DISC 2 { i in I d i f f {0}} :
x [ i , 2 ] = x [ i −1 ,2] + ( d t [ u idx [ i ] ] / n t p e r u ) ∗
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( − x [ i , 2 ] + x [ i , 1 ] ∗x [ i , 2 ] − x [ i , 2 ] ∗c2∗w[ u idx [ i ] ] ) ;

subj to o v e r a l l s t a g e l e n g t h :
sum { i in U} d t [ i ] = T ;

Listing 7.4: AMPL dat file for Lotka Volterra Fishing Problem

# A l g o r i t h m i c p a r a m e t e r s
param n t p e r u := 100 ; param nu := 100 ; param n t := 10000 ;
param nx := 2 ; param f i x w := 0 ; param f i x d t := 1 ;

# Problem p a r a m e t e r s
param T := 1 2 . 0 ; param c1 := 0 . 4 ; param c2 := 0 . 2 ;
param r e f 1 := 1 . 0 ; param r e f 2 := 1 . 0 ;

# I n i t i a l v a l u e s d i f f e r e n t i a l s t a t e s
l e t x [ 0 , 1 ] := 0 . 5 ; l e t x [ 0 , 2 ] := 0 . 7 ;
f i x x [ 0 , 1 ] ; f i x x [ 0 , 2 ] ;

# I n i t i a l v a l u e s c o n t r o l
l e t { i in U} w[ i ] := 0 . 0 ;
f o r { i in 0 . . ( nu−1) / 2} { l e t w[ i ∗ 2] := 1 . 0 ; }
l e t { i in U} d t [ i ] := T / nu ;

Note that the constraint overall_stage_length is only necessary, when the value for �x_dt is
zero, a switching time optimization.
The solution calculated by Bonmin (subversion revision number 1453, default settings, 3 GHz,
Linux 2.6.28-13-generic, with ASL(20081205)) has an objective function value of Φ = 1.34434,
while the optimum of the relaxation is Φ = 1.3423368. Bonmin needs 35301 iterations and 2741
nodes (4899.97 seconds). The intervals on the equidistant grid on which w(t)= 1 holds, counting
from 0 to 99, are 20–32, 34, 36, 38, 40, 44, 53.

7.12.3 F-8 flight control

The main difficulty in calculating a time-optimal solution for the problem in Section 7.3 is
the determination of the correct switching structure and of the switching points. If we want to
formulate a MINLP, we have to slightly modify this problem. Our aim is not a minimization of
the overall time, but now we want to get as close as possible to the origin (0,0,0) in a prespecified
time tf = 3.78086 on an equidistant time grid. As this time grid is not a superset of the one used
for the time-optimal solution in Section 7.3, one can not expect to reach the target state exactly.
Listings 7.5 and 7.6 show the AMPL code.

Listing 7.5: AMPL model file for F-8 Flight Control Problem

var x { I , 1 . . nx } ;
param x i > 0 ;

minimize D e v i a t i o n : sum { i in 1 . . 3 } x [ nt , i ] ∗x [ nt , i ] ;

subj to ODE DISC 1 { i in I d i f f {0}} :
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x [ i , 1 ] = x [ i −1 ,1] + ( d t [ u idx [ i ] ] / n t p e r u ) ∗ (
− 0 .877∗x [ i , 1 ] + x [ i , 3 ] − 0 .088∗x [ i , 1 ] ∗x [ i , 3 ] + 0 . 4 7 ∗x [ i , 1 ] ∗x [ i , 1 ]
− 0 .019∗x [ i , 2 ] ∗x [ i , 2 ]
− x [ i , 1 ] ∗x [ i , 1 ] ∗x [ i , 3 ] + 3 .846 ∗x [ i , 1 ] ∗x [ i , 1 ] ∗x [ i , 1 ]
+ 0 .215∗ x i − 0 . 2 8 ∗x [ i , 1 ] ∗x [ i , 1 ] ∗ x i + 0 . 4 7 ∗x [ i , 1 ] ∗ x i ˆ2 − 0 . 6 3 ∗ x i ˆ2
− 2∗w[ u idx [ i ] ] ∗ ( 0 . 2 1 5 ∗ x i − 0 . 2 8 ∗x [ i , 1 ] ∗x [ i , 1 ] ∗ x i − 0 . 6 3 ∗ x i ˆ 3 ) ) ;

subj to ODE DISC 2 { i in I d i f f {0}} :
x [ i , 2 ] = x [ i −1 ,2] + ( d t [ u idx [ i ] ] / n t p e r u ) ∗ x [ i , 3 ] ;

subj to ODE DISC 3 { i in I d i f f {0}} :
x [ i , 3 ] = x [ i −1 ,3] + ( d t [ u idx [ i ] ] / n t p e r u ) ∗ (
− 4 .208∗x [ i , 1 ] − 0 .396∗x [ i , 3 ] − 0 . 4 7 ∗x [ i , 1 ] ∗x [ i , 1 ]
− 3 .564∗x [ i , 1 ] ∗x [ i , 1 ] ∗x [ i , 1 ]
+ 20 .967∗ x i − 6 .265∗x [ i , 1 ] ∗x [ i , 1 ] ∗ x i + 46∗x [ i , 1 ] ∗ x i ˆ2 − 6 1 . 4 ∗ x i ˆ3
− 2∗w[ u idx [ i ] ] ∗ ( 2 0 . 9 6 7 ∗ x i − 6 .265∗x [ i , 1 ] ∗x [ i , 1 ] ∗ x i − 6 1 . 4 ∗ x i ˆ 3 ) ) ;

Listing 7.6: AMPL dat file for F-8 Flight Control Problem

# Parame ter s
param n t p e r u := 500 ; param nu := 6 0 ; param n t := 30000 ;
param nx := 3 ; param f i x w := 0 ; param f i x d t := 1 ;
param x i := 0 . 0 5 2 3 6 ; param T := 8 ;

# I n i t i a l v a l u e s d i f f e r e n t i a l s t a t e s
l e t x [ 0 , 1 ] := 0 . 4 6 5 5 ;
l e t x [ 0 , 2 ] := 0 . 0 ;
l e t x [ 0 , 3 ] := 0 . 0 ;
f o r { i in 1 . . 3 } { f i x x [ 0 , i ] ; }

# I n i t i a l v a l u e s c o n t r o l
l e t { i in U} w[ i ] := 0 . 0 ;
f o r { i in 0 . . ( nu−1) / 2} { l e t w[ i ∗ 2] := 1 . 0 ; }
l e t { i in U} d t [ i ] := 3 .78086 / nu ;

The solution calculated by Bonmin has an objective function value of Φ = 0.022108, while the
optimum of the relaxation calculated with Ipopt is Φ= 0.021788. Bonmin needs 85702 iterations
and 7031 nodes (64282 seconds). The intervals on the equidistant grid on which w(t) = 1 holds,
counting from 0 to 59, are 0, 1, 31, 32, 42, 52, and 54. Both solutions are shown in Figure 7.14.

7.13 Summary

We presented a collection of mixed-integer optimal control problem descriptions. These de-
scriptions comprise details on the model and a specific instance of control objective, constraints,
parameters, and initial values that yield well-posed optimization problems that allow for repro-
ducibility and comparison of solutions. Furthermore, specific discretizations in time and space
are applied with the intention to supply benchmark problems also for MINLP algorithm devel-
opers. The descriptions are complemented by references and best known solutions. All problem
formulations are available for download at http://mintoc.de in a suited format, such as optim-
ica or AMPL.
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Figure 7.14: Trajectories for the discretized F-8 flight control problem. Top row: relaxed problem, bottom
row: integer feasible solution. Left: control. Right: corresponding differential states. Com-
pare also Figure 7.1 for solutions for the related problems with fixed terminal values on a
free control discretization grid.

The author hopes to achieve at least two things. First, to provide a benchmark library that is of
use for both MIOC and MINLP algorithm developers. Second, to motivate others to contribute
to the extension of this library. For example, challenging and well-posed instances from water or
gas networks [55, 174], traffic flow [122, 96], supply chain networks [114], submarine control
[199], distributed autonomous systems [2], and chemical engineering [138, 227] would be highly
interesting for the community.
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8 Optimization as an Analysis Tool for Human
Complex Problem Solving

The contents of this chapter are based on the paper

[207] S. Sager, C.M. Barth, H. Diedam, M. Engelhart, J. Funke. Optimization as an Analysis
Tool for Human Complex Problem Solving. SIAM Journal on Optimization, accepted.

Chapter Summary. We present a problem class of mixed-integer nonlinear programs (MINLPs)
with nonconvex continuous relaxations which stem from economic test scenarios that are used in
the analysis of human complex problem solving. In a round based scenario participants hold an
executive function. A posteriori a performance indicator is calculated and correlated to personal
measures such as intelligence, working memory, or emotion regulation.
The MINLPs can be interpreted as time-discrete optimal control problems with integer-valued
decisions, hence a special case of MIOCPs in which the control discretization grid is fixed.
We investigate altogether 2088 optimization problems that differ in size and initial conditions,
based on real world experimental data from 12 rounds of 174 participants. The goals are twofold:
first, from the optimal solutions we gain additional insight into a complex system, which facili-
tates the analysis of a participant’s performance in the test. Second, we propose a methodology
to automatize this process by providing a new criterion based on the solution of a series of
optimization problems.
By providing a mathematical optimization model and this methodology, we disprove the as-
sumption that the “fruit fly of complex problem solving”, the Tailorshop scenario that has been
used for dozens of published studies, is not mathematically accessible — although it turns out
to be extremely challenging even for advanced state-of-the-art global optimization algorithms
and we were not able to solve all instances to global optimality in reasonable time in this study.
By providing a detailed mathematical description and the computational tool Tobago [210] for
an optimization-based analysis we hope to foster further interdisciplinary research between psy-
chologists and applied mathematicians.
The publicly available computational tool Tobago [210] can be used to automatically generate
problem instances of various complexity, contains interfaces to AMPL and GAMS and is hence
ideally suited as a testbed for different kinds of algorithms and solvers. Computational prac-
tice is reported with respect to the influence of integer variables, problem dimension, and local
versus global optimization with different optimization codes. The submission not merely de-
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scribes an application, but opens up a whole new application area for optimization, which to
our knowledge is yet completely unexplored.

8.1 Introduction

The methodology optimization has a long record of successful improvements in many techno-
logical and scientific areas, being used for tasks such as design, scheduling, business control
rules, process control, and the like. More recently, optimization has also been successfully ap-
plied in the context of inverse problems, e.g., for the choice and calibration of mathematical
models, or as a modeling paradigm for biological systems. In this work we propose to use nu-
merical optimization as an analysis tool for the understanding of human problem solving, which
to our knowledge has not yet received much attention.
Complex problem solving is defined as a high-order cognitive process. The complexity may
result from one or several different characteristics, such as a coupling of subsystems, nonlinear-
ities, dynamic changes, intransparency, or others [78]. The main intention of the research field
complex problem solving of human beings is the desire to understand how certain variables in-
fluence a solution process. In general, personal and situational variables are differentiated. The
most typical and frequently analyzed personal variable is intelligence. It is an ongoing debate
how intelligence influences complex problem solving [251]. Other interesting personal vari-
ables are working memory [200], amount of knowledge [150], and emotion regulation [187].
Situational variables like the impact of goal specificity and observation [186], feedback [50],
and time constraints [112] attracted less attention.
Psychologists have been working in the research fields of problem solving for approximately
80 years. One of the groundbreaking works by Ewert and Lambert in 1932 [86] was based on
the disk problem, more commonly known as the Tower of Hanoi. Since the 1970s and 1980s
also computer-based test scenarios are in use, e.g., LEARN [119], Moro [230], FSYS 2.0 [244],
and Tailorshop, which is the basis for this study. The Tailorshop is sometimes referred to as
the “Drosophila” for problem solving researchers [101] and thus a prominent example for a
computer-based test scenario. All mentioned scenarios try to reflect the characteristics of real-
life problems by simulating a microworld [113].
The overall idea, compared to early works in problem solving, is still the same: one evaluates
the performance of a participant by calculating an indicator function and either correlates it to
personal attributes, such as the intelligence quotient [130], or analyzes the influence of different
experimental conditions for groups of participants [21]. The main difference is that for the early
test scenarios the correct solution is known at every stage. For more complex scenarios the
performance evaluation is not so straightforward.
We address the question how to get a reliable performance indicator for the Tailorshop scenario.
The Tailorshop has been used in a large number of studies, e.g., [198, 151, 149, 179, 21, 22].
Also comprehensive reviews on studies and results in connection with the Tailorshop have been
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published, see [95, 99, 100, 102, 101], in which also more information on the psychological
background can be found.
In Tailorshop, participants have to take economic decisions to maximize the overall balance of a
small company, specialized in the production and sales of shirts. To measure performance within
the Tailorshop scenario different indicator functions have been proposed in the literature. To use
a comparison of accumulated capital at the final month 12 between all participants was proposed
in [126]. This criterion seems natural, as this is what the participants are requested to maximize.
However, it cannot yield insight into the temporal process and is not objective in the sense that
the performance depends on what other participants achieved. Analyzing the temporal evolution
of state variables has also been proposed. In [197, 231] the evolution of profit, equivalent to
the evolution of capital after interest xCA

k , was proposed. In [98, 22] the evolution of the overall
worth of the tailorshop xOB

k was used. An obvious drawback of comparing the results of several
rounds with one another is that the main goal of the participant is to maximize the value at
the end of the test, not necessarily in between. Thinking about the analogy of maximizing the
amplitude of a pendulum with a hair dryer, in certain scenarios “going back” to gain momentum
is obviously better than pushing it all the time in the desired direction. The same is true for
the Tailorshop scenario. It may be better to invest into infrastructure at the beginning (which is
actually decreasing the overall capital as infrastructure looses value over time) to have a higher
pay-off towards the last rounds of the test.Hence it might happen that decisions are analyzed to
be bad, while they are actually good ones and vice versa. To overcome this problem, we propose
to compare the decisions to mathematically optimal solutions. For a recent review on Tailorshop
success criteria, see [70].
Because all previously used indicators have unknown reliability and validity, we propose to
compare the decisions to mathematically optimal solutions. Hussy [129, p. 62] writes in 19851

“Only when it will be possible, e.g., by means of mathematical optimization
methods, to determine the objectively optimal solution process to compare
the process chosen by the proband with it, will this severe problem be over-
come.”

The availability of an objective performance indicator is an obstacle for analysis and it has often
been argued that inconsistent findings are due to the fact that

“. . . it is impossible to derive valid indicators of problem solving performance
for tasks that are not formally tractable and thus do not possess a mathemat-
ically optimal solution. Indeed, when different dependent measures are used
in studies using the same scenario (i.e., Tailorshop [98, 231, 197]), then the
conclusions frequently differ.”

1author’s translation from the German original: “Erst wenn es gelingt, z.B. durch mathematische
Optimierungsverfahren, den objektiv besten Lösungsweg zu bestimmen, um daran den tatsächlich
gewählten Lösungsweg der Pbn messen zu können, wird dieses ernste Problem [die objektive Bestim-
mung der Problemlösegüte] aus dem Weg zu räumen sein.”
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as stated by Wenke and Frensch [245, p.95]. Based on a mathematical model of the Tailorshop,
an optimization is performed for every round of the participant’s data, starting with exactly the
same conditions as the participant. By comparing these optimal values that indicate How much is
still possible if all future decisions were made perfectly, an analysis of at what rounds potential
has been lost by decisions can be obtained. Based on optimization theory, even further insight
into what decisions were decisive for bad or good performance can be obtained by analyzing
Lagrange multipliers.
To our knowledge, numerical optimization methods have only scarcely been used for the analy-
sis of participants’ decisions in complex environments like Tailorshop. Cognitive psychologists
and economists have been using simulation methods for finding optimal solutions for simple
tasks within strongly constrained environments. Also in the context of experimental economics
studies have been performed, however to our knowledge not with explicit mathematical repre-
sentations of the scenarios, including nonlinearities and integer variables. The general approach
to compare performance to optimal solutions has been discussed by [152]. However, the authors
do not provide a mathematical model for their test scenario EPEX. Hence, they need to use the
software as a black box for brute-force simulation or derivative free strategies, such as Nelder-
Mead [180] or genetic algorithms. Such strategies result in significantly higher computational
runtimes, give less insight, and have poor theoretical convergence properties. Our approach for-
mulates the simulation task as equality constraints of the optimization problem and allows thus
to apply modern optimization techniques, including simultaneous strategies that solve simula-
tion and optimization task at the same time. They have shown to be superior in many cases,
compare, e.g., [37, 35, 8].
It turns out that the optimization problems that need to be solved in the context of the Tai-
lorshop scenario are mixed-integer nonlinear programs with nonconvex continuous relaxations.
Whenever optimization problems involve variables of continuous and discrete nature, the term
mixed-integer is used. In our case they can be interpreted as discretized optimal control prob-
lems. See Chapter 2 for a review of algorithms to treat continuous-time mixed-integer optimal
control problems. However, as the time grid is fixed, the applicability of such methods is limited,
and we focus on combinatorial methods.
Progress in mixed-integer linear programming (MILP) started with the fundamental work of
Dantzig and coworkers on the Traveling Salesman problem in the 1950s. Since then, enormous
progress has been made in areas such as linear programming (and especially in the dual simplex
method that is the core of almost all MILP solvers because of its restart capabilities), in the
understanding of branching rules and more powerful selection criteria such as strong branch-
ing, the derivation of tight cutting planes, novel preprocessing and bound tightening procedures,
and of course the computational advances roughly following Moore’s law. For specific prob-
lem classes problems with millions of integer variables can now be routinely solved [13]. Also
generic problems can often be solved very efficiently in practice, despite the known exponential
complexity from a theoretical point of view [38].
The situation is different in the field of Mixed-Integer Nonlinear Programming (MINLP). Only at
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first sight many properties of MILP seem to carry over to the nonlinear case. Restarting nonlinear
continuous relaxations within branching trees is essentially more difficult than restarting linear
relaxations (which, e.g., BARON and Couenne also use for nonlinear problems), as no dual
algorithm comparable to the dual simplex is available in the general case. Nonconvexities lead
to local minima and do not allow for easy calculation of subtrees, which is important to avoid an
explicit enumeration. Additionally, nonlinear solvers are slower and less robust than LP solvers.
However, the last decade saw great progress triggered by cross-disciplinary work of integer and
nonlinear optimizers, resulting in generic MINLP solvers, e.g., [1, 45]. Most of them, however,
still require the underlying functions to be convex. Comprehensive surveys on algorithms and
software for convex MINLPs are given in [120, 47]. Recent progress in the solution of nonconvex
MINLPs is in most cases based on methods from global optimization, in particular convex under-
and overestimation. See, e.g., [92, 235] for references on general under– and overestimation of
functions and sets.
Our intention is to foster interdisciplinary research between psychologists and applied mathe-
maticians. We provide the research community in the field of complex problem solving with the
open source software tool Tobago [210]. This data generation and analysis tool can be hooked
to a variety of optimization solvers. Currently the software supports AMPL [93] and GAMS [69]
interfaces. This allows for the usage of solvers from the COIN-OR initiative, which are also
available under a public license. In this study we used the global solvers Couenne [29] and the
local solvers Bonmin [45] and Ipopt [243]. In addition, we ran the global solver BARON [236]
on the NEOS server.
It turns out, however, that the size and complexity of the problems leads to extremely long run-
times of the global solvers and can only be used on a small subset of the problems. We present
a problem-specific lower bound to avoid bad local maxima and guarantee monotonicity of the
analysis function that builds on the locally optimal objective function values. However, addi-
tional future work in several mathematical areas is needed to address all demands of researchers
in complex problem solving.
This chapter is organized as follows. In Section 8.2 we explain the test scenario and derive a
mathematical model for the Tailorshop. In Section 8.3 details concerning the software imple-
mentation and solution of the series of optimization problems are given, together with numerical
results. The implications for a psychological study we performed are mentioned in Section 8.4.
We give a summary and an outlook to future work in Section 8.5.

8.2 Tailorshop MINLP model

The Tailorshop has been developed and implemented as a test scenario in the 1980s by Dörner
[78]. It has been used in numerous studies, e.g., [198, 151, 149, 179, 21, 22]. Also comprehensive
reviews have been published, see [95, 99, 100, 102, 101], in which also more information on the
psychological background can be found.
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A participant has to take economic decisions to maximize the overall balance of a small com-
pany, specialized in the production and sales of shirts. The scenario comprises twelve rounds
(months), in which the participant can modify infrastructure (employees, machines, distribution
vans), financial settings (wages, maintenance, prices), and logistical decisions (shop location,
buying raw material). As feedback he gets some key indicators in the next round, such as the
current number of sold shirts, machines, employees, and the like. Arrows next to the indicators
show if the value increased or decreased with respect to the previous round.
There are two different kinds of machines to produce either 50 or 100 shirts per month. Workers
need to specialize for work on either one of them. The machines need to be maintained and
equipped with raw material to actually produce something. The possible production depends
furthermore on the satisfaction of the workers, linked to the controls wages and social expenses.
Vans influence the demand in a positive way. Furthermore, advertisement, location of the sales
shop, and shirt pricing decisions can be used to maximize profit.
We derive a mathematical formulation as an optimization problem. The basic idea is that for
different initial values (the current state in round ns of a participant’s test run) the optimal solu-
tion for the remaining N−ns rounds can be calculated. The optimal solution can then either be
used for a manual comparison and analysis of the participant’s decisions, Section 8.3, or for an
automated indicator function, as discussed in Section 8.4.
The Tailorshop has been developed as a computer-based test scenario in GW-Basic code in
the early eighties. This implementation was the starting point for the mathematical modeling
process. Figure 8.8 in the Appendix shows a short extract of this file. The scenario as it is
implemented inGW-Basic has several shortcomings and assumptions one might disagree about.
However, this implementation and similar ones have been used over years and at the point where
the interdisciplinary cooperation started, already most of the data of the 174 participants had
been evaluated in a cumbersome procedure. Hence the formulation of test scenarios that have
better mathematical properties has been postponed to future work, and the mathematical model
which we derive from the GW-Basic code can be considered as given, even if it is not in all
aspects close to reality.
On the basis of the GW-Basic code we derived a mathematical optimization problem for a
participant and month 0≤ ns < N as

max
x,u,s

F(xN)

s.t. xk+1 = G(xk,uk,sk, p), k = ns . . .N−1,

0 ≤ H(xk,xk+1,uk,sk, p), k = ns . . .N−1,

uk ∈ Ω, k = ns . . .N−1,

xns = xp
ns .

(8.1)

The model is dynamic with a discrete time k = 0 . . .N, where N = 12 is the number of rounds.
The control vector uk = u(k) has 15 (or 13 when van purchase is fixed, compare Section 8.6.2)
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entries for each k = 0 . . .N− 1 corresponding to the decisions the participant can make in the
test. The vector of dependent state variables xk = x(k) comprises 16 entries. Both are listed in
Table 8.1 (note that units of control and state variables are only given implicitly depending on
how they enter the model equations and constraints). The vector sk denotes slack variables we
introduced to reformulate min−max expressions by standard techniques using the constraints
(8.27)–(8.31). For details on these and further reformulations, see Section 8.6.2. We define

(xp,up) = (xp
0, . . . ,x

p
N ,u

p
0, . . . ,u

p
N−1)

to be the vector of decisions and state variables for all months of a participant. Certain entries xp
ns

enter (8.1) as fixed initial values. Participant independent initial values xp
0 = px0 are given along-

side fixed parameters p in Table 8.4 in the Appendix. Random values ξ appear in the equations,
e.g., line 2810 in Figure 8.8. However, a detailed analysis of the compiled code revealed that the
random values are only dependent on an initialization (seed) within the GW-Basic code, hence
they are identical for all participants and can be fixed in the optimization problem, see Table 8.5
in the Appendix.

The goal is to find decisions uk that maximize the overall balance at the end of the time horizon.
The objective function is given by

F(xN) = xOB
N .

Whenever we use the expression relaxed optimization problem this refers to the case in which the
sets of points in (8.21–8.24) are replaced by their convex hulls. The state propagation law G(·)
is determined by the following set of equations for all k ∈ {0, . . . ,11}. For the sake of readability
we omit the implicitly given units in the equations.

The number of machines for 50 and 100 shirts per month depends on buying and selling of
machines. Note that there is a difference between buying and selling in the base capital equation
so that two independent controls are needed here:

xM50
k+1 = xM50

k +u∆M50
k −uδM50

k , (8.2)

xM100
k+1 = xM100

k +u∆M100
k −uδM100

k . (8.3)

For the workers a single control which stands for hiring and firing workers is sufficient since
there is no such difference (one might even avoid the state variable if the control was the current
number of workers, but we stick to the hiring control for historical reasons):

xW50
k+1 = xW50

k +u∆W50
k , (8.4)

xW100
k+1 = xW100

k +u∆W100
k . (8.5)

Demand depends on a time dependent parameter pDE
k as well as on the advertisement expenses
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Decision uk unit∗ State xk unit∗

advertisement uAD
k MU machines 50 xM50

k machines

shirt price uSP
k MU machines 100 xM100

k machines

buy raw material u∆MS
k shirts workers 50 xW50

k workers

workers 50 u∆W50
k workers workers 100 xW100

k workers

workers 100 u∆W100
k workers demand xDE

k shirts

buy machines 50 u∆M50
k machines vans xVA

k vans

buy machines 100 u∆M100
k machines shirts sales xSS

k shirts

sell machines 50 uδM50
k machines shirts stock xST

k shirts

sell machines 100 uδM100
k machines possible production xPP

k shirts

maintenance uMA
k MU actual production xAP

k shirts

wages uWA
k MU material stock xMS

k shirts

social expenses uSC
k MU satisfaction xSA

k —

buy vans u∆VA
k vans machine capacity xMC

k shirts

sell vans uδVA
k vans base capital xBC

k MU

choose site uCS
k — capital after interest xCA

k MU

overall balance xOB
k MU

Table 8.1: Controls and states in the Tailorshop optimization problem with k ∈ {0, . . . ,11} for controls
respectively k ∈ {0, . . . ,12} for states. Note that units are only given implicitly in the test
scenario. ∗ MU means money units.
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and the number of vans multiplied by a factor depending on the site, f 1(uCS
k ) (see Section 8.6.2),

xDE
k+1 = 100pDE

k −50+
(

uAD
k
5

+100(xVA
k +u∆VA

k −uδVA
k )

)
f 1(uCS

k ). (8.6)

While the influence of advertisement is bounded, see below and Section 8.6.2, the effect of vans
is unbounded. This leads to unboundedness of the whole problem. In Section 8.6.2 our approach
to generate reasonable solutions anyway is described.

For the vans again, two controls for buying and selling are needed due to differences in the base
capital. Shirt sales are determined by the slack variable sSS

k and shirts in stock depend on the
slack variables for actual production sPP

k and shirt sales sSS
k ,

xVA
k+1 = xVA

k +u∆VA
k −uδVA

k , (8.7)

xSS
k+1 = sSS

k , (8.8)

xST
k+1 = xST

k + sPP
k − sSS

k . (8.9)

In the possible production equation, the part representing machine and worker dependence con-
sists of a term for each machine type with slack variables sM50

k and sM100
k , which are used to

replace min expressions of workers and machines, multiplied by a machine capacity term (ma-
chines for 100 shirts have double machine capacity). This part is multiplied by the square root
of workers’ satisfaction. The actual production is determined by a slack variable.

xPP
k+1 =

(
sM50

k (xMC
k +4pP50

k −2)+ sM100
k (2xMC

k +6pP100
k −3)

)
·
(

1
2
+

uWA
k −850

550
+

uSC
k

800

) 1
2

(8.10)

xAP
k+1 = sPP

k (8.11)

Raw material in stock depends on the use of material represented by the slack variable for actual
production and the purchase of new material. Wages and social expenses influence satisfaction
and the machine capacity is determined by a slack variable:

xMS
k+1 = xMS

k +u∆MS
k − sPP

k , (8.12)

xSA
k+1 =

1
2
+

uWA
k −850

550
+

uSC
k

800
, (8.13)

xMC
k+1 = sMC

k . (8.14)

The equation for base capital,

xBC
k+1 = xCA

k + sSS
k ·uSP

k − pPR
k ·u∆MS

k −10000u∆M50
k − f 2(uCS

k )
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+8000
xMC

k
pMM uδM50

k −20000u∆M100
k +16000

xMC
k

pMM uδM100
k

−uAD
k −uMA

k − (xW50
k +u∆W50

k + xW100
k +u∆W100

k ) · (uWA
k +uSC

k )

−2sPP
k −

1
2
(xMS

k +u∆MS
k − sPP

k )− xST
k −10000 ·u∆VA

k

+(8000−100k) ·uδVA
k −500(xVA

k +u∆VA
k −uδVA

k ), (8.15)

contains all income and expenses during a round added to the capital after interest from the
previous round. The income consists of the amount of shirts sold times the shirt price sSS

k · uSP
k ,

the sale of machines 8000 xMC
k

pMM uδM50
k and 16000 xMC

k
pMM uδM100

k (depending on the current machine

capacity), and the sale of vans (8000−100k) ·uδVA
k .

Money is spent for the raw material bought times the price of a raw material unit −pPR
k · u∆MS

k ,
the purchase of machines −10000u∆M50

k and −20000u∆M100
k , the purchase of vans −10000u∆VA

k ,
advertisement and maintenance−uAD

k −uMA
k , and the number of workers times wages plus social

expenses −(xW50
k + u∆W50

k + xW100
k + u∆W100

k ) · (uWA
k + uSC

k ). Additionally, each unit of material in
stock at the end of a round costs half a money unit (MU) −1

2(x
MS
k +u∆MS

k − sPP
k ), the production

of a shirt costs two MU−2sPP
k , each shirt in stock costs one MU, and each van costs 500 MU per

round −500(xVA
k +u∆VA

k −uδVA
k ). There is another amount of money to be paid, which depends

on the site, − f 2(uCS
k ) (see Section 8.6.2).

From the base capital the capital after interest is computed by multiplying it with an interest rate
factor (1+ pIR). Overall balance, the objective function, besides capital after interest contains
terms for material and shirts in stock, for machines, and for vans. However, machines are worth
less in the overall balance than if they were sold:

xCA
k+1 = xBC

k+1(1+ pIR) (8.16)

xOB
k+1 =

xMC
k

pMM

(
8000(xM50

k +u∆M50
k −uδM50

k )+16000(xM100
k +u∆M100

k −uδM100
k )

)
+(8000−100k) · (xVA

k +u∆VA
k −uδVA

k )

+2(xMS
k +u∆MS

k − sPP
k )+20(xST

k + sPP
k − sSS

k )+ xCA
k (8.17)

The feasible set of controls is defined by the following properties for all k ∈ {0, . . . ,11}:

uAD
k ∈ [0,10000], uSP

k ∈ [10,100], (8.18)

u∆MS
k ∈ [0,50000], uMA

k ∈ [0.1,100000], (8.19)

uWA
k ∈ [850,5000], uSC

k ∈ [0,10000], (8.20)

u∆W50
k ∈ {−200,−199, . . . ,200}, u∆W100

k ∈ {−200,−199, . . . ,200}, (8.21)

u∆M50
k ∈ {0,1, . . . ,200}, u∆M100

k ∈ {0,1, . . . ,200}, (8.22)

uδM50
k ∈ {0,1, . . . ,200}, uδM100

k ∈ {0,1, . . . ,200}, (8.23)
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uCS
k ∈ {0,1,2}. (8.24)

Furthermore, for all k ∈ {0, . . . ,11} the constraints

u∆W50
k ≥−xW50

k , u∆W100
k ≥−xW100

k , (8.25)

uδM50
k ≤ xM50

k , uδM100
k ≤ xM100

k (8.26)

need to hold. Slack variables are used to reformulate min expressions (see also 8.6.2) and the
bounds on the slack variables read as

sPP
k ≤ xMS

k +u∆MS
k , sPP

k ≤ xPP
k+1, (8.27)

sMC
k ≤ pMM, sMC

k ≤ 0.9xMC
k +0.017

uMA
k

xM50
k+1 +10−8xM100

k+1 +10−8
, (8.28)

sSS
k ≤ xST

k + xAP
k+1, sSS

k ≤
5
4
(
xDE

k
2

+280) ·2.7181−
uSP

k
2

4250 , (8.29)

sM50
k ≤ xW50

k+1, sM50
k ≤ xM50

k+1, (8.30)

sM100
k ≤ xW100

k+1 , sM100
k ≤ xM100

k+1 . (8.31)

for all k ∈ {0, . . . ,11}. sPP
k is used for the minimum of possible production and material in

stock. With sMC
k , the minimum of maximum machine capacity pMM and the machine capacity

determined by loss of capacity over time and the recovery by maintenance is described. Here,
the first 10−8 in the denominator comes from a modeling bug, see 8.6.2. Finally, sSS

k is used to
reformulate the minimum of shirts available for sale xST

k + xAP
k+1 and a nonlinear term depending

on the demand and the shirt price. Note that 2.7181 has been used in the GW-Basic code instead
of exp.

To sum up: every single optimization problem is of the general form (8.1), where the functions
G(·) and H(·) are smooth, nonlinear functions of the unknown variables x,u and s. The nonlin-
earities are often bilinear, but sometimes also include denominators and exponentials.

8.3 Optimization and numerical results

We want to solve a series of optimization problems of the form (8.1) for different participant data
that has been obtained experimentally. In Section 8.3.1 we describe the algorithms and software
we used to achieve this goal. In Section 8.3.2 examples of optimal solutions are displayed and
discussed for illustration. The important issues of integrality and non convexity that arise in our
problems are discussed in Section 8.3.3. We close by discussing the use of Lagrange Multipliers
of artificial constraints as a means to further investigate good and bad decisions of a participant
in Section 8.3.4.
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8.3.1 Implementation

To be able to analyze and visualize the data in a convenient way, to have a simulation envi-
ronment for own studies, and to be able to automatize the optimization of all 2088 = 174 · 12
problems, we implemented the software framework Tobago [210]. It is publicly available under
an open source license, includes a GUI, and may as well be used for experimental setups. In this
study however we exclusively used the GW-Basic implementation for tests to have consistent
data, and Tobago only for optimization and analysis.
We interface the data with optimization solvers via an automated call of AMPL [93] to be able
to easily exchange optimization solvers that have an AMPL interface. In this study we compare
three different optimization solvers: Ipopt [243], Bonmin [45], and Couenne [29]. The first one
is a local nonlinear programming solver based on an interior point method. Bonmin is a solver
for MINLPs whose continuous relaxation is convex (convex MINLPs) and uses Ipopt for the so-
lution of relaxed problems. Couenne is a global solver for MINLPs whose continuous relaxation
is nonconvex (nonconvex MINLPs). All three are available within the COIN-OR open source ini-
tiative. We used the currently latest stable version 0.2.2 of Couenne, and for better comparability
the versions 1.1.1 of Bonmin and 3.6.1 of Ipopt it is interfaced with. For all solvers we used the
default settings exclusively and the MA27 sparse solver for numerical linear algebra.
All computational times refer to a two core Intel CPU with 3GHz and 8GB RAM run under
Ubuntu 9.10.

8.3.2 Optimal Solutions

In total, 2088 optimization problems have been solved. Depending on the value of ns in (8.1),
each consists of 13(N− ns) control, 16(N− ns) state, and 5(N− ns) slack variables. The total
number of optimized variables for all 174 participants sums up to

nvar = 174
N−1

∑
ns=0

34(N−ns) = 174 ·2652 = 461448.

This many variables are obviously difficult to discuss and visualize comprehensively. From this
large set of results we chose a few which illustrate how optimal solutions relate to the choices
made by the participant, compared to solutions for different values of ns, and compared to opti-
mal solutions of other participants. These solutions have been obtained with the local optimiza-
tion code Ipopt and an outer loop with random start values for the optimization. Hence it needs
to be stressed that the interpretations are always under the assumption that the obtained results
are close to the global optima.
In Figure 8.1 the shirt price control function uSP

k of two participants is displayed. In addition to
the values chosen by the participants, all optimal solutions are also depicted, giving an idea what
the participants could have done to improve their performance. It is interesting to observe that
the optimal solutions corresponding to the two participants show different behavior, depending
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on the start values xp
ns in (8.1).
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Figure 8.1: Shirt price uSP
k of two different participants in solid lines. The dotted lines show optimal so-

lutions of (8.1) starting at different months ns. Both participants should have chosen higher
prices most of the time. Depending on their other choices, the optimal solutions evolve differ-
ently over time. On the left hand side the participant’s tailorshop is developing towards high
demand and little stock of shirts, hence the optimal shirt price to maximize profit is increas-
ing. On the right hand side the demand is declining and the stock of shirts increasing, hence
the optimal price is falling with time.

The effect of the van modeling bug, see Section 8.6.2, is discussed in Figure 8.2.
In Figure 8.3 the state variable xW100

k is depicted. It indicates how many workers for the 100 ma-
chines are employed at time k. In the left column of the visualization the modeling bug discussed
in Section 8.6.2 plays a role. It leads to a denominator in (8.43) with a value of 10−8 whenever
all machines are sold and allows hence to obtain the maximum machine capacity with a very
small investment into uMA

k . However, the optimal solution only exploits this in some cases, as
can be clearly seen by comparing the left and the right column.
In Figure 8.4 the important state variable xOB

k is depicted for one representative participant. As
the value of this function at the end time k = N is the objective function that is to be maximized,
the function shows how much better the optimal solution performs in comparison to the partic-
ipant. There are only minor deviations from a monotonic increase that result mainly from the
investment into raw material which is not profitable within the overall balance, but as a resource
for future profit.

8.3.3 Local maxima and integer solutions

The optimization problems (8.1) are nonconvex. Depending on initial values for the optimization
variables different local maxima can be found. Hence one has to use a global optimization solver,
such as Couenne or one of the solvers listed on [58]. As mentioned above, we used different
solvers to obtain solutions. Table 8.2 shows an overview of average computational times and
objective function values that have been obtained with Ipopt and Bonmin.
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Figure 8.2: Development of the overall balance. The dotted lines show optimal solutions of (8.1) starting
at different months ns. A comparison of left and right shows the effect of the modeling bug
discussed in Section 8.6.2: the number of vans increases the demand and without bounds on
the variables the solution is unbounded. Left: In this case an upper bound of 200 for the pur-
chase of machines per month is the limiting factor. Note that the effect can only be exploited
for ns ≤ 6, as the investment in vans needs at least 6 months to pay off. The participant’s
trajectory as well as all solutions for ns > 6 in the order of 105 seem to be zero because of
the nonlogarithmic scale. Right: optimal solutions for fixed number of vans. This formulation
was used for analysis.

We ran the global solvers Couenne and BARON only on single optimization instances, as the
computational demand was too high. On typical instances, Couenne was able to solve (8.1)
for ns = 11 in approximately 3 seconds. For the next larger problem, ns = 10, however, the
Branch and Bound tree grew too fast. The solver terminated after processing 600000 nodes
in 7 hours, because the computer ran out of memory. The stack comprised about 2 million
open nodes at that time. The best solution at that time was 500497 with the upper bound
of 506610 still leaving a certain gap. For comparison: the objective function values found by
Bonmin and Ipopt are 490385 and 500779, respectively. When heuristic non-convexity options
num_resolve_at_root and num_resolve_at_node are used with a value of 1 (or 2) for Bon-
min, an integer solution with value 500188 (500438) is found after 142 (317) seconds, which
is considerably higher than the 0.2 seconds with the standard settings. With tight bounds on all
state, control, and slack variables (some of them even fixed) and the newer version Couenne
0.3.2 a solution could be obtained in 30 minutes, but even so ns = 9 was not solvable on our
machine.
A similar behavior occurred when we used BARON with our GAMS interface on the NEOS
server. Although computational times are not comparable due to the different servers and the
different preprocessing steps of AMPL and GAMS, the runtime for BARON also increased dras-
tically when the number of variables doubled from ns = 11 to ns = 10. While instances for
ns = 11 could be solved within 3 seconds, the ones for ns = 10 could only be solved in the time
limit of 8 hours when bounds were tightened to small intervals. An exact investigation of the
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CPU [sec] Objective function

ns Ipopt Bonmin Ipopt Bonmin Gap

0 0.65 2289 397613 340163 4.5 %

1 0.62 1545 379243 319133 6.9 %

2 0.48 908 359958 296037 6.4 %

3 0.39 556 341110 282423 10.3 %

4 0.33 366 323728 274949 9.6 %

5 0.31 163 307665 263333 12.8 %

6 0.25 66 292389 254858 14.4 %

7 0.20 14 277730 251187 15.1 %

8 0.15 5.48 262800 235850 17.2 %

9 0.11 2.34 249186 233318 17.8 %

10 0.07 0.54 236290 220031 15.9 %

11 0.03 0.10 220717 210760 14.4 %

Table 8.2: Average computational times in seconds and average objective function values for the solutions
of problems (8.1) per participant calculated from the 174 data sets. The rows show the start
month ns, the columns results for Ipopt for the relaxation of (8.1) and Bonmin, respecting the
integrality conditions.

reasons for this drastic increase in computational demand is future work.

Obviously already for one participant data set the computational times are prohibitive for global
approaches. For the analysis of all 174 participants we therefore solved 2088 NLP relaxations
and MINLPs with the local optimizers Ipopt and Bonmin.

A crucial feature of our method is that the How much is still possible–function, see Section 8.4.1,
decreases monotonically with ns increasing. To take this into account, we exploit this knowledge
in our a posteriori analysis. We define

(x∗,u∗,s∗) = (x∗ns
, . . . ,x∗N ,u

∗
ns
, . . . ,u∗N−1,s

∗
ns
, . . . ,s∗N−1)

as a locally optimal solution obtained by solving problem (8.1) for month ns. We initialize the
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variables for problem (8.1) for month ns−1 according to

xns−1 = xp
ns−1,

uns−1 = up
ns−1,

xk = x∗k , k = ns . . .N,

uk = u∗k , k = ns . . .N−1

sk = s∗k , k = ns . . .N−1

(8.32)

and sns−1 according to equations (8.42–8.46). This is a feasible solution because of xns = x∗ns
=

xp
ns = G(xp

ns−1,u
p
ns−1,sns−1, p) with objective function value x∗,OB

N . To avoid local maxima with a
worse performance, we require that the inequality

xOB
N ≥ x∗,OB

N (8.33)

holds. This inequality can either be added to (8.1) when relaxed problems are solved with local
optimization algorithms, or be used as a cutoff value in a Branch-and-Bound setting to reduce
the search tree. Computational experience shows that the primal-dual interior point solver we
are using cannot exploit the initialization to its full extent and in many cases Ipopt converged to
locally infeasible points although it started from a primally feasible one. Future studies should
therefore include active set based solvers. For this study we iterated in an inner loop with random
initializations until for all problems inequality (8.33) was fulfilled, i.e., Ipopt returned a feasible
solution.
Within our analysis approach, local maxima can lead to a violation of the goal to have an objec-
tive measurement for participant performance. Whenever possible, global solvers with a guaran-
teed, deterministic global maximum should be used. If the size of the problem is still too large
for current algorithms and computational platforms, we propose to use relaxations and include
(8.33) as a heuristic compromise.
Several of the control variables are restricted to integer values, compare (8.18-8.24). A compar-
ison of (locally) optimal relaxed and integer solutions shows that some of the variables show
typical (qualitatively similar throughout all solutions, e.g., variables are at their upper bounds)
behavior for most xp

ns , such as the maintenance uMA
k or the purchase of raw material u∆MS

k . Oth-
ers, in particular the numbers of machines and workers, the shirt price uSP

k , and the choice of the
site uCS

k are more sensitive to local optima and/or the fixation of some of the variables to integer
values. Figure 8.5 shows an example.

8.3.4 Analyzing Lagrange Multipliers

Using optimization as an analysis tool yields insight on several levels. A priori unknown struc-
tural properties of the problem, e.g., the unboundedness due to the van bug, can be detected.
Also the performance of a participant can be compared to the optimal solution, and the How
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much is still possible–function to be discussed in Section 8.4 delivers a temporal resolution of
this performance.

But even a more detailed analysis is possible. While an analysis of the How much is still
possible–function indicates at what rounds the participant made particularly good or bad de-
cisions, the question of what of the decisions contributed significantly to the success or failure
remains and might be of importance in a given test scenario. A global approach2 would be to fix
exactly one entry of uns to the value chosen by the participant and compare the result of the op-
timization to the one without this constraint. The difference between the two objective function
values then indicates exactly how much impact this particular decision had. The obvious draw-
back is that the number of optimization problems that need to be solved increases by a factor of
N ·nu, where nu is the number of controls per month.

As a compromise we propose to combine two concepts. First, the comparison of the participant’s
decisions at month ns with the optimal solution, up

ns−u∗ns
, gives a global indication of differences

in the controls. However, it is unclear from this comparison how significant a single deviation
is. Therefore we use, second, Lagrange Multipliers for the participant’s decisions to measure the
effect on the objective function. We augment problem (8.1) with the additional constraint

uns = up
ns

(8.34)

to obtain the optimization problem

max
x,u,s

F(xN)

s.t. xk+1 = G(xk,uk,sk, p), k = ns . . .N−1,

0 ≤ H(xk,xk+1,uk,sk, p), k = ns . . .N−1,

uk ∈ Ω, k = ns +1 . . .N−1,

xns = xp
ns ,

uns = up
ns .

(8.35)

Note that necessarily x∗ns+1 = xp
ns+1, hence problem (8.35) for month ns has the same solution as

problem (8.1) for ns+1. The replacement of (8.1) by (8.35) yields the same results for the series
of all ns and does not imply the need for additional optimization problems to be solved.

The advantage of formulation (8.35) is that an optimization code also calculates the dual vari-
ables or Lagrange multipliers λns for the constraints (8.34). It is well known that the Lagrange
multipliers indicate the shadow prices, i.e., how much the objective function varies if the cor-
responding constraints were relaxed. However, it needs to be stressed that this information is
a local one for the point (xp

ns , . . . ,x
p
N ,u

p
ns , . . . ,u

p
N−1) and assumes that the active set of inequal-

ity constraints does not change. As an example the Lagrange multiplier for the shirts price λ SP
ns

2we assume that we solve all optimization problems to global optimality in this Section
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denotes the deviation of the objective function for uSP
ns

+ ε . Table 8.3 shows an example. The
control vector of a participant, the optimal choice of controls, and the Lagrange multipliers are
listed.

uAD
k uSP

k u∆MS
k uMA

k uWA
k uSC

k uCS
k

up
ns 3700 53 999 1400 1130 100 1

u∗ns
4e-07 64.9 3e-07 34.3 1510 4e-07 0

λns -1.003 473 -1.2 -1.003 10.7 4.9 -752

u∆W50
k u∆W100

k u∆M50
k u∆M100

k uδM50
k uδM100

k u∆VA
k uδVA

k

up
ns 0 0 0 0 0 0 1 0

u∗ns
-4.9 0 0 0 2.9 0 1 0

λns -1233 3990 547.1 -4050 2552 40 -3726 619

Table 8.3: Lagrange Multipliers for the specific case of one participant and the final month ns = 11. The
columns show different entries of the control vector u(·), compare Table 8.1. The rows show
three things: first, the decisions up

ns taken by the participant. Second, the optimal (relaxed)
solution u∗ns calculated with Ipopt. Third, the Lagrange multipliers λns for the constraints (8.34).

The analysis of participant’s decisions hence needs to take both into account: the global infor-
mation of the difference up

ns−u∗ns
and the local quantification from the Lagrange multipliers λns .

A good estimate can be obtained from the entries of the componentwise product λns ·
(
up

ns−u∗ns

)
.

8.4 A correct indicator function for Tailorshop

We propose to use the solutions of (8.1) for all ns as an indicator function for the performance
of a participant. The approach described in Section 8.4.1 is generic and should also be used for
other test scenarios in complex problem solving in the future. In Section 8.4.2 we describe the
results we obtained by using this indicator function for a psychological study.

8.4.1 How much is still possible

On an individual basis, the performance of every participant can be better understood by a com-
parison with optimal solutions as illustrated in Section 8.3. For an evaluation of large data sets
that shall be related to characteristics of participants or experimental setup, an automatization
and a reduction to an indicator function is necessary. Once the performance of all participants
has been determined, an aggregation and further statistical analysis can be performed.
To measure performance within the Tailorshop scenario different indicator functions have been
proposed in the literature. As discussed in the introduction, they have usually unknown reliability
and validity.
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We solve an optimization problem (8.1) for every round of the participant’s data, starting with
exactly the same conditions as the participant. We compare these optimal values that indicate
How much is still possible if all future decisions were optimal. Thus, we can analyze at what
rounds potential for a higher end time objective function value has not been used.

A comparison of the end time capital with the one of the optimal solution from start month
ns = 0 (which is identical for all participants if we neglect the van purchase decision, compare
Section 8.6.2) also gives an objective indicator. However, what we propose is a far more powerful
analysis approach: we want to also say when (within the 12 rounds) significant performance
deviations occurred, and we want to specify details on which decisions were particularly good
or bad ones with respect to the overall outcome.

Note that a comparison with the controls of the optimal solution for starting month ns = 0 would
not yield a good indicator function, as there might be multiple ways to perform well. E.g., if,
due to his previous actions, a participant has many shirts on his stock, good decisions may differ
drastically from the optimal solution for starting month ns = 0 in which always all shirts have
been sold.

In a certain analogy to the cost-to-go-function in dynamic programming, the optimal objective
function values for all rounds yield the monotonically decreasing How much is still possible–
function. We look at the series of optimal objective function values F∗(xN ;ns) for ns = 0, . . . ,N−
1. By comparing F∗(xN ;ns = k) with F∗(xN ;ns = k+1) we obtain the exact value of how much
less the participant is still able to obtain, assumed he would take the best solutions from now
on. In other words: whether the tailorshop is in a worse situation than it could be, after the
participant’s decisions. We define the non–positive (for global optima) Use of Potential–function

∆Pk =: F∗(xN ;ns = k+1)−F∗(xN ;ns = k). (8.36)

Note that in general also a relative loss given as a percentage can be used, however this does not
make sense when the function F∗(·) is not bounded as in our case.

As indicated in Figure 8.6 different ways to analyze the complex solving process may yield
different results. Also the important issue of selling all shirts and material in the last round is
only insufficiently captured by the previous indicator functions. For most of the participants’ data
the previous indicator and the new, optimization-based one coincide, compare Figure 8.7 (right).
This is mainly due to the fact that two of the main effects to make non-intuitive investments into
the future were almost never found by the participants: first, the purchase of a high number of
vans to stimulate demand (compare Section 8.6.2) and second, the knowledge about the lowest
price of the material in round 6.

We conclude that the newly proposed methodology is more reliable and generally applicable
to test scenarios in complex problem solving. Non–optimization based indicator functions give
good estimates as long as the aforementioned effects are not exploited, which is to be expected,
e.g., in studies of learning behavior when participants would be tested several times.
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8.4.2 Impact of Emotion Regulation

In the study 174 data sets have been used, every one from a different participant who had but one
try. For 42 of them a positive feedback was used in the sense that in every round, regardless of
the decisions the participant took, a sum of 20000 money units (MU) was added to the capital.
For 42 participants a negative feedback in form of a reduction of 8000 MUs was implemented.
These modifications are implemented in the model and readjusted in the a posteriori analysis, of
course.
In a previous study [22] it was shown that participants who receive a negative feedback perform
better than those who receive positive feedback. In our new study we additionally considered
the ability to regulate emotion. The psychological results of this study are explained in [21]
in which also details on the experimental setup can be found. As a main result, an interaction
between feedback and emotion regulation could be shown: participants with a high ability of
emotion regulation perform better when they get negative feedback, while those with a low
ability to regulate their emotions perform bad for negative and good for positive feedback. This
is illustrated in Figure 8.7 (left).
In a second study, films and music were used to induce happy, neutral, and sad affect. Addi-
tionally we measured emotion regulation. The study was based on data from 90 participants,
30 in each affect condition. Again, emotion regulation had a great impact on complex problem
solving. A high ability to regulate emotion improved complex problem solving and reduced the
amount of mistakes.

8.5 Summary

We presented a challenging problem class of nonconvex MINLPs. They originate from eco-
nomic test scenarios that are used in the analysis of human complex problem solving. Starting
from GW-Basic source code of the test scenario we developed a mathematical optimization
model to optimize performance starting from pre-specified initial values. This model needed to
be reformulated in several ways to avoid non-differentiabilities, division by zero, and unbound-
edness.
The Tailorshop test scenario was invented more than 25 years ago, without any intention to set it
up suited for mathematical optimization. Our study revealed several shortcomings of the model.
This insight can be used for defining better test scenarios in the future. All characteristics such
as nondifferentiabilities, random values, or unbounded decision variables should be left out, as
they do not really contribute to the difficulty of the scenario itself, but mainly to the difficulty of
solving the problem mathematically to optimality.
We solved altogether 2088 optimization problems and discussed the role of integer variables and
the nonconvexity by comparing different algorithms. The difficulties to do so for a large number
of medium–scale nonconvex MINLPs are challenging. We formulated and used a structure ex-
ploiting lower bound to exclude certain unwanted local maxima. The optimization results were
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used in two ways. First, to gain additional insight into individual performance by comparing it
to the optimal solution which is often non–obvious. Second, to use the results in an automated
way as a new analysis tool for process-dependent evaluation of the performance.

This novel methodology yields a valuable (and accessible, [210]) analysis tool for psychologists
to evaluate participants’ performance. We discussed why there is no alternative to the How much
is still possible–function, especially when participants have more insight, e.g., by repetition of
tests. Furthermore, we proposed to add artificial constraints to the optimization problem and
use the Lagrange multipliers of these constraints as an indication of what decisions contributed
significantly to good or bad performance. By providing this mathematical technology to analyze
participants’ decisions in more detail, a whole set of interesting scenarios with a time– and
decision–specific resolution can be included in future psychological investigations.

This work provides a reference for researchers in complex problem solving. But we also hope
for a stimulating effect on optimization. Future studies should concentrate on restarts for the
MINLPs, on a comparison with active-set based solvers, problem-specific cuts, tight bounds
also for nonlinear subexpressions, and on more efficient techniques to find global optima.

8.6 Appendix

8.6.1 Details of the Optimization Model

We list several parameters and initial values that are of relevance for the optimization problem
(8.1) in Tables 8.4 and 8.5. Figure 8.8 shows an extract of the original source code.

8.6.2 Derivation of the Optimization Model

We discuss some properties of (8.1) in more detail.

Integer Variables and Bounds

For a carefully specified optimization problem the definition of the feasible set of all control
variables is crucial. Within the test scenario, for several decisions there are no bounds and it is
unclear, whether variables are restricted to be from a finite set or not. Although the GW-Basic

code does not specifically distinguish between integer and real variables, all participants re-
stricted themselves to integer numbers for the choices they made. Hence we decided to define
some of the variables, e.g., the number of workers to be hired, as integer variables.

The only clearly defined integer variable within the GW-Basic code is the choice of the show-
room where the shirts are being sold. There are only three choices: city center, city, and suburbs,
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State [unit] xk x0 =

machines 50 [machines] xM50
k 10

shirts stock [shirts] xST
k 80.7164

machines 100 [machines] xM100
k 0

vans [vans] xVA
k 1

workers 50 [workers] xW50
k 8

material stock [shirts] xMS
k 16.06787

workers 100 [workers] xW100
k 0

machine capacity [shirts] xMC
k 47.04

demand [shirts] xDE
k 766.636

capital after interest [MU∗] xCA
k 165774.66

Parameter [unit] p p =

max. demand [shirts] pMD 900

interest rate [—] pIR 0.0025

max. machine capacity [shirts] pMM 50

debt rate [—] pDR 0.0066

max. satisfaction [—] pMS 1.7

Table 8.4: Fixed initial values x0 and parameters p. Note that some initial values are not needed, as they
do not enter the right-hand-side function G(·). Note also that units are only implicitly given in
the test scenario. ∗ MU means money units.

which we identify with 2, 1, and 0, respectively. We define

f 1(uCS
k ) :=


1.2 if uCS

k = 2

1.1 if uCS
k = 1

1.0 if uCS
k = 0

, f 2(uCS
k ) :=


2000 if uCS

k = 2

1000 if uCS
k = 1

500 if uCS
k = 0

.

To be able to relax the feasible set of uCS
k , we write these functions as

f 1(uCS
k ) := 1+

uCS
k

10
, f 2(uCS

k ) := 500+250 uCS
k +250 uCS

k ·uCS
k .

For optimization algorithms the existence of tight lower and upper bounds makes a huge differ-
ence in runtime. By a process of trial and error we found several bounds that were never violated
by any optimal or participant control. We define the feasible set Ω of the control variables as
given by the conditions (8.18–8.24).
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k pPR
k [MU∗] pDE

k [—] pP50
k [—] pP100

k [—]

0 4.00000 0.616192 0.583334 0.178080

1 4.09497 0.269502 0.080131 0.365665

2 8.26718 0.692422 0.599074 0.725099

3 4.87143 0.844487 0.177331 0.207369

4 4.85305 0.697927 0.075705 0.092567

5 5.90983 0.253290 0.669259 0.318009

6 5.18731 0.805071 0.587936 0.056364

7 7.09909 0.457335 0.107187 0.543777

8 6.77216 0.889342 0.788597 0.157994

9 7.61718 0.371173 0.370508 0.746488

10 8.02385 0.029353 0.908646 0.204585

11 2.68115 0.362480 0.166743 0.303585

Table 8.5: Fixed, but time-dependent parameters p. Note that only pPR
k has an implicitly given unit. The

other parameters are dimensionless. ∗ MU means money units.

Reformulations

Although there are some shortcomings in the economic model and the mathematical represen-
tation including nondifferentiabilities and no tight bounds on the variables is everything but
favorable for a fast and reliable solution, we had to postpone the formulation of test scenarios
with better properties to future work, since most of the data of the 174 participants had already
been evaluated when the interdisciplinary cooperation started. Hence the main issue was to refor-
mulate the optimization problem to be able to solve it, under the constraint to keep it compatible
with the available data.
Concerning non-differentiability we strived to formulate the problem as a smooth optimization
problem to allow more solvers to be able to treat the problem instances, if possible without
additional binary variables.
As a first example, consider the state progression equation for the machine capacity xMC

k . A
direct translation of the code would read as

xMC
k+1 = min

(
pMM,0.9xMC

k +0.017
uMA

k

xM50
k+1 +10−8xM100

k+1

)
. (8.37)

What was intended here was to include a safeguard to avoid division by zero by using xM50
k+1 +

xM100
k+1 + 10−8 as the denominator, but the GW-Basic implementation used for the evaluation

includes the erroneous first version. In our model we add 10−8 to the denominator in equa-
tion (8.37) to avoid division by zero, but get comparable values for xMC

k+1.
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Intuitively the fact that we are dealing with a nonconvex model and that there are no bounds on
the variables probably means that the problem is unbounded. Indeed, the analysis of optimization
results confirmed that due to a combination of a modeling error and the unboundedness of the
controls it is possible to drive the overall profit to infinity. In the equation that is describing the
overall demand

xDE
k+1 = a+

(
min

(
uAD

k
5

, pMD
)
+100xVA

k+1

)
·b

there is an upper bound on the effect of the advertisement uAD
k by means of a min expression,

but not on the impact of vans xVA
k . In other words, by buying more and more vans you can create

an arbitrarily high demand. Demand itself enters into the number of sold shirts

xSS
k+1 = min

(
xST

k ,
5
4

(
xDE

k
2

+280
)
·2.7181−

uSP
k

2

4250

)
.

Therefore you can sell an arbitrary high number of shirts, if only you buy enough vans. However,
none of the participants detected this error in the model — this only happened in a related study
where participants got several repetitions. We discussed several ways to remove this unbound-
edness from the problem, e.g., setting a lower bound on the capital to avoid unrealistic infinite
debts, possibly by fixing this lower bound to the lowest value over all data sets to keep things
consistent. However, the effect of the vans was still too strong, compare Figure 8.2. Eventually
we decided to fix the number of vans in the optimization problem to exactly that of the respective
participant, and to focus on the other decisions that need to be taken.

The two expressions

xSA
k+1 = min

(
pMS,

1
2
+

uWA
k −850

550
+

uSC
k

800

)
(8.38)

xDE
k+1 = min(

uAD
k
5

, pMD) (8.39)

can be directly replaced by

xSA
k+1 =

1
2
+

uWA
k −850

550
+

uSC
k

800
,

1
2
+

uWA
k −850

550
+

uSC
k

800
≤ pMS, (8.40)

xDE
k+1 =

uAD
k
5

,
uAD

k
5
≤ pMD. (8.41)

We replace the remaining min−max expressions by introducing

sPP
k ≈ min(xPP

k+1,x
MS
k +u∆MS

k ), (8.42)

sMC
k ≈ min

(
pMM,0.9xMC

k +0.017
uMA

k

xM50
k+1 +10−8xM100

k+1 +10−8

)
, (8.43)
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sSS
k ≈ min(xST

k + xAP
k+1,

5
4
(
xDE

k
2

+280) ·2.7181−
uSP

k
2

4250 ), (8.44)

sM50
k ≈ min(xW50

k+1,x
M50
k+1), (8.45)

sM100
k ≈ min(xW100

k+1 ,x
M100
k+1 ). (8.46)

and adding the corresponding constraints (8.27–8.31).
A constraint that states that new machines may only be bought when the machine capacity xMC

k
has at least the value of 35, or in other form

0≤ u∆M100
k ≤

{
0 if xMC

k < 35

∞ if xMC
k ≥ 35

(8.47)

would be a little bit more tricky to reformulate in a way that is suited for a derivative-based
optimization algorithm. Fortunately, due to the model bug in (8.37), xMC

k is often at its upper
bound pMM in optimal solutions. The model error whenever a participant should have xMC

k < 35
seems thus acceptable. Thus we simply ignore constraint (8.47).
Another issue are the interest rates, which have a constant value, but a different one for positive
or negative capital xBC

k+1. This non-differentiability in the right-hand side could be smoothened
out easily by defining an appropriate function piecewise with the constant value pIR for xBC

k+1≥ δ ,
the constant value pDR for xBC

k+1 ≤ −δ and a smoothing function for the interval [−δ ,δ ], e.g.,
based on an arcus tangens. However, to facilitate implementation, we chose to use only the
positive interest rate pIR. Whenever the optimal solution does not require lending money (hence
no xBC

k < 0 for any month k), obviously without loss of generality this solution is also optimal
for the case with the higher interest rate. This requires another post-processing that we needed
to automatize.
The absolute value that occurs in the right-hand side of the state xPP

k+1 can be neglected because
of the lower bound of 850 for the wages uWA

k .
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Figure 8.3: Top row: state variable xW100
k that indicates how many workers for the 100 machines are em-

ployed. The left and right column show the results for two different participants. For both
the optimal strategy is to have a fixed number of 0 to 4 workers which is decreasing as ns
increases. Note that the values are solutions of the relaxed problem where also non-integer
values for the number of workers are possible. The main difference lies in the first decisions
for ns = 3,4,5 of the left participant to dismiss all workers for the next month. The reason
can be understood by looking at the second row, which shows the machine capacity xMC

k .
The value on the left is so low that the optimal solution chooses to exploit the special form
of the denominator in (8.43) to increase xMC

k to its maximum value with low maintenance
costs uMA

k = ε . On the right hand side this effect does not dominate compared to the loss in
production.
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Figure 8.4: Left: state variable overall capital balance xOB
k . The participant’s trajectory in solid, the opti-

mal solutions of (8.1) starting at different months ns in dotted lines. The function is almost
monotonically increasing, which is due to the number of vans being fixed to the participant’s
decision. The purchase of raw material is the main reason for the kink at month 6. Right:
Purchase of raw material. Because of the comparatively low price in month 6, compare Ta-
ble 8.5, a large part of the material that is needed for the months 7–12 is bought. Because the
participant herself/himself did not do this, an additional kink at month 8 occurs for optimal
solutions with ns = 7,8. This is qualitatively similar for almost all data sets.
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Figure 8.5: Left: optimal choices of site for one participant and all start months ns, calculated with Ipopt
(green, relaxed values between 1.1 and 1.9) and Bonmin (blue, integer values of 0, 1, and 2).
Right: How much is still possible–function for one participant, calculated with Ipopt (green,
upper curve) and Bonmin (blue, lower curve). As in this figure, the integer gap seems to be
largest for intermediate values of ns for most instances, compare also the average values in
Table 8.2. However, this interpretation is subject to the fact that all solutions are only locally
optimal.
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Figure 8.6: Different ways of determining good and bad participant–performance over time. The solid
lines show the evolution of the objective function. The dotted lines show the How much is still
possible–function which is composed of objective function values of separate optimization
problems (8.1). The traditional way is to compare the changes in the objective function value.
In our approach we compare the slopes of the How much is still possible-function. Left partic-
ipant: the two variants would qualitatively coincide: not so good from 0–6, good performance
from 7–10, not so good again from 11–12. In the right scenario the objective function values
seem to correspond to alternations in the quality of the performance, which can not be verified
by analyzing the How much is still possible–function which has an almost constant negative
slope.
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Figure 8.7: Left: average values of the How much is still possible–function over all participants with
emotion regulation properties/feedback a) low/positive, b) low/negative, c) high/positive, d)
high/negative. Participants with a low ability of emotion regulation performed better with pos-
itive feedback, those with high ability of emotion regulation performed better with negative
feedback. Right: average values over all 174 participants for different indicator functions. The
Use of Potential–function ∆Pk is given by (8.36). Profit indicates ∆xCA

k = xCA
k+1− xCA

k , Delta
Objective indicates ∆xOB

k = xOB
k+1− xOB

k . The trajectories have been rescaled for better compa-
rability. The potential in month ns = 11 (selling all of the material on stock) has not been used
by the majority of participants.
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2650 ZA=.5+((LO-850)/550)+SM/800:IF ZA>ZM THEN:ZA=ZM
2660 SK=SM*(N1+N2):KA=KA-SK
2670 X=A1:IF N1<X THEN:X=N1
2680 Y=A2:IF N2<Y THEN:Y=N2
2690 PM=X*(MA+RND*4-2)+Y*(MA*2+RND*6-3):PM=PM*(ABS(ZA)^.5)
2700 X=PM:IF RL<X THEN:X=RL
2710 PA=X:HL=HL+PA:RL=RL-PA:KA=KA-(PA*1)-(RL*.5)
2720 NA=(NA/2+280)*1.25*2.7181^(-(PH^2)/4250):KA=KA-HL
2730 X=NA:IF HL<X THEN:X=HL
2740 VH=X:HL=HL-VH:KA=KA+VH*PH
2750 KA=KA-WE
2760 X1=WE/5:IF X1>NM THEN:X1=NM
2770 KA=KA-LW*500:X1=X1+LW*100
2780 KA=KA-GL*2000
2790 X=0:IF GL=.5 THEN:X=.1:ELSE IF GL=1 THEN:X=.2
2800 X1=X1+X1*X
2810 NA=X1+(RND*100-50)
2820 RP=2+(RND*6.5)
2830 MA=MA-.1*MA+(RS/(A1+A2*1E-08))*.017
2840 IF MA>MM THEN:MA=MM
2850 KA=KA-RS
2860 KA=KA-(N1+N2)*LO
2870 IF KA>0 THEN:KA=KA+KA*GZ:ELSE KA=KA+KA*SZ

Figure 8.8: Extract of the original GW-Basic code of the Tailorshop example which is the basis of the
mathematical optimization problem. Special care is necessary to separate already updated
variables xk+1 from the values xk, compare the role of xMS

k ≈ RL and xPP
k ≈ PM in lines 2690

to 2710.
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9 On Sampling Decisions in Optimum
Experimental Design

The contents of this chapter are based on the paper

[206] S. Sager. Sampling Decisions in Optimum Experimental Design in the Light of Pontrya-
gins Maximum Principle. SIAM Journal on Control and Optimization, submitted.

Chapter Summary. Optimum Experimental Design (OED) problems are optimization problems
in which an experimental setting and decisions on when to measure – the so-called sampling
design – are to be determined such that a follow-up parameter estimation yields accurate results
for model parameters. We use the interpretation of OED as optimal control problems with a very
particular structure for the analysis of optimal sampling decisions.
We introduce the information gain function, motivated by an analysis of necessary conditions
of optimality. We highlight differences between problem formulations and propose to use a
linear penalization of sampling decisions to overcome the intrinsic ill-conditioning of OED. The
theoretic insight is illustrated by means of two numerical examples.
From a more abstract level, we shed additional light on an important subclass of mixed-integer
optimal control problems.

9.1 Introduction

Modeling, simulation and optimization has become an indispensable tool in science, comple-
mentary to theory and experiment. It builds on detailed mathematical models that are able to
represent real world behavior of complex processes. In addition to correct equations problem
specific model parameters, such as masses, reaction velocities, or mortality rates, need to be
estimated. The methodology optimum experimental design (OED) helps to design experiments
that yield as much information on these model parameters as possible.
OED has a long tradition in statistics and practice, compare the textbook [196]. References to
some algorithmic approaches are given, e.g., in [15, 216]. Algorithms for OED of nonlinear
dynamic processes are usually based on the works of [25, 154, 155]. As investigated in [158],
derivative based optimization strategies are the state-of-the-art. The methodology has been ex-
tended in [156] to cope with the need for robust designs. In [157] a reformulation is proposed
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that allows an application of Bock’s direct multiple shooting method. An overview of model-
based design of experiments can be found in [94]. Applications of OED to process engineering
are given in [20, 219].
OED of dynamic processes is a non-standard optimal control problem in the sense that the objec-
tive function is a function of either the Fisher information matrix, or of its inverse, the variance-
covariance matrix. The Fisher matrix can be formulated as the time integral over derivative in-
formation. This results in an optimal control problem with a very specific structure. We analyze
this structure to shed light on the question under which circumstances it is optimal to measure.
Notation. When analyzing OED problems with the maximum principle, one encounters one
notational challenge. We have an objective function that is a function of a matrix, however the
necessary conditions are usually formulated for vector-valued variables. We have two options:
either we redefine matrix operations as the inverse, trace or determinant for vectors, or we need
to interpret matrices as vectors and define a scalar product for matrix-valued variables that allows
to multiply them with Lagrange multipliers and obtain a map to the real numbers. We decided to
use the second option. In the interest of better readability we use bold symbols for all matrices.
Inequalities and equalities are always meant to hold componentwise, also for matrices.

Definition 9.1.1. (Scalar Product of Matrices)
The map 〈·, ·〉 : (λ ,A) 7→ 〈λ ,A〉 ∈ R with two matrices λ and A ∈ Rm×n is defined as

〈λ ,A〉 =
m

∑
i=1

n

∑
j=1

λi, j Ai, j.

Partial derivatives are often written as subscripts, e.g. Hλ = ∂H
∂λ

. In our analysis we encounter
the necessity to calculate directional derivatives of matrix functions with respect to matrices. In
order to conveniently write them, we define a map analogously to the case in Rn.

Definition 9.1.2. (Matrix-valued Directional Derivatives)
Let a differentiable map Φ : Rn×n 7→ Rn×n be given, and let A,∆A ∈ Rn×n. Then the directional
derivative is denoted by(

∂Φ(A)
∂A

·∆A
)

k,l
:=

m

∑
i=1

n

∑
j=1

∂Φ(A)k,l

∂Ai, j
∆Ai, j = lim

h→0

Φ(A+h∆A)k,l−Φ(A)k,l

h

for 1≤ k, l ≤ n, hence ∂Φ(A)
∂A ·∆A ∈ Rn×n.

Let a differentiable map φ : Rn×n 7→ R be given, and let A,∆A ∈ Rn×n. Then the directional
derivative limh→0

φ(A+h∆A)−φ(A)
h is denoted by〈

∂φ(A)
∂A

,∆A
〉

=
∂φ(A)

∂A
·∆A :=

m

∑
i=1

n

∑
j=1

∂φ(A)
∂Ai, j

∆Ai, j,
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hence
〈

∂φ(A)
∂A ,∆A

〉
= ∂φ(A)

∂A ·∆A ∈ R.

In the following we use the map Φ(·) for the inverse operation, and the map φ(·) for either trace,
determinant, or maximum eigenvalue function.
Outline. This chapter is organized as follows. In Section 9.2 we revise results from optimal
control theory. In Section 9.3 we formulate the OED problem as an optimal control problem. In
Section 9.4 we apply the integer gap theorem to show that there is always an ε-optimal solution
with integer measurements, if the measurement grid is fine enough. We apply the maximum
principle to OED in Section 9.5, and derive conclusions from our analysis. Two numerical ex-
amples are presented in Section 9.6, before we summarize in Section 9.7. Useful lemmata are
provided for convenience in the Appendix.

9.2 Indirect approach to optimal control

In this section we will generalize the maximum principle from Section 2.3 to better suit our
needs.
The basic idea of indirect approaches is first optimize, then discretize. In other words, first neces-
sary conditions for optimality are applied to the optimization problem in function space, and in
a second step the resulting boundary value problem is solved by an adequate discretization, such
as multiple shooting. The necessary conditions for optimality are given by the famous maximum
principle of Pontryagin. Assume we want to solve the optimal control problem of Bolza type

min
y,u

Φ(y(tf))+
∫
T L(y(τ),u(τ)) dτ

subject to

ẏ(t) = f (y(t),u(t), p), t ∈T ,

u(t) ∈ U , t ∈T ,

0 ≤ c(y(tf)),

y(0) = y0,

(9.1)

on a fixed time horizon T = [0, tf] with differential states y : T 7→ Rny , fixed model parameters
p ∈ Rnp , a bounded feasible set U ∈ Rnu for the control functions u : T 7→ Rnu and sufficiently
smooth functions Φ(·),L(·), f (·),c(·). To state the maximum principle we need the concept of
the Hamiltonian.

Definition 9.2.1. (Hamiltonian, Adjoint states, End-point Lagrangian)
The Hamiltonian of optimal control problem (9.1) is given by

H (y(t),u(t),λ (t), p) := −L(x(t),u(t))+λ (t)T f (y(t),u(t), p) (9.2)

with variables λ : T 7→ Rny called adjoint variables. The end–point Lagrangian function ψ is
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defined as

ψ(y(tf),µ) := Φ(y(tf))−µ
T c(y(tf)) (9.3)

with non-negative Lagrange multipliers µ ∈ Rnc
+ .

The maximum principle in its basic form, also sometimes referred to as minimum principle, goes
back to the early fifties and the works of Hestenes, Boltyanskii, Gamkrelidze, and of course
Pontryagin. Although we refer to it as maximum principle for historic reasons, we chose to use
a formulation with a minimization term which is more standard in the optimization community.
Precursors of the maximum principle as well as of the Bellman equation can already be found
in Carathéodory’s book of 1935, compare [189] for details.

The maximum principle states the existence of adjoint variables λ ∗(·) that satisfy adjoint differ-
ential equations and transversality conditions. The optimal control u∗(·) is characterized as an
implicit function of the states and the adjoint variables — a minimizer u∗(·) of problem (9.1)
also minimizes the Hamiltonian subject to additional constraints.

Theorem 9.2.2. (Maximum principle)
Let problem (9.1) have a feasible optimal solution (y∗,u∗)(·). Then there exist adjoint variables
λ ∗(·) and Lagrange multipliers µ∗ ∈ Rnc

+ such that

ẏ∗(t) = Hλ (y
∗(t),u∗(t),λ ∗(t), p) = f (y∗(t),u∗(t), p), (9.4a)

λ̇
∗T (t) = −Hy(y∗(t),u∗(t),λ ∗(t), p), (9.4b)

y∗(0) = y0, (9.4c)

λ
∗T (tf) = −ψy(y∗(tf),µ∗), (9.4d)

u∗(t) = arg min
u∈U

H (y∗(t),u,λ ∗(t), p), (9.4e)

0 ≤ c(y(tf)), (9.4f)

0 ≤ µ
∗, (9.4g)

0 = µ
∗T c(y(tf)). (9.4h)

for t ∈T almost everywhere.

For a proof of the maximum principle and further references see, e.g., [51, 192]. Although for-
mulation (9.1) is not the most general formulation of an optimal control problem, it covers the
experimental design optimization task as we formulate it in the next section. However, one may
also be interested in the case where measurements are not performed continuously over time, but
rather at discrete points in time. To include such discrete events on a given time grid, we need to
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extend (9.1) to

min
y,u,w

Φ(y(tf))+
∫
T L(y(τ),u(τ)) dτ +∑

nm
k=1 Ltr(wk)

subject to

ẏ(t) = f (y(t),u(t), p), t ∈T k,

y(t+k ) = f tr(y(t−k ),wk, p), k = 1 . . .nm,

u(t) ∈ U , t ∈T ,

wk ∈ W , k = 1, . . . ,nm,

0 ≤ c(y(tf)),

y(0) = y0,

(9.5)

on fixed time horizons T k = [tk, tk+1], k = 0, . . . ,nm− 1 with t0 = 0 and tnm = tf. In addition
to (9.1) we have variables w = (w1, . . . ,wnm) with wk ∈ W ⊂ R, a second smooth Lagrange
term function Ltr(·) and a smooth transition function f tr(·) that causes jumps in some of the
differential states.

The boundary value problem (9.4) needs to be modified by additional jumps in the adjoint vari-
ables, e.g., for k = 1 . . .nm

λ
∗T (t+k ) = λ

∗T (t−k )−H tr
y (y∗(t−k ),w∗k , p,λ ∗(t+k )) (9.6)

w∗k = arg min
wk∈W

H tr(y(t−k ),wk, p,λ ∗(t+k )), (9.7)

with the discrete time Hamiltonian

H tr(y(t−k ),wk, p,λ ∗(t+k )) :=−Ltr(wk)+λ
T (t+k ) f tr(y(t−k ),wk, p). (9.8)

A derivation and examples for the discrete time maximum principle can be found, e.g., in [222].

One interesting aspect about the global maximum principle (9.4) is that the constraint u ∈ U

has been transferred towards the inner minimization problem (9.4e). This is done on purpose,
so no assumptions need to be made on the feasible control domain U . The maximum principle
also applies to nonconvex and disjoint sets U , such as, e.g., U = {0,1} in mixed-integer opti-
mal control. For a disjoint set U of moderate size the pointwise minimization of (9.4e) can be
performed by enumeration between the different choices, implemented as switching functions
that determine changes in the minimum. This approach, the Competing Hamiltonians approach,
has to our knowledge first been successfully applied to the optimization of operation of subway
trains with discrete acceleration stages in New York by [43].

In this study we are not interested in applying the maximum principle directly to the disjoint set
U , but rather to its convex hull. We are interested in the question when the solutions of the two
problems coincide, and which exact problem formulations are favorable in this sense. Having
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analyzed problem structures with the help of the maximum principle, we switch to direct, first-
discretize then-optimize approaches to actually solve optimum experimental design problems.
Using the convex hull simplifies the usage of modern gradient-based optimization strategies.

9.3 Optimum experimental design problems

In this section we formulate the problem classes of experimental design problems we are inter-
ested in.

9.3.1 Problem Formulation: Discrete Time

We are interested in optimal parameter values for a model-measurements fit. Assuming an ex-
perimental setup is given by means of control functions ui(·) and sampling decisions wi that
indicate whether a measurement is performed or not for nexp experiments, we formulate this
parameter estimation problem as

min
x,p

1
2

nexp

∑
i=1

ni
h

∑
k=1

ni
t

∑
j=1

wi
k, j

(η i
k, j−hi

k(x
i(t i

j)))
2

σ i
k, j

2

s.t. ẋi(t) = f (xi(t),ui(t), p), t ∈T ,

xi(0) = xi
0.

(9.9)

Here nexp,ni
h,n

i
t indicate the number of independent experiments, number of different mea-

surement functions per experiment, and number of time points for possible measurements per
experiment, respectively. The nexp · nx dimensional differential state vector (xi)(i=1,...,nexp) with
xi : T 7→ Rnx is evaluated on a finite time grid {t i

j}. The states xi(·) of experiment i enter the

model response functions hi
k : Rnx 7→ R

nhi
k . The variances are denoted by σ i

k, j ∈ R, the sampling
decisions wi

k, j ∈Ω denote how many measurements are taken at time t i
j. If only one measurement

is possible then Ω = {0,1}. We are also interested in the possibility of multiple measurements,
then we have Ω = {0,1, . . . ,wmax}. The measurement errors leading to the measurement values
η i

k, j are assumed to be random variables free of systematic errors, independent from one another,
attributed with constant variances, distributed around a mean of zero, and distributed according
to a common probability density function. All these assumptions lead to this special form of
least squares minimization.
In the interest of a clearer presentation we neglect time-independent control values, such as
initial values, consider only an unconstrained parameter estimation problem, assume we only do
have one single measurement function per experiment, nh = ni

h = 1, and define all variances to
be one, σ i

k, j = 1. We need the following definitions.

Definition 9.3.1. (Solution of Variational Differential Equations)
The matrix-valued maps Gi(·) = dxi

dp (·) : T 7→ Rnx×np are defined as the solutions of the Varia-
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tional Differential Equations

Ġi(t) = fx(xi(t),ui(t), p)Gi(t)+ fp(xi(t),ui(t), p), Gi(0) = 0 (9.10)

obtained from differentiating xi(t) = xi
0 +

∫
T f (xi(τ),ui(τ), p) dτ with respect to time and pa-

rameters p ∈ Rnp . As they denote the dependency of differential states upon parameters, we
also refer to Gi(·) as sensitivities. Note that throughout this chapter the ordinary differential
equations are meant to hold componentwise for the matrices on both sides of the equation.

Definition 9.3.2. (Fisher Information Matrix)
The matrix F = F(tf) ∈ Rnp×np defined by

F(tf) =
nexp

∑
i=1

ni
t

∑
j=1

wi
j
(
hi

x(x
i(t i

j))G
i(t i

j)
)T

hi
x(x

i(t i
j))G

i(t i
j)

is called (discrete) Fisher information matrix.

Definition 9.3.3. (Covariance Matrix)
The matrix C =C(tf) ∈ Rnp×np defined by

C(tf) = F−1(tf)

is called (discrete) covariance matrix of the unconstrained parameter estimation problem (9.9).

We assume that we have nexp experiments for which we can determine control functions ui(·)
and sampling decisions wi in the interest to optimize a performance index, which is related to
information gain with respect to the parameter estimation problem (9.9). As formulated in the
groundbreaking work of [154], the optimum experimental design task is then to optimize over
u(·) and w. The performance index is a function φ(·) of either the Fisher information matrix
F(tf) or of it’s inverse, the covariance matrix C(tf).

Definition 9.3.4. (Objective OED Functions)
We call

• φ F
A (F(tf)) :=− 1

np
trace (F(tf)) the Fisher A-criterion,

• φ F
D (F(tf)) :=−(det (F(tf)))

1
np the Fisher D-criterion,

• φ F
E (F(tf)) :=−min{λ : λ is eigenval of F(tf)} the Fisher E-criterion,

• φC
A (F(tf)) := 1

np
trace (F−1(tf)) the A-criterion,

• φC
D(F(tf)) := (det (F−1(tf)))

1
np the D-criterion,
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• φC
E (F(tf)) := max{λ : λ is eigenval of F(tf)} the E-criterion,

and write φ(F(tf)) for any one of them in the following. If φ ∈ {φ F
A ,φ

F
D ,φ

F
E } we speak of a Fisher

objective function, otherwise if φ ∈ {φC
A ,φ

C
D ,φ

C
E } of a Covariance objective function.

Note that maximizing a function (which we want to do for the Fisher information matrix) is
equivalent to minimizing its negative. Additionally there are typically constraints on state and
control functions, plus restrictions on the sampling decisions, such as a maximum number of
measurements per experiment.
We follow the alternative formulation of [157], in which the sensitivities Gi(·) and the Fisher in-
formation matrix function F(·) are included as states in one structured optimal control problem.
The performance index φ(·) then has the form of a standard Mayer type functional. The optimal
control problem reads

min
xi,Gi,F ,zi,ui,wi

φ(F(tf))

subject to

ẋi(t) = f (xi(t),ui(t), p),

Ġi(t) = fx(xi(t),ui(t), p)Gi(t)+ fp(xi(t),ui(t), p),

F(t i
j) = F(t i

j−1)+
nexp

∑
i=1

wi
j

(
hi

x(x
i(t i

j))G
i(t i

j)
)T (

hi
x(x

i(t i
j))G

i(t i
j)
)
,

zi(t i
j) = zi(t i

j−1)+wi
j,

xi(0) = x0,

Gi(0) = 0,

F(0) = 0,

zi(0) = 0,

ui(t) ∈ U ,

wi
j ∈ W ,

0 ≤ Mi− zi(tf)

(9.11)

for experiment number i = 1 . . .nexp, time index j = 1 . . .ni
t , and t ∈ T almost everywhere.

Note that the Fisher information matrix F(tf) is calculated as a discrete time state, just as the
measurement counters zi(·). The values Mi ∈ R give an upper bound on the possible number of
measurements per experiment. Of course also other problem formulations, e.g., a penalization
of measurements via costs in the objective function, are possible. In our study we exemplarily
treat the case of an explicitly given upper bound.
The set W is either W = Ω or its convex hull W = conv Ω, i.e., either W = {0, . . . ,wmax} or
W = [0,wmax]. In the first setting we refer to (9.11) as a mixed-integer optimal control problem
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(MIOCP). In the second case we use the term relaxed optimal control problem. It is our main
aim to shed more light on the question under which circumstances the optimal solution of the
relaxed problem (which is the outcome of most numerical approaches) is identical to the one of
the MIOCP.

9.3.2 Problem Formulation: Continuous Measurements

It is interesting to also look at the case in which measurements are not performed at a single point
in time, but over a whole interval. The continuous data flow would result in a slightly modified
parameter estimation problem

min
x,p

1
2

nexp

∑
i=1

tf∫
0

wi(t) · (η
i(t)−hi(xi(t)))2

σ i(t)2 dt

s.t. ẋi(t) = f (xi(t),ui(t), p), t ∈T ,

xi(0) = xi
0.

(9.12)

This results in a modified definition of the Fisher information matrix.

Definition 9.3.5. (Fisher Information Matrix)
The matrix F = F(tf) ∈ Rnp×np defined by

F(tf) =
nexp

∑
i=1

tf∫
0

wi(t)
(
hi

x(x
i(t))Gi(t)

)T
hi

x(x
i(t))Gi(t) dt

is called (continuous) Fisher information matrix.

All other definitions from Section 9.3.1 are identical. This allows us to formulate the optimum
experimental design problem as

min
xi,Gi,F ,zi,ui,wi

φ(F(tf))

subject to

ẋi(t) = f (xi(t),ui(t), p),

Ġi(t) = fx(xi(t),ui(t), p)Gi(t)+ fp(xi(t),ui(t), p),

Ḟ(t) =
nexp

∑
i=1

wi(t)
(
hi

x(x
i(t))Gi(t)

)T (hi
x(x

i(t))Gi(t)
)
,

żi(t) = wi(t),

xi(0) = x0, Gi(0) = 0, F(0) = 0, zi(0) = 0,

ui(t) ∈ U , wi(t) ∈W ,

0 ≤ Mi− zi(tf).

(9.13)
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Comparing (9.13) to the formulation (9.11) with measurements on the discrete time grid, one
observes that now the states F(·) and zi(·) are specified by means of ordinary differential equa-
tions instead of difference equations, and the finite-dimensional control vector w now is a time-
dependent integer control function w(·).
The two formulations have the advantage that they are separable, and hence accessible for the
direct multiple shooting method, [157]. In addition, they fall into the general optimal control
formulations (9.5) and (9.1), respectively, and allow for an application of the maximum principle.

9.4 Applying the integer gap lemma to OED

A first immediate advantage of the formulation (9.13) as a continuous optimal control problem
is that we can apply the integer gap lemma proposed in Chapter 3. In the interest of an easier
presentation let us assume wmax = 1.

Corollary 9.4.1. (Integer Gap)
Let (xi∗,Gi∗,F∗,zi∗,ui∗,α i∗)(·) be a feasible trajectory of the relaxed problem (9.13) with the
measurable functions α i∗ : [0, tf]→ [0,1] replacing wi(·) in problem (9.13), with i = 1 . . .nexp.
Consider the trajectory (xi∗,Gi∗,FSUR,zi,SUR,ui∗,ω i,SUR)(·) which consists of controls ω i,SUR(·)
determined via Sum Up Rounding (3.7-3.8) on a given time grid from α i∗(·) and differential
states (FSUR,zi,SUR)(·) that are obtained by solving the initial value problems in (9.13) for the
fixed differential states (xi∗,Gi∗)(·) and ω i,SUR(·).
Then for any δ > 0 there exists a grid size ∆t such that

|zi,SUR(tf)− zi∗(tf)| ≤ δ , i = 1, . . . ,nexp. (9.14)

Assume in addition that constants C,M ∈ R+ exist such that the functions

f̂ i(xi∗,Gi∗) :=
(
hi

x(x
i(t))Gi(t)

)T (
hi

x(x
i(t))Gi(t)

)
are differentiable with respect to time and it holds∥∥∥∥ d

dt
f̂ i(xi∗,Gi∗)

∥∥∥∥ ≤ C

for all i = 1 . . .nexp, t ∈ [0, tf] almost everywhere and f̂ i(xi∗,Gi∗) are essentially bounded by M.
Then for any δ > 0 there exists a grid size ∆t such that

|φ(FSUR(tf))−φ(F∗(tf))| ≤ δ . (9.15)

Proof. Follows from Corollary 3.5.3 on page 44 and the fact that all assumptions on the right
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hand side function are fulfilled. Note that the condition on the Lipschitz constant is automatically
fulfilled, because z(·) and F(·) do not enter in the right hand side of the differential equations.

Corollary 9.4.1 implies that the exact lower bound of the OED problem (9.13) can be obtained
by solving the relaxed problem in which wi(t) ∈ conv Ω instead of wi(t) ∈ Ω. In other words,
anything that can be done with fractional sampling can also be done with an integer number
of measurements. However, the price might be a so-called chattering behavior, i.e., frequent
switching between yes and no.

9.5 Analyzing relaxed sampling decisions

An observation in practice is that the relaxed samplings wi(t)∈ conv Ω are almost always wi(t)∈
Ω. To get a better understanding of what is going on, we apply the maximum principle from
Theorem (9.2.2). We proceed with the continuous case of the control problem (9.13). The vector
of differential states of the general problem (9.1) is then given by

y(·) =


xi(·)
Gi(·)
F(·)
zi(·)


(i=1...nexp)

with i = 1 . . .nexp. Hence y(·) is a map y : T 7→ Rny with dimension

ny = nexpnx +nexpnxnp +npnp +nexp.

Note that some components of this vector are matrices that need to be “flattened” in order to
write y as a vector. We define the right hand side function

f̃ : Rny×nexpnu×nexp×np 7→ Rny

as

f̃ (y(t),u(t),w(t), p) :=


f (xi(t),ui(t), p)

fx(xi(t),ui(t), p)Gi(t)+ fp(xi(t),ui(t), p)
nexp

∑
i=1

wi(t)
(
hi

x(x
i(t))Gi(t)

)T (hi
x(x

i(t))Gi(t)
)

wi(t)

 (9.16)

again with multiple entries for all i = 1 . . .nexp. We define λxi ,λGi ,λF ,λzi to be corresponding
adjoint variables with dimensions nx, nx× np, np× np, and 1, respectively, and λ as the com-
pound of these variables. Note that λGi and λF are treated as matrices, just like their associated

197



CHAPTER 9
∣∣ S A M P L I N G D E C I S I O N S I N E X P E R I M E N T A L D E S I G N

states Gi and F . The Hamiltonian is then given as

H (y(t),u(t),w(t),λ (t), p) =
〈
λ (t), f̃ (y(t),u(t),w(t), p)

〉
=

nexp

∑
i=1

λ T
xi f i(·)+

nexp

∑
i=1

〈
λGi , f i

x(·)Gi + f i
p(·)
〉

+

〈
λF ,

nexp

∑
i=1

wi
(
hi

x(·)Gi
)T (hi

x(·)Gi
)〉

+
nexp

∑
i=1

λziwi,

(9.17)

where we are leaving away the time arguments (t) and argument lists of f and h. Note that
Definition 9.1.1 of the scalar product allows to use the matrices λGi ∈ Rnx×np and λF ∈ Rnp×np

in a straight-forward way.

Corollary 9.5.1. (Maximum principle for OED problems)
Let problem (9.13) have a feasible optimal solution (y∗,u∗,w∗). Then there exist adjoint vari-
ables λ ∗(·) and Lagrange multipliers µ∗ ∈Rnexp such that for t ∈T it holds almost everywhere

ẏ∗(t) = f̃ (y∗(t),u∗(t),w∗(t), p), (9.18a)

λ̇xi
∗T
(t) = λ

T
xi f i

x(·)+
∂

∂xi

(〈
λGi , f i

x(·)Gi + f i
p(·)
〉)T

(9.18b)

+
∂

∂xi

(〈
λF ,wi (hi

x(·)Gi)T (
hi

x(·)Gi)〉)T
,

˙λGi
∗T
(t) =

〈
λGi , f i

x(·)
〉
+

∂

∂Gi

(
wi
〈

λF ,
(
hi

x(·)Gi)T (
hi

x(·)Gi)〉)T
, (9.18c)

λ̇F
∗T
(t) = 0, (9.18d)

λ̇zi
∗T
(t) = 0, (9.18e)

y∗(0) = y0, (9.18f)

λxi
∗T (tf) = 0, (9.18g)

λ
∗T
Gi (tf) = 0, (9.18h)

λ
∗T
F (tf) = −

∂φ(F(tf))
∂F

, (9.18i)

λzi
∗T (tf) = −

−∂ µ∗i (M
i− zi(tf))

∂ z
=−µ

∗
i , (9.18j)

(u∗,w∗)(t) = arg min
u∈U nexp ,w∈W nexp

H (y∗(t),u,w,λ ∗(t), p), (9.18k)

0 ≤ M− z(tf), (9.18l)

0 ≤ µ
∗, (9.18m)

0 = µ
∗T (M− z(tf)) (9.18n)

with i = 1 . . .nexp and y,λ , f̃ defined as above.
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Proof. Follows directly from applying the maximum principle (9.4) to the control problem
(9.13) and taking the partial derivatives of the Hamiltonian (9.17) and the objective function
φ(·) of the OED control problem with respect to the state variables xi(·),Gi(·),F(·) and zi(·).

This corollary serves as a basis for further analysis. A closer look at (9.18k) and the Hamiltonian
reveals structure.

Corollary 9.5.2. The Hamiltonian H decouples with respect to ui(·) and wi(·) for all experi-
ments i= 1 . . .nexp. Hence the optimal controls ui∗(·) and wi∗(·) can be determined independently
from one another for given states y∗(·), adjoints λ ∗(·) and parameters p.

Proof. Follows directly from Equation (9.17) and the fact that f i(·) and the partial derivatives
f i
x(·) and f i

p(·) do not depend on the sampling functions wi(·).
Let w̃T = (w1,∗T (t), . . . ,wi−1,∗T

(t),wiT ,wi+1,∗T
(t), . . . ,wnexp,∗T )(t), then

wi∗(t) = argminwi∈W H (y∗(t),u∗(t), w̃,λ ∗(t), p)

= argminwi∈W

〈
λF
∗,wi

(
hi

x(·)Gi∗)T (
hi

x(·)Gi∗)〉+λ ∗zi wi.
(9.19)

Likewise, the experimental controls ui∗(·) are given as

ui∗(t) = argminui∈U H (y∗(t), ũ,w∗(t),λ ∗(t), p)

= argminui∈U λ ∗Txi f i(·)+
〈
λGi
∗, f i

x(·)Gi∗+ f i
p(·)
〉 (9.20)

because the measurement function h(·) and its partial derivative do not depend explicitly on
u(·).

We would like to stress that the decoupling of the control functions holds only in the sense of
necessary conditions of optimality, and for given optimal states and adjoints. Clearly they may
influence one another indirectly. We come back to this issue in Section 9.5.1.
A closer look at equation (9.19) reveals that the sampling control function w(·) enters linearly
into the Hamiltonian. This implies that the sign of the switching function determines whether
w(·) ∈ [0,wmax] is at its lower or upper bound, which corresponds in our case to integer feasibil-
ity, w(·) ∈ {0,wmax}.

Definition 9.5.3. (Local and Global Information Gain)
The matrix Pi(t) ∈ Rnp×np

Pi(t) := P(xi(t),Gi(t)) :=
(
hi

x(x
i(t))Gi(t)

)T (
hi

x(x
i(t))Gi(t)

)
is called local information gain matrix of experiment i. Note that Pi(t) is positive semi-definite,
and positive definite if the matrix hi

x(x
i(t))Gi(t) has full rank np.
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If F∗−1(tf) exists, we call

Π
i(t) := F∗−1(tf)Pi(t)F∗−1(tf) ∈ Rnp×np

the global information gain matrix.

We use Corollary 9.5.2 as a justification to concentrate our analysis on the case of a single
experiment. Hence we leave the superscript i away for notational convenience, assuming nexp =

1, and come back to the multi experiment case in Section 9.5.2.

Definition 9.5.4. (Switching function)
The derivative of the Hamiltonian (9.17)

Hw(t) :=
∂H (·)

∂w
= 〈λF(t),P(t)〉+λz(t)

is called switching function with respect to w(·). The derivative

Hu(t) :=
∂H (·)

∂u
=

∂

∂u

(
λ
∗T
x f (·)+

〈
λG
∗, fx(·)Gi∗+ fp(·)

〉)
is called switching function with respect to u(·).

We are now set to investigate the conditions for either measuring or not at a time t for different
objective functions. From now on we assume that (y∗,u∗,w∗,λ ∗,µ∗)(·) is an optimal trajectory
of the relaxed optimal control problem (9.13) with nexp = 1 and W = [0,wmax], and hence a
solution of the boundary value problem (9.18).

Lemma 9.5.5. (Maximize trace of Fisher matrix)
Let φ(F(tf)) = φ F

A (F(tf)) =−trace(F(tf)) be the objective function of the OED problem (9.13),
and let w∗(·) be an optimal control function. If

trace(P(t)) > µ
∗

for t ∈ (0, tf), then there exists a δ > 0 such that w∗(t) =wmax almost everywhere on [t−δ , t+δ ].

Proof. As w∗(t) is the pointwise minimizer of the Hamiltonian and according to Corollary 9.5.2
it decouples from the other control functions, and as it enters linearly, it is at its upper bound of
wmax whenever the sign of the switching function is positive. The switching function is given by

Hw(t) = 〈λ ∗F(t),P(t)〉+λ
∗
z (t).
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With Corollary 9.5.1 we have

Hw(t) =

〈
−∂φ(F(tf))

∂F
,P(t)

〉
−µ

∗

=

〈
−∂−trace(F(tf))

∂F
,P(t)

〉
−µ

∗.

Applying Lemma 9.8.2 from the Appendix we obtain

Hw(t) = trace(P(t))−µ
∗.

As trace(P(t)) is differentiable with respect to time, there exists a time interval of positive mea-
sure around t where this expression is also positive, which concludes the proof.

Lemma 9.5.6. (Minimize trace of Covariance matrix)
For the assumptions of Lemma 9.5.5, but the objective function

φ(F(tf)) = φ
F
C (F(tf)) = trace(C(tf)),

the sufficient condition for w∗(t) = wmax in an optimal solution is that

trace(Π(t))> µ
∗

holds.

Proof. The argument is similar to the one in Lemma 9.5.5. We have

Hw(t) = −

〈
∂ trace(F∗−1(tf))

∂F
,P(t)

〉
−µ

∗

= −

〈
∂ trace(F∗−1(tf))

∂F−1 ,
∂F∗−1(tf)

∂F
P(t)

〉
−µ

∗

Note here that the expression ∂F∗−1(tf)
∂F P(t) is a matrix in Rnp×np by virtue of Definition 9.1.2.

Applying Lemma 9.8.2 from the Appendix we obtain

Hw(t) = −trace

(
∂F∗−1(tf)

∂F
P(t)

)
−µ

∗

To evaluate the directional derivative of the inverse operation we apply Lemma 9.8.3 and obtain

Hw(t) = trace
(

F∗−1(tf)P(t)F∗
−1(tf)

)
−µ

∗

which concludes the proof, as Π(t) = F∗−1(tf)P(t)F∗−1(tf).
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Lemma 9.5.7. (Minimization of max eigenvalue of Covariance matrix)
For the assumptions of Lemma 9.5.5, but the objective function

φ(F(tf)) = φ
C
E (F(tf)) = max{λ : λ is eigenvalue of C(tf))},

the sufficient condition for w∗(t) = wmax in an optimal solution is that, if λmax is a single eigen-
value,

vT
Π(t)v > µ

∗

holds, where v ∈ Rnp is an eigenvector of C(tf) to λmax with norm 1.

Lemma 9.5.8. (Minimization of determinant of Covariance matrix)
For the assumptions of Lemma 9.5.5, but the objective function

φ(F(tf)) = φ
C
D(F(tf)) = det(C(tf)),

the sufficient condition for w∗(t) = wmax in an optimal solution is that

det(C∗(tf))
np

∑
i, j=1

(F∗(tf))i, j (Π(t))i, j > µ
∗

holds.

The proofs of Lemmata 9.5.7 and 9.5.8 and for other objective functions are similar to the one
in Lemma 9.5.6, making use of the Appendix Lemmata 9.8.4 and 9.8.5.
The local information gain matrix P(t) is positive definite, whenever the measurement function
is sensitive with respect to the parameters. This attribute carries over to the matrix state F(·) in
which P(t) is integrated, to the covariance matrix function (as the inverse of a positive definite
matrix is also positive definite), and to the product of positive definite matrices. The considered
functions of P(t) and Π(t) are hence all positive values, compare, e.g., Lemma 9.8.1.
This implies for non-existent constraints on the number of measurements with µ∗ = 0 the trivial
conclusion that measuring all the time with w(t)≡ wmax is optimal.
In the more interesting case when the constraint c(z∗(tf)) =M−z∗(tf)≥ 0 is active, the Lagrange
multiplier µ∗ indicates the threshold. The Lagrange multipliers are also called shadow prices, as
they indicate how much one gains from increasing a resource. In this particular case relaxing the
measurement bound M would yield the information gain µ∗ in the objective function φ(·).
The main difference between using the Fisher information matrix F(·) and the covariance ma-
trix C(·) = F−1(·), e.g., in Lemmata 9.5.5 and 9.5.6, lies in the local P(t) and global Π(t) =
F−1(tf)P(t)F−1(tf) information gain matrices that yield a sufficient criterion, respectively. The
fact that the sufficient criterion for a maximization of the Fisher information matrix does not
depend on the value of F−1(tf) has an important consequence. Modifying the value of w(t), e.g.,
by rounding, does not have any recoupling effect on the criterion itself. Therefore, whenever
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w(t) 6∈ {0,wmax} on different time intervals, one can round these values up and down (making
sure that

∫
T w(τ) dτ keeps the value of M) to obtain a feasible integer solution with the same

objective function value. This is not the case when we have a Covariance objective function, as
measurable modifications of w(t) have an impact on F(tf) and hence also on F−1(tf) and the
sufficient criterion.
The procedure for the case with finitely many measurements that enter as noncontinuous jumps
in finite difference equations (9.11) is very similar to the one above, only some definitions would
need to be modified. The main results are identical and we have the same criteria to validate
whether the control values wi

j are on their upper bound of wmax or not. The main difference
is that measurements in the continuous setting average the information gain on a time interval,
whereas point measurements are on the exact location of the maxima of the global information
gain function.

9.5.1 Singular Arcs

As we saw above, the sampling controls w(t) enter linearly into the control problem. If for
control problems with linear controls the switching function is zero on an interval of positive
measure, one usually proceeds by taking higher order time derivatives of the switching function
to determine an explicit representation of this singular control, which may occur if at all in
even degree time derivatives as shown by [142]. This approach is not successful for sampling
functions in experimental design problems.

Lemma 9.5.9. (Infinite order of singular arcs)
Let nu = 0. For all values j ∈ N the time derivatives S j := d j

dt j Hw(t) never depend explicitly on
w(·).

Proof. The switching functions above are functions of either P(t) or in the case of a Covariance
objective function of F∗−1(tf)P(t)F∗−1(tf). Taking the time derivative only affects P(t). We see
that in

dP(t)
dt

=
d(hx(x(t))G(t))T (hx(x(t))G(t))

dt

= 2(hx(x(t))G(t))T d(hx(x(t))G(t))
dt

= 2(hx(x(t))G(t))T (hxx(x(t))ẋ(t)G(t)+hx(x(t))Ġ(t)
)

= 2(hx(x(t))G(t))T (hxx(x(t)) f (x(t),u(t), p)G(t)

+ hx(x(t))( fx(x(t),u(t), p)G(t)+ fp(x(t),u(t), p)))

only time derivatives of x(·) and G(·) appear. Also in higher order derivatives F(·) and z(·) never
enter, and as nu = 0 no expressions from a singular control u∗(·) may appear, hence also w(·)
never enters in any derivative.
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The assumption that nu = 0 is rather strong though. It is an open and interesting question,
whether one can construct non-trivial instances of OED control problems for which the joint
control vector (u,w)(·) is a singular control. This would imply that the interplay of the singular
controls results in a constant value of the global information gain matrix Π(t) on a measurable
time interval.

9.5.2 L1 Penalization and Sparse Controls

We are interested in how changes in the formulation of the optimization problem influence the
role of the global information gain functions. We first consider a L1 penalty term in the objective
function. We are going back to the multi-experiment case and use the upperscript i = 1 . . .nexp.

Corollary 9.5.10. (Switching function for L1 penalty)
Let H old

wi (·) denote the switching function for problem (9.13) and H penalty
wi (·) the switching

function with respect to wi(·) for problem (9.13) with an objective function that is augmented by
a Lagrange term,

min
xi,Gi,F ,zi,ui,wi

φ(F(tf))+
∫

T

nexp

∑
i=1

ε
iwi(τ) dτ.

Then it holds
H penalty

wi (t) = H old
wi (t)− ε

i

Proof. By definition (9.2) of the Hamiltonian we have

H penalty(t) = H old(t)−
nexp

∑
i=1

ε
iwi(t)

which already concludes the proof.

Corollary 9.5.10 allows a direct connection between the penalization parameter ε and the in-
formation gain function. For the minimization of the trace of the covariance matrix, compare
Lemma 9.5.6, this implies that a sufficient condition for wi∗(t) = wmax is

trace
(
Π

i(t)
)
> ε

i +µ
i∗.

As a consequence, an optimal sampling design never performs measurements when the value of
the trace of the information gain function is below the penalization parameter ε i.
The case is similar for the time discrete OED problem (9.11). Assume we extend the objective
with a penalization term

nexp

∑
i=1

ni
t

∑
j=1

Ltr(wi
j) =

nexp

∑
i=1

ni
t

∑
j=1

ε
i wi

j,
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then the derivative of the discrete Hamiltonian (9.8) with respect to the control wi
j is again

augmented by −ε i.

9.5.3 L2 Penalization and Singular Arcs

An alternative penalization is a L2 penalization of the objective function with a Lagrange term

∫
T

nexp

∑
i=1

ε
i wi(τ)2 dτ.

This formulation has direct consequences. As the controls ui(·) and wi(·) decouple, compare
Corollary 9.5.2, the optimal sampling design may be on the boundary of its domain, or can be
determined via the necessary condition that the derivative of the Hamiltonian with respect to
wi(·) is zero, i.e.,

wi(t) =
1
ε i trace

(
Π

i(t)
)
−µ

i∗

for the case of the minimization of the trace of the covariance matrix. This implies that wi(·)
may be a singular control with fractional values w(t) ∈ (0,wmax). Hence, we discourage to use
this formulation.

9.6 Numerical examples

In this section we illustrate several effects with numerical examples. Our analysis so far has been
based on the so-called first optimize, then discretize approach. Now we solve the numerical OED
problems with direct or first discretize, then optimize methods. In particular, we use the code MS

MINTOC that has been developed for generic mixed-integer optimal control problems by the
author. It is based on Bock’s direct multiple shooting method, adaptive control discretizations,
and switching time optimization. A comprehensive survey of how this algorithm works can be
found in [214]. Note however that there are many specific structures that can, should or even
have to be exploited to take into account the special structure of the OED control problems in
an efficient implementation. It is beyond the scope of this chapter to go into details, instead we
refer to [134, 157] for a more detailed discussion.
Having obtained an optimal solution, it is possible to evaluate the functions Πi(t) for an a pos-
teriori analysis. This is what we do in the following. As we have derived an explicit formula
for the switching functions Πi(t) in terms of primal state variables, we do not even have to use
discrete approximations of the adjoint variables.
Although the algorithm has also been applied to higher-dimensional problems, such as the bi-
molecular catalysis benchmark problem of [154], we focus here on two small-scale academic
benchmark problems, that allow us to illustrate many of the interesting features of optimal sam-
pling designs.
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9.6.1 One-dimensional academic example

We are interested in estimating the parameter p ∈ R of the initial value problem

ẋ(t) = p x(t), t ∈ [0, tf], x(0) = x0.

We assume x0 and tf to be fixed and are only interested in when to measure, with an upper bound
M on the measuring time. We can measure the state directly, h(x(t)) = x(t). The experimental
design problem (9.13) then simplifies to

min
x,G,F,z,w

1
F(tf)

subject to

ẋ(t) = p x(t),

Ġ(t) = p G(t)+ x(t),

Ḟ(t) = w(t) G(t)2,

ż(t) = w(t),

x(0) = x0, G(0) = F(0) = z(0) = 0,

w(t) ∈ W ,

0 ≤ M− z(tf)

(9.21)

with tf = 1, M = 0.2wmax.
Although problem (9.21) is as easy as an optimum experimental design problem can be, it allows
already to investigate certain phenomena that may occur. First, assume that x0 = 0. This implies
ẋ(t) = Ġ(t) = 0 for all t ∈T , and hence the degenerated case in which G(·)≡ 0 and the inverse
of the Fisher information matrix does not even exist. If we were to maximize a function of
the Fisher information matrix, the sampling design would be a singular decision, as there is no
sensitivity with respect to the parameter throughout.
If we choose an initial value of x0 6= 0, this degenerated case does not occur: obviously a 0 <

τ < tf exists such that
∫

τ

0 x(t) dt 6= 0 and hence also G(τ) 6= 0 and therefore F(tf)> 0. The global
information function for (9.21) is given by

Π(t) =
G(t)2

F(tf)2 .

As the matrix is one-dimensional, all considered criteria carry directly over to this expression.
The switching function for (9.21) is given by Hw = G2(t)

F2(tf)
− µ. Hence it is clear that a singular

arc with Hw = 0 can only occur on an interval [τs,τe] when Ġ(τ) = 0 for τ ∈ [τs,τe] almost
everywhere. With Ġ(τ) = pG(τ)+ x(τ) this would imply that also x(·) is constant on [τs,τe],
which is impossible for x0 6= 0. Therefore problem (9.21) with x0 6= 0 always has a bang-bang
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Figure 9.1: Linear optimum experimental design problem (9.21) with one state and one sampling function
for different values of p. Left: p =−0.5, right: p =−2.

solution with respect to w(·).

We choose x0 = 1 in the following. If G(·) happens to be a positive, monotonically increasing
function on T , then we can deduce that the optimal sampling w(·) is given by a 0−1 arc, where
the switching point is determined by the value of M. Such a scenario is obtained for the expected
optimal parameter value of p =−0.5, compare Figure 9.1 left.

The switching structure depends not only on functions and initial values, but may also depend on
the very value of p itself. An example with an optimal 0−1−0 solution is depicted in Figure 9.1
right for the value of p =−2. Here the optimal sampling is

w(t) =

{
0 t ∈ [0,τ]∪ [τ +0.2,1]

wmax t ∈ [τ,τ +0.2]
(9.22)

Figure 9.1 also illustrates the connection between the discrete-time measurements in Section 9.3.1
and the measurements on intervals as in Section 9.3.2. If the interval width is reduced, the so-
lutions eventually converge to a single point (argmaxt∈T Π(t)) and coincide with the optimal
solution of (9.11).

One interesting feature of one-dimensional problems is that the effect of additional measure-
ments is a pure scaling of Π(t), but not a qualitative change that would result in measurements
at different times. In other words: it is always optimal to measure as much as possible at the
point / interval in time where Π(t) has its maximum value. The measurement reduces the value
of Π(t), but its maximum remains in the same time point. This is visualized in Figure 9.6 left,
where the optimal sampling (9.22) for different values of wmax results in differently scaled Π(t).
We see in the next section that this is not necessarily the case for higher-dimensional OED prob-
lems.
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9.6.2 Lotka Volterra

We are interested in estimating the parameters p2, p4 ∈ R of the Lotka-Volterra type predator-
prey fish initial value problem

ẋ1(t) = p1 x1(t)− p2x1(t)x2(t)− p5u(t)x1(t), t ∈ [0, tf], x1(0) = 0.5,

ẋ2(t) =−p3 x2(t)+ p4x1(t)x2(t)− p6u(t)x2(t), t ∈ [0, tf], x2(0) = 0.7,

where u(·) is a fishing control that may or may not be fixed. The other parameters, the initial
values and tf = 12 are fixed, in consistency with a benchmark problem in mixed-integer optimal
control, [209]. We are interested in how to fish and when to measure, again with an upper bound
M on the measuring time. We can measure the states directly, h1(x(t)) = x1(t) and h2(x(t)) =
x2(t). We use two different sampling functions, w1(·) and w2(·) in the same experimental setting.
This can be seen either as a two-dimensional measurement function h(x(t)), or as a special case
of a multiple experiment, in which u(·), x(·), and G(·) are identical. The experimental design
problem (9.13) then reads

min
x,G,F ,z1,z2,u,w1,w2

trace
(
F−1(tf)

)
subject to

ẋ1(t) = p1 x1(t)− p2x1(t)x2(t)− p5u(t)x1(t),

ẋ2(t) = −p3 x2(t)+ p4x1(t)x2(t)− p6u(t)x2(t),

Ġ11(t) = fx11(·) G11(t)+ fx12(·) G21(t)+ fp12(·),
Ġ12(t) = fx11(·) G12(t)+ fx12(·) G22(t),

Ġ21(t) = fx21(·) G11(t)+ fx22(·) G21(t),

Ġ22(t) = fx21(·) G12(t)+ fx22(·) G22(t)+ fp24(·),
Ḟ11(t) = w1(t)G11(t)2 +w2(t)G12(t)2,

Ḟ12(t) = w1(t)G11(t)G12(t)+w2(t)G12(t)G22(t),

Ḟ22(t) = w1(t)G21(t)2 +w2(t)G22(t)2,

ż1(t) = w1(t),

ż2(t) = w2(t),

x(0) = (0.5,0.7),

G(0) = F(0) = 0,

z1(0) = z2(0) = 0,

u(t) ∈ U , w1(t) ∈W , w2(t) ∈W ,

0 ≤ M− z(tf)

(9.23)
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with tf = 12, p1 = p2 = p3 = p4 = 1, and p5 = 0.4, p6 = 0.2 and fx11(·) = ∂ f1(·)/∂x1 = p1−
p2x2(t)− p5u(t), fx12(·) = −p2x1(t), fx21(·) = p4x2(t), fx22(·) = −p3 + p4x1(t)− p6u(t), and
fp12(·) = ∂ f1(·)/∂ p2 =−x1(t)x2(t), fp24(·) = ∂ f2(·)/∂ p4 = x1(t)x2(t).
Note that the state F21(·) = F12(·) has been left out for reasons of symmetry. We start by looking
at the case where the control function u(·) is fixed to zero. In this case the states and the sensitiv-
ities are given as the solution of the initial value problem, independent of the sampling functions
w1(·) and w2(·). Figure 9.2 shows the trajectories of x(·) and G(·).
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G11(t)
G12(t)
G21(t)
G22(t)

Figure 9.2: States and sensitivities of problem (9.23) for u(·)≡ 0 and p2 = p4 = 1.

We set W = [0,1] and M = (4,4). The optimal solution for this control problem is plotted in Fig-
ure 9.3. It shows the sampling functions w1(·) and w2(·) and the trace of the global information
gain matrices

Π
1(t) = F−1(tf)

(
G11(t)2 G11(t)G12(t)

G11(t)G12(t) G21(t)2

)
F−1(tf) (9.24a)

Π
2(t) = F−1(tf)

(
G12(t)2 G12(t)G22(t)

G12(t)G22(t) G22(t)2

)
F−1(tf) (9.24b)

with F−1(tf) =

(
F11(tf) F12(tf)

F12(tf) F22(tf)

)−1

.

Comparing this solution that measures at the time intervals when the interval over the trace of
Π(t) is maximal to a simulated one with all measurements at the first four time intervals, the main
effect of the measurements seems to be a homogeneous downscaling over time, comparable to
the one-dimensional case in the last example. The value of what could be gained by additional
measurements is reduced by a factor of ≈ 10. These values for both measurement functions are,
as we have seen in the last section, identical to the Lagrange multipliers µ∗i . The numerical result
for these Lagrange multipliers are also plotted as horizontal lines in Figure 9.3. As one expects
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Figure 9.3: Optimal solution of problem (9.23) for u(·)≡ 0 and p2 = p4 = 1. Left: measurement of prey
state h1(x(t)) = x1(t). Right: measurement of predator state h2(x(t)) = x2(t). The dotted lines
show the traces of the functions (9.24) over time, their scale is given at the right borders of
the plots. One clearly sees the connection between the timing of the optimal sampling, the
evolution of the global information gain matrix, and the Lagrange multipliers of the total
measurement constraint.

they are identical to the maximal values of the trace of Π(t) outside of the time intervals in which
measurements take place.

The same is true for the optimal solution for problem (9.23), again with u(·)≡ 0 and M = (4,4),
but now p4 = 4. The difference in parameters results in stronger oscillations and differences
between the two differential states. The optimal sampling hence needs to take the heavy oscil-
lations into account and do measurements on multiple intervals in time, see Figure 9.4. As one
can observe, the optimal solution is a sampling design such that the values of the traces of Π(t)
at the border points of the wi ≡ 1 arcs are identical to the values of the corresponding Lagrange
multipliers. Hence, performing a measurement does have an inhomogeneous (over time) effect
on the scaling of Π(t). The coupling between measurements at different points in time, and
also between different experiments, takes place via the transversality conditions of the adjoint
variables.

The inhomogeneous scaling can also be observed in Figure 9.5, where a sampling design for
wmax = 20 is plotted. One sees that fewer measurement intervals are chosen and that the shape
of the local information gain function Π1(t) is different from the one in Figure 9.4.

The same effect – an inhomogeneous scaling of the information gain function – is the reason
why fractional values w(·) 6∈ {0,1} may be obtained as optimal values when fixed time grids
are used with piecewise constant controls. We use the same scenario as above, hence u(·) ≡ 0,
M = (4,4), and p4 = 4. Additionally we fix w2(·)≡ 0 and consider a piecewise constant control
discretization on the grid ti = i with i = 0 . . .12. We consider the trajectories for w1(t) = wi when
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Figure 9.4: Optimal solution of problem (9.23) for u(·) ≡ 0 and p2 = 1, p4 = 4. The traces of the infor-
mation gain functions have more local maxima, hence the sampling is distributed in time.
Note that the Lagrange multipliers indicate entry and exit of the functions into the intervals of
measurement.

t ∈ [ti, ti+1], i = 0 . . .11 with

w0 = w7 = w11 = 1, w1 = w3 = w4 = w6 = w7 = w8 = w10 = 0 (9.25)

and the three cases

w2 = 0.3413,w5 = 0.6587, (9.26a)

w2 = 0.6413,w5 = 0.3587, (9.26b)

w2 = 0.9413,w5 = 0.0587, (9.26c)

where the trajectory corresponding to (9.26b) is the optimal one, and the two others have been
slightly modified to visualize the effect of scaling the information gain matrix by modifying the
sampling design. See Figure 9.6 right for the corresponding information gain functions. One
sees clearly the inhomogeneous scaling. The optimal solution (9.26b) on this coarse grid is the
solution which scales the information gain function in a way such that the integrated values on
[2,3] and [5,6] are identical. To get an integer feasible solution with w(·) ∈ {0,1} we therefore
recommend to refine the measurement grid rather than rounding.

Next, we shed some light on the case where we have additional degrees of freedom. We choose
U = [0,1] and allow for additional fishing, again for the case p2 = p4 = 1. In Figure 9.7 left
one sees the optimal control u∗(·), which is also of bang-bang type. The effect of this control
is an increase in amplitude of the states’ oscillations, which leads to an increase in sensitivity
information, see Figure 9.7 right. The corresponding optimal sampling design is plotted in Fig-
ure 9.8. The timing is comparable to the one in Figure 9.3. However, the combination of control
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Figure 9.5: Optimal solution of problem (9.23) as in Figure 9.4, but now with wmax = 20. Comparing
trace Π1(t) to the one in Figure 9.4, one observes a modification and hence a change in the
number of arcs with w1(t)≡ 1. The objective function value is reduced, which is reflected in
the fact that the values of the optimal Lagrange multipliers µ∗i are smaller than in Figure 9.4.
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Figure 9.6: Left: Global information gain function for one-dimensional OED problem (9.21) and controls
w(·) obtained from (9.22) for different values of wmax. Note that the information gain matrix
is scaled uniformly over the whole time horizon. Right: Global information gain functions
for OED problem (9.23) and controls w(·) obtained from (9.25) and either one from (9.26b-
9.26c). One sees that the information gain matrix Π1(t) is scaled differently, depending on the
values of w2 and w5. The optimal solution (9.26b) on this coarse grid is the solution which
scales the information gain function in a way such that the integrated values on [2,3] and [5,6]
are identical.

function u∗(·) and the sampling design leads to a concentration of information in the time inter-
vals in which measurements are being done. This is best seen by comparing the values of the
Lagrange multipliers in Figure 9.3 of µ∗ ≈ (1.8,2.6)10−3 versus the ones of Figure 9.8 with
µ∗ ≈ (3,3.6)10−4 which are one order of magnitude smaller.
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Figure 9.7: States and sensitivities of problem (9.23) for u(·) ∈ U = [0,1] and p2 = p4 = 1. See the
increased variation in amplitude compared to Figure 9.2.

As a last illustrating case study we consider an additional L1 penalty of the sampling design in
the objective function as discussed in Section 9.5.2. We consider problem (9.23) for u(·)≡ 0 and
p2 = p4 = 1 and M = ∞. The objective function now reads

min
x,G,F ,z1,z2,u,w1,w2

trace
(
F−1(tf)

)
+
∫

T
ε(w1(τ)+w2(τ)) dτ (9.27)

with ε = 1.
As can be seen in Figure 9.9, the L1 penalization has the effect that the optimal sampling func-
tions are given by

wi(t) =

{
wmax trace Πi(t)≥ ε

0 else
(9.28)

This implies that the value of ε in the problem formulation can be used to directly influence the
optimal sampling design. Especially for ill-posed problems with small values in the information
gain matrix Π(t) this penalization is beneficial from a numerical point of view, as it avoids flat
regions in the objective function landscape that might lead to an increased number of iterations.
Also it allows a direct economic interpretation by coupling the costs of a single measurement
to the information gain. To give an idea on the impact on the number of iterations until conver-
gence we consider an instance with both measurement functions, u(·) ∈ [0,1] and M = (6,6).
Dependent on the penalization value ε in (9.27) we get the following number of SQP iterations
(with default settings) with the optimal control code MUSCOD-II:

ε 0 10−3 10−2 10−1 1 10

SQP iterations 312 275 286 255 116 15
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Figure 9.8: Optimal sampling corresponding to Figure 9.7. Note the reduction of the Lagrange multiplier
by one order of magnitude compared to Figure 9.3 due to the amplification of states and
sensitivities.
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Figure 9.9: Optimal sampling for problem (9.23) with objective function augmented by linear penalty
term

∫
T ε(w1(τ)+w2(τ)) dτ . The sampling functions wi(t) are at their upper bounds of 1 if

and only if trace Πi(t)≥ ε = 1.

The optimal solutions are of course different, hence a comparison is somewhat arbitrary. How-
ever, it at least gives an indication of the potential.
We discourage to use a L2 penalization as discussed in Section 9.5.3. It often results in sensitivity
seeking arcs with values in the interior of W , and there is no useful economic interpretation.

9.7 Summary

We have applied the integer gap theorem and the maximum principle to an optimal control for-
mulation of a generic optimum experimental design problem. Thus we were able to analyze the
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role of sampling functions that determine when measurements should be performed to maxi-
mize the information gain with respect to unknown model parameters. We showed the similarity
between a continuous time formulation with measurements on intervals of time, and a formula-
tion with measurements at single points in time. We defined the information gain functions that
apply to both formulations as the result of a theoretical analysis of the necessary conditions of
optimality. Based on information gain functions we were able to shed light on several aspects,
both theoretical as by means of two numerical examples.
Differences between Fisher and Covariance Objective Function. We showed that the infor-
mation gain matrix for a Fisher objective function has a local character, whereas the one for a
covariance objective function includes terms that depend on differential states at the end of the
time horizon. This implies that measurements effect the information gain function in the covari-
ance objective case, but not in the Fisher objective case. This noncorrelation for a maximization
of a function of the Fisher information matrix has direct consequences: integral-neutral rounding
of fractional solutions does not have any influence on the objective function. It also means that
other experiments do not influence the choice of the measurements. Third, providing a feedback
law in the context of first optimize then discretize methods is possible. All this is usually not
true for Covariance Objective Functions.
Scaling of Global Information Gain Function by Measuring. Taking measurements changes
the global information matrix Π(t). The impact may be in form of a uniform downscaling, but
also as a nonhomogeneous over time modification. In the latter case it is not optimal to take as
many measurements as possible in one single point of time, as is the case for a Fisher objective
function or one-dimensional problems, if one allows more than one measurement per time point
/ interval. The coupling between the information function and the measurement functions takes
place via the transversality conditions, thus the impact also carries over to other experiments and
measurement functions.
Role of Lagrange multipliers. We showed that the Lagrange multipliers of constraints that limit
the total number of measurements on the time horizon give a threshold for the information gain
function. Whenever the function value is higher, measurements are performed, otherwise the
value of w is 0.
Role of additional control functions. We used a numerical example to exemplarily demonstrate
the effect of additional control functions on the shape of the information gain function.
Role of fixed grids and piecewise constant approximations. For the practically interesting
case that optimizations are performed on a given measurement grid we showed that fractional
solutions may be optimal. We recommend to further refine the measurement grid instead of
rounding.
Penalizations and ill-posed problems. By its very nature, optimal solutions result in small val-
ues of the global information gain function. This explains why OED problems are often ill-posed
if the upper bounds on the total amount of measurements are chosen too high: additional mea-
surements only yield small contributions to the objective function once the other measurements
have been placed in an optimal way. As a remedy to overcome this intrinsic problem of OED we
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propose to use L1 penalizations of the measurement functions. We showed that the penalization
parameter can be directly interpreted in terms of the information gain functions. Therefore such
a formulation would couple the costs of a measurement to a minimum amount of information
it has to yield, which makes sense from a practical point of view. Of course, the value of ε can
also be decreased in a homotopy.

9.8 Appendix: useful lemmata

In this Appendix we list useful lemmata we use in this chapter.

Lemma 9.8.1. (Positive trace)
If A ∈ Rn×n is positive definite, then trace(A)> 0.

Proof. As A is positive definite, it holds xT Ax > 0 for all x∈Rn, in particular for all unit vectors.
Hence it follows aii > 0 for all i = 1 . . .n and thus trivially trace(A) = ∑

n
i=1 aii > 0.

Lemma 9.8.2. (Derivative of trace function)
Let A be a quadratic n×n matrix. Then〈

∂ trace(A)
∂A

,∆A
〉

= trace(∆A). (9.29)

Proof.〈
∂ trace(A)

∂A
,∆A

〉
= lim

h→0

trace(A+h∆A)− trace(A)
h

= lim
h→0

h trace(∆A)
h

= trace(∆A).

Lemma 9.8.3. (Derivative of inverse operation)
Let A ∈ GLn(R) be an invertible n×n matrix. Then

∂A−1

∂A
·∆A = −A−1

∆AA−1. (9.30)

Lemma 9.8.4. (Derivative of eigenvalue operation)
Let λ (A) be a single eigenvalue of the symmetric matrix A ∈Rn×n. Let z ∈Rn be an eigenvector
of A to λ (A) with norm 1. Then it holds〈

∂λ (A)
∂A

,∆A
〉

= zT
∆Az. (9.31)
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Lemma 9.8.5. (Derivative of determinant operation)
Let A ∈ Rn×n be a symmetric, positive definite matrix. Then it holds〈

∂det(A)
∂A

,∆A
〉

= det(A)
n

∑
i, j=1

A−1
i, j ∆Ai, j. (9.32)

Proofs for the Lemmata 9.8.3, 9.8.4, and 9.8.5 can be found in [154].
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10 Outlook

As summarized in the introduction, it was the goal of this thesis to advance the state-of-the-
art of mixed-integer nonlinear optimal control. With the presented methods it is possible to
solve MIOCPs constrained by ordinary differential equations or differential algebraic equations,
whenever the continuous relaxations of the outer convexifications are solvable. This is a huge
advantage compared to combinatorial algorithms like Branch&Bound that add an outer level of
complexity and increase the number of optimization problems that need to be solved drastically.

Also, the methodology allows to incorporate additional characteristics, such as multiple objec-
tives [170], control delays (Chapter 6), uncertainties that can be formulated by means of scenario
trees (Chapter 6), or that are additionally constrained by combinatorial constraints (Chapter 5).
Also, the results form the basis for efficient nonlinear model predictive control algorithms that
solve mixed-integer nonlinear optimal control problems in real time, compare [143]. Several
benchmark problems have been addressed, including whole problem classes as optimum exper-
imental design in Chapter 9 or novel application areas for optimization, as complex problem
solving in Chapter 8.

Yet, there are still many open questions and challenges remaining, such as
• whether the theory carries over to the case of time–dependent partial differential equations

and whether the algorithms can be adapted in a straightforward way. This is certainly pos-
sible, whenever a “Method of Lines” approach is taken, however there might be pitfalls
whenever the spatial discretization becomes an issue.
• what to do with spatially distributed integer controls. Apparently the successful Sum Up

Rounding strategy makes use of the “ordering” of the time–axis. In higher dimensions this
can only be done, if the process is directed. An analogous theory for “checker-boarding”
is still missing, although there are many interesting ideas around in the area of topology
optimization.
• how stochastic differential equations can be treated in this deterministic setting.
• the development of even more efficient numerical algorithms, especially in combination with

the increasingly dominating multi-core architectures.
• the issue of global optimization and a coherent integration with simultaneous optimal control

methods.
• structure–exploitation for specific applications as gas, water or commodity networks and for

whole problem classes, such as optimum experimental design.
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quardt, J.P. Schlöder, and O.v. Stryk. Introduction to model based optimization of chemi-
cal processes on moving horizons. In M. Grötschel, S.O. Krumke, and J. Rambau, editors,
Online Optimization of Large Scale Systems: State of the Art, pages 295–340. Springer,
2001.

[38] Robert E. Bixby, Mary Fenelon, Zonghao Gu, Edward Rothberg, and Roland Wunderling.
Mixed-integer programming: A progress report. In The Sharpest Cut: The Impact of
Manfred Padberg and His Work. SIAM, 2004.

[39] H.G. Bock. Numerical treatment of inverse problems in chemical reaction kinetics. In
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[41] H.G. Bock, E. Kostina, and J.P. Schlöder. Numerical methods for parameter estimation
in nonlinear differential algebraic equations. GAMM Mitteilungen, 30/2:376–408, 2007.

[42] H.G. Bock and R.W. Longman. Optimal control of velocity profiles for minimization of
energy consumption in the new york subway system. In Proceedings of the Second IFAC
Workshop on Control Applications of Nonlinear Programming and Optimization, pages
34–43. International Federation of Automatic Control, 1980.

[43] H.G. Bock and R.W. Longman. Computation of optimal controls on disjoint control sets
for minimum energy subway operation. In Proceedings of the American Astronomical
Society. Symposium on Engineering Science and Mechanics, Taiwan, 1982.

[44] H.G. Bock and K.J. Plitt. A Multiple Shooting algorithm for direct solution
of optimal control problems. In Proceedings of the 9th IFAC World Congress,
pages 242–247, Budapest, 1984. Pergamon Press. Available at http://www.iwr.uni-
heidelberg.de/groups/agbock/FILES/Bock1984.pdf.

[45] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee,
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[123] G. Häckl. Reachable sets, control sets and their computation, volume 7 of Augsburger
Mathematisch-Naturwissenschaftliche Schriften. Dr. Bernd Wißner, Augsburg, ISBN: 3-
89639-019-8 1996. Dissertation, Universität Augsburg, Augsburg, 1995.

[124] S.P. Han. Superlinearly convergent variable-metric algorithms for general nonlinear pro-
gramming problems. Mathematical Programming, 11:263–282, 1976.

[125] E. Hellström, M. Ivarsson, J. Aslund, and L. Nielsen. Look-ahead control for heavy trucks
to minimize trip time and fuel consumption. Control Engineering Practice, 17:245–254,
2009.
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[193] A. Potschka, H.G. Bock, and J.P. Schlöder. A minima tracking variant of semi-infinite
programming for the treatment of path constraints within direct solution of optimal con-
trol problems. Optimization Methods and Software, 24(2):237–252, 2009.

[194] M.J.D. Powell. Algorithms for nonlinear constraints that use Lagrangian functions. Ma-
thematical Programming, 14(3):224–248, 1978.

[195] Adrian Prata, Jan Oldenburg, Andreas Kroll, and Wolfgang Marquardt. Integrated
scheduling and dynamic optimization of grade transitions for a continuous polymerization
reactor. Computers and Chemical Engineering, 32:463–476, 2008.

[196] F. Pukelsheim. Optimal Design of Experiments. Classics in Applied Mathematics 50.
SIAM, 2006. ISBN 978-0-898716-04-7.

[197] W. Putz-Osterloh. Über die Beziehung zwischen Testintelligenz und Problemlöseerfolg.
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238


	Zusammenfassung
	Abstract
	Contents
	1 Introduction
	1.1 Goals of this thesis
	1.2 Outline of this thesis
	1.3 Contributions to the international state-of-the-art

	2 Overview: Mixed–Integer Optimal Control
	2.1 Introduction
	2.2 Dynamic programming
	2.3 Indirect approach to optimal control
	2.4 Direct approach to optimal control
	2.5 Theory for control-affine systems
	2.6 Reformulations
	2.7 Algorithms
	2.8 More general problem classes
	2.9 Summary

	3 The Integer Approximation Error in Mixed-Integer Optimal Control
	3.1 Introduction
	3.2 Approximating differential states
	3.3 Approximating the integral over the controls by sum up rounding
	3.4 Extension to the nonlinear case
	3.5 Connection to the optimization problem
	3.6 Numerical example
	3.7 Summary

	4 Block Structured Quadratic Programming
	4.1 Introduction
	4.2 Direct multiple shooting for optimal control
	4.3 Condensing to obtain a dense quadratic problem
	4.4 Block structured quadratic programming: ``complementary condensing''
	4.5 Example: a vehicle control problem with gear shift
	4.6 Extensions
	4.7 Summary

	5 Combinatorial Integral Approximation
	5.1 Introduction
	5.2 Approximation results
	5.3 Approximating the integral over the controls by MILP techniques
	5.4 Solving the MILP
	5.5 Numerical results
	5.6 Summary

	6 Uncertainty and Delays in a Conspicuous Consumption Model
	6.1 Introduction
	6.2 Model formulation
	6.3 Numerical treatment
	6.4 Results
	6.5 Summary

	7 A MIOC Benchmark Library
	7.1 Introduction
	7.2 Classifications
	7.3 F-8 flight control
	7.4 Lotka Volterra fishing problem
	7.5 Fuller's problem
	7.6 Subway ride
	7.7 Resetting calcium oscillations
	7.8 Supermarket refrigeration system
	7.9 Elchtest testdrive
	7.10 Elliptic track testdrive
	7.11 Simulated moving bed
	7.12 Discretizations to MINLPs
	7.13 Summary

	8 Optimization as an Analysis Tool for Human Complex Problem Solving
	8.1 Introduction
	8.2 Tailorshop MINLP model
	8.3 Optimization and numerical results
	8.4 A correct indicator function for Tailorshop
	8.5 Summary
	8.6 Appendix

	9 On Sampling Decisions in Optimum Experimental Design
	9.1 Introduction
	9.2 Indirect approach to optimal control
	9.3 Optimum experimental design problems
	9.4 Applying the integer gap lemma to OED
	9.5 Analyzing relaxed sampling decisions
	9.6 Numerical examples
	9.7 Summary
	9.8 Appendix: useful lemmata

	10 Outlook
	Bibliography

