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1 Introduction

One very intuitive way of understanding what this work is about is to think of a
simple switch that can be either on or off. This switch is connected to a complex
system and influences it in a certain way. The question we wantto answer for such
systems is: given a mathematical model, constraints and an objective function,
how can we operate the switch in an optimal way?We refer to problems of this
type asmixed–integer optimal control problems. The main focus of this paper lies
on the control functionsw(·). Typical examples are the choice of gears in transport,
[63], [25] or processes involving valves instead of pumps, [50], [29].

Whereas the term ”optimal control” is commonly agreed to denote the opti-
mization of processes that can be described by an underlyingsystem of (partial)
differential and algebraic equations with so–called control functions, there are sev-
eral names for optimal control problems containing binary or integer variables in
the literature. Sometimes it is referred to asmixed–integer dynamic optimizationor
mixed-logic dynamic optimization(MIDO or MLDO, see, e.g., [44]), sometimes
ashybrid optimal control(e.g., [3], [62] or [17]), sometimes as a special case of
mixed–integer nonlinear program(MINLP) optimization. As controls that take
only values at their boundaries are known asbang–bang controlsin the optimal
control community, very often expressions containing bang–bang are used, too
(e.g., [40]). Although there may be good reasons for each of these names, we will
use the expressionsmixed–integer optimal control(MIOC) andmixed–integer op-
timal control problem(MIOCP). The reason is that the expressionmixed–integer
describes very well the nature of the variables involved andis well–established in
the optimization community, whileoptimal controlis used for the optimization of
control functions and parameters in dynamic systems, whereas the term dynamic
optimization might also refer toparameter estimationor optimal experimental
design.

Although the first MIOCPs, namely the optimization of subwaytrains that
are equipped with discrete acceleration stages, were already solved in the early
eighties by [13] for the city of New York, the so–calledindirect methodsused
there do not seem appropriate for generic large–scale optimal control problems
with underlying nonlinear differential algebraic equation systems. Insteaddirect
methods, in particularall–at–once approaches, [14], [7], [10], have become the
methods of choice for most practical problems, see [11] for an overview.

Several authors treat optimal control problems in chemicalengineering where
binary parameters often occur as design alternatives, e.g., the location of the feed
tray for distillation columns or a mode of operation. This isoften done by as-
suming phase equilibrium or a steady state of the process, and solving a static
optimization problem, e.g., [20], [27], or by solving time–dependent dynamic sub-
problems, e.g., [56] or [44]. The algorithmic approaches are extensions of the al-
gorithms developed for MINLPs, possibly in a form that is based on disjunctive
(or logic–based) programming, see [65] or [43]. A comparison between results
from integer programming and from disjunctive programmingis given in [27].

As most practical optimization problems in engineering arenonconvex, several
authors extended methods from static optimization that seek the global optimum,
e.g., [21] and [45]. Both present spatial Branch & Bound algorithms for dynamic
systems. For spatial Branch & Bound schemes that are built upon an underestima-
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tion of the objective function and an overestimation of the feasible set by appro-
priate convex functions, in [22] considerable progress is claimed. In [9] and [35]
theoretical results on when optimal control problems are convex are determined.
In [18] a global solution for a special class of MIOCPs could be given.

In the theory of hybrid systems one distinguishes betweenstate dependentand
controllable switches. For the first class, the switching between different modelsis
caused by states of the optimization problem, e.g., ground contact of a robot leg or
overflow of weirs in a distillation column. For the second class, which is the one
we are interested in here, the switchings are degrees of freedom. Algorithms for
the first class are given in [8] and [15]. For the second class the literature, e.g., [61],
reports mainly on discrete time problems, for which the optimization problem
is equivalent to a finite–dimensional one which can be solvedby methods from
MINLP. However, this only works for small problems with limited time horizons,
see [64].

Theoretical results on hybrid systems have been determined, e.g., in [62] and
[57]. Based onhybrid maximum principlesor extensions ofBellman’s equation
approaches to treat switched systems have been proposed, e.g., in [58], [4] or [1],
that extendindirect methodsor dynamic programming. In [30], [31], [36] and [47]
a switching time approachrelated to the one described in section 4.4 is used.

Direct methods have also been applied to problems includingdiscrete valued
control functions. A direct simultaneous method to solve MIOCPs has been con-
sidered, e.g., in [41]. A direct sequential approach, i.e.,direct single shooting,
has been applied in [2] and [6]. In [16] a water distribution network in Berlin
with on/off pumps is investigated, using a problem specific,nonlinear, continu-
ous reformulation of the control functions. In [25] an approach related to the one
proposed in section 4.4 is described, building upon a variable time transforma-
tion. In [63] powertrain control of heavy duty trucks is treated with a rounding
heuristics for the optimal gear choice on a fixed control discretization in a model
predictive control context. [17] and [60] focus on problemsin robotics, applying
a combination ofBranch and Boundanddirect collocation.

All named approaches to MIOCPs and in particular to the treatment of bi-
nary control functions are limited in their applicable problem class or suffer from
excessive computing times. Especially brute–force approaches that apply tech-
niques likeNonlinear Branch and Boundor Outer Approximationon models that
have been discretized in time, will fail because of the high number of integer vari-
ables. This high number again is necessary as an adequate representation of the
dynamics of the processes requires a fine discretization in the control functions,
see [64].

We present theoretical results that guarantee the maximal lower bound, as-
sumed optimal control problems with purely continuous control functions can be
solved to global optimality. Furthermore we propose a method that can be ap-
plied to a broad class of mixed–integer optimal control problems, involving alge-
braic variables, continuous control functions, continuous and binary parameters
and path as well as interior point constraints. It is meant towork for systems re-
gardless of the type of solution from a theoretical point of view, i.e., whether an
optimal trajectory contains bang–bang resp. constraint–seeking or compromise–
seeking arcs in the sense of [59]. And it shall solve problemsfitting into this prob-
lem class to optimality without any a priori assumptions on the solution structure.
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Our method is based on an all–at–once approach, namely thedirect multiple
shooting method[14] that has been applied successfully to a huge variety of chal-
lenging problems in industry and research and has certain advantages compared
to other methods of optimal control. We treat the binary control functions by it-
erating on an adaptive refinement of the control discretization grid, making use
of a convex (with respect to the binary control functions) relaxation of the orig-
inal optimal control problem. We prove that this reformulated problem yields an
objective value that can be reached up to any givenε > 0 by binary control func-
tions. Upper bounds are obtained by solution of intermediate problems with fixed
dimension on the given control discretization grids.

2 Problem formulation

Many dynamic process optimization problems of practical relevance can be ex-
pressed as multistage optimal control problems in DAEs, see, e.g., [37]. We extend
a well established problem formulation by additional integer1 variables. We are in-
terested in solvingmultistage mixed-integer optimal control problems(MSMIOCP)
of the following form:

min
xk,zk,wk,uk,v,p

nmos−1

∑
k=0

Ek (xk(t̃k+1),v, p) (1a)

subject to the DAE model stages (from now onk = 0. . .nmos−1)

ẋk(t) = fk(xk(t),zk(t),wk(t),uk(t),v, p), t ∈ [t̃k, t̃k+1], (1b)

0 = gk(xk(t),zk(t),wk(t),uk(t),v, p), t ∈ [t̃k, t̃k+1], (1c)

control and path constraints

0 ≤ ck(xk(t),zk(t),uk(t),v, p), t ∈ [t̃k, t̃k+1], (1d)

interior point inequalities and equalities withki denoting the index of a model
stage containingti , that is,ti ∈ [t̃ki , t̃ki+1],

0 ≤ r ieq(xk0(t0),xk1(t1), . . . ,xknms
(tnms),v, p), (1e)

0 = req(xk0(t0),xk1(t1), . . . ,xknms
(tnms),v, p), (1f)

binary admissibility of allwk(·)

wk(t) ∈ {0,1}nwk , t ∈ [t0, t f ], (1g)

integer constraints on some of the parameters

v ∈ {0,1}nv , (1h)

and stage transition conditions in simplified form

xk+1(t̃k+1) = xk(t̃k+1). (1i)

1 We restrict ourselves to binary variables in{0,1} as most relevant problems can be trans-
formed into such a formulation



Mixed–Integer Optimal Control Methods 5

We introduced a finite numbernmosof intermediate time points̃tk whenever a new
model stage begins into the set of time pointsti that are used for interior point
constraints, see (1e-1f). We obtain a set ofnms ordered time points

t0 ≤ t1 ≤ ·· · ≤ tnms = t f (2)

and an ordered subset{t̃0, t̃1, . . . , t̃nmos} with t̃0 = t0, t̃nmos = tnms = t f .
We assume that the Mayer termsEk(xk(t̃k+1),v, p)2 as well as the functions

fk(·), ck(·), andr ieq(·), req(·) are twice differentiable.
The vectorsxk, zk, wk, uk for each stagek and the parameter vectorsv andp are

of dimensionsnx, nz, nw, nu, nv andnp, respectively. If general transition functions
instead of (1i) are used, compare [37], these dimensions maydiffer from stage to
stage. As this is of no relevance for our considerations here, we will use the special
case.

We will need the notion of admissibility of trajectories.

Definition 1 (Admissibility)
A trajectory(xk(·),zk(·),wk(·),uk(·),v, p) is said to be admissible if all xk(·) are
absolutely continuous, wk(·) and uk(·) are measurable and essentially bounded.
We will say it is binary admissible, whenever (1g) is fulfilled. The trajectory is said
to be feasible if it is admissible and satisfies all constraints of problem (1). We say
that control functions(ŵk(·), ûk(·)) are admissible resp. feasible, if there exists at
least one admissible resp. feasible trajectory(xk(·),zk(·), ŵk(·), ûk(·),v, p).

We assume that the DAEs (1b-1c) are of index one, i.e., the derivatives of the
algebraic right hand side functionsgk : [t̃k, t̃k+1]×R

nx ×R
nz ×R

nw ×R
nu ×R

nv ×
R

np 7→ R
nz with respect tozk, namely∂gk/∂zk ∈ R

nz×nz, are non-singular. This
allows us to formally transform the DAE into an ODE. We will restrict ourselves
in the following to the case where no algebraic variables arepresent to simplify
notation, but without loss of generality if the index one assumption holds. For
problems involving algebraic variables and an efficient practical treatment in the
context of convexifications we refer to [48] and an upcoming publication.

3 Determining lower bounds

In Integer Programming lower bounds play a crucial role. ForMSMIOCPs heuris-
tics are available and will be presented in the next section,but their applicability
depends crucially on a lower bound that guarantees anε-optimality of the solu-
tion. Relaxation of the integer requirements is one possibility to obtain such a
lower bound. Unfortunately such bounds are typically very weak even in the case
of static mixed–integer linear programs. We present a reformulation of the non-
linear MIOCP into a related problem without binary restrictions on the control
functions. An optimal solution, if it exists and can be found, which may still be a
very tackling problem, will yield the maximal lower bound. In the following we
will assume that either optimal control problems with purely continuous control

2 note that Lagrange terms
∫ t̃k+1

t̃k
Lk(xk(t),zk(t),wk(t),uk(t),v, p)dt as well as explicit depen-

dencies ont may be transformed by introduction of additional differential state variables
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functions can be solved to global optimality by appropriateglobal approaches as
suggested, e.g., in [22,21,45,9,35,18], or that we are content with a local mini-
mum, as is often the case in many practical applications.

3.1 Convexification with respect to the binary controls

To clarify the line of argument, we will consider a special case of (1) first and dis-
cuss extensions later in subsection 3.3. In particular we treat a singlestage problem
without path constraints and assume given initial valuesx0.

Definition 2 (Nonlinear problem (BN) in binary form)
Problem (BN)3 is given by

min
x,w,u,v,p

E(x(t f )) (3a)

subject to the ODE system

ẋ(t) = f (x(t),w(t),u(t),v, p), t ∈ [t0, t f ], (3b)

with initial values

x(t0) = x0, (3c)

binary admissibility of w(·),

w(·) ∈ {0,1}nw , (3d)

and integer constraints on some of the parameters

v ∈ {0,1}nv . (3e)

We writeΦBN for the objective value obtained by a feasible solution.

Definition 3 (Nonlinear problem (RN) in relaxed form)
The relaxed problem is obtained by replacing constraint (3d) with w(·) ∈ [0,1]nw

and will be denoted as problem (RN)4 with corresponding optimal objective value
ΦRN. Note that constraint (3e) is not relaxed.

We will now convexify with respect to the binary control functionsw(·). Note that
whenever we use the expression ”convex” from now on this relates purely to the
space of the binary control functions, while the optimal control problem may still
be nonconvex in all other variables. Again we consider both,the binary and the
relaxed case.

3 for binary, nonlinear
4 for relaxed, nonlinear
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Definition 4 (Convexified linear problem (BC) in binary form)
Problem (BC)5 is given by

min
x,w̃,u,v,p

E(x(t f )) (4a)

subject to the ODE system

ẋ(t) =
nw̃

∑
i=1

f (x(t),wi,u(t),v, p) w̃i(t), t ∈ [t0, t f ], (4b)

with initial values

x(t0) = x0, (4c)

binary admissibility of the new control function vectorw̃ = (w̃1, . . . , w̃nw̃)T ,

w̃(·) ∈ {0,1}nw̃ , (4d)

the special ordered set property

nw̃

∑
i=1

w̃i(t) = 1, t ∈ [t0, t f ], (4e)

and integer constraints on some of the parameters

v ∈ {0,1}nv . (4f)

The vectors wi ∈ R
nw are fixed and enumerate all possible binary assignments of

w, i = 1. . .nw̃ = 2nw. We writeΦBC for the objective value obtained by a feasible
solution.

Definition 5 (Convexified linear problem (RC) in relaxed form)
The relaxed problem is obtained by replacing constraint (4d) with w̃(·) ∈ [0,1]nw̃

and will be denoted as problem (RC)6 with corresponding optimal objective value
ΦRC.

Remark 6 We assign one control functioñwi(·) to every possible control wi ∈
{0,1}nw . In the worst case, this corresponds to nw̃ = 2nw vertices of the hypercube.
In practice however often there is a finite set of admissible choices resp. most of
the vertices can be excluded logically. Here nw̃ would correspond to the number of
these feasible choices. Examples are the selection of a gear[63], of a distillation
column tray [48] or of an inlet stream port [50]. In all examples nw̃ is linear
in the number of choices. Furthermore, in most practical applications the binary
control functions enter linearly (such as valves that indicate whether a certain
term is present or not). Therefore the drawback of an increased number of control
functions is outweighted by the advantages concerning the avoidance of binary
variables associated with the discretization in time for most applications we know
of.

5 for binary, convex (with respect tow)
6 for relaxed, convex (with respect tow)
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3.2 Bounds

We defined four problem classes in the preceding section, namely binary and re-
laxed optimal control problems that are either nonlinear orlinear in the control
functionsw resp.w̃. We will now investigate how solutions of the different prob-
lems correlate to one another.

Theorem 7 (Comparison of binary solutions)
If problem (BC) has an optimal solution(x∗, w̃∗,u∗,v∗, p∗) with objective value
ΦBC, then there exists an nw–dimensional control function w∗(·) such that the
trajectory(x∗,w∗,u∗,v∗, p∗) is an optimal solution of problem (BN) with objective
valueΦBN and

ΦBC = ΦBN.

The converse holds as well.

Proof. Assume(x∗, w̃∗,u∗,v∗, p∗) is a minimizer of (BC). As it is feasible, we
have the special ordered set property (4e) and with ˜w∗

i (·) ∈ {0,1} for all i =
1. . .2nw it follows that there exists one index 1≤ j(t) ≤ 2nw for all t ∈ [t0, t f ]
such that ˜w∗

j(t)(t) = 1 andw̃∗
i (t) = 0 for all i 6= j(t). The binary control function

w∗(t) := wj(t), t ∈ [t0, t f ]

is therefore well–defined and yields for fixed(x∗,u∗, p∗) an identical right hand
side function value

f (x∗(t),w∗(t),u∗(t),v∗, p∗) = f (x∗(t),wj(t),u∗(t),v∗, p∗)

=
2nw

∑
i=1

f (x∗(t),wi,u∗(t),v∗, p∗) w̃∗
i (t)

compared to the feasible and optimal solution(x∗, w̃∗,u∗,v∗, p∗) of (BC). Thus
the vector(x∗,w∗,u∗,v∗, p∗) is a feasible solution of problem (BN) with objective
valueΦBC = ΦBN. Now assume there was a feasible solution(x̂, ŵ, û, v̂, p̂) of (BN)
with objective valueΦ̂BN < ΦBC. As the set{w1, . . . ,w2nw} contains all feasible
assignments of ˆw, one has again an index functionĵ(·) such thatŵ can be written
as

ŵ(t) := w ĵ(t), t ∈ [t0, t f ].

With the same argument as above ˜w defined as

w̃i(t) =

{

1 i = ĵ(t)
0 else

i = 1, . . . ,2nw, t ∈ [t0, t f ],

is feasible for (BC) with objective valuêΦBN < ΦBC which contradicts the opti-
mality assumption. Thus(x∗,w∗,u∗, p∗) is an optimal solution of problem (BN).

The converse of the statement is proven with the same argumentation starting
from an optimal solution of (BN).
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A relaxation of (BN) to (RN) may enlarge the reachable set andtypically yields a
large integer gap of the optimal objective function value. Theorem 8 investigates
whether this is also the case for (RC) and (BC). For the proof of this theorem we
will need the theorem of Krein–Milman and the Gronwall lemma. Both are given
in the appendix.

Theorem 8 (Comparison of solutions of the convexified problem)
Let problem (RC) have a feasible solution(x∗, w̃∗,u∗,v∗, p∗) with objective value
ΦRC.

Let furthermore f(x,w,u∗,v∗, p∗) with fixed(u∗,v∗, p∗) be globally Lipschitz
continuous with respect to x(·) for all admissible binary controls w(·).

Then for any givenε > 0 there exists a binary admissible control function̄w
and a state trajectorȳx such that(x̄, w̄,u∗,v∗, p∗) is a feasible solution of problem
(BC) with objective valueΦBC and

ΦBC ≤ ΦRC+ ε.

Proof. The proof can be split up in several elementary steps.

1. Assume we have a feasible solution(x∗, w̃∗,u∗,v∗, p∗) of (RC) that is feasible
and in particular fulfills

w̃∗ ∈ Ω =

{

w : [t0, t f ] 7→ [0,1]nw̃ with
nw̃

∑
i=1

wi(t) = 1, t ∈ [t0, t f ]

}

. (5)

Ω is weak-∗-compact in the weak-∗ topology ofL∞. We fix (x∗,u∗,v∗, p∗)T

and regardf̃ as a function of ˜w only:

f̃ (w̃) :=
nw̃

∑
i=1

f (x∗,wi ,u∗,v∗, p∗) w̃i ,

pointwise, all functions evaluated almost everywhere in[t0, t f ]. We define the
sets

ΓN =

{

w̃∈ Ω :
∫ tk+1

tk
f̃ (w̃) dt =

∫ tk+1

tk
f̃ (w̃∗) dt, k = 0. . .N−1

}

where the time pointstk depend onN and are given by

tk+1 = tk +
t f − t0

N
, k = 0. . .N−1.

2. The linear operatorsTk defined by

Tkw̃ =

∫ tk+1

tk

nw̃

∑
i=1

f (x∗,wi ,u∗,v∗, p∗) w̃i dt

are continuous. Since for a continuous operator the inverseimage of a closed
set is closed and the intersection of finitely many closed sets is closed, also

ΓN =
N−1⋂

k=0

T−1
k (Tk(w̃

∗)) = {w̃∈ Ω | Tk(w̃) = Tk(w̃
∗),k = 0, . . . ,N−1}
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is closed. Furthermore it is convex and nonempty for allN, asw̃∗ ∈ ΓN. As
ΓN ⊂ Ω is closed, nonempty, and convex andΩ is weak-∗-compact inL∞, ΓN
is weak-∗-compact as well.

3. Since the weak-∗-topology is a Hausdorff topology, the nonemptyness and
compactness ofΓN allows the application of the Krein–Milman theorem 12.
Hence,ΓN has an extreme point ¯wN = (w̄N,1, . . . , w̄N,nw̃).

4. The functions ¯wN,i : [t0, t f ] 7→ [0,1] take values almost everywhere in{0,1}.
Otherwise there is a contradiction to ¯wN being an extreme point as one can
construct two functions inΓN of which w̄N is a nontrivial convex combination,
as follows.
Suppose ¯wN ∈ ΓN, but w̄N ∈ {0,1}nw̃ almost everywhere was not true. In this
case there exists a setE1 ⊂ [tk, tk+1] for an index 0≤ k< N and a functionζ (·)
nonzero onE1 and zero elsewhere on[t0, t f ] with

∫

E1

nw̃

∑
i=1

f (x∗,wi ,u∗,v∗, p∗) ζi(τ) dτ = 0, (6)

andw̄N ±ζ fulfills (5).
The proof of this statement will be by induction on the dimension nx of f (·)
(the dimension ofx is kept fixed, though). Let us first consider the casenx = 1.
We write f i

j = f j(x∗,wi ,u∗,v∗, p∗) for the j–th entry of the function vectorf .
As w̄N ∈ {0,1}nw̃ almost everywhere is not true, there is at least one index
0≤ k < N, one setE1 ⊂ [tk, tk+1] with positive measure and aδ > 0 such that

||w̄N(t)−σ i||2 > δ > 0, t ∈ E1, i = 1. . .nw̃. (7)

Here theσ i enumerate all vertices of the polytope[0,1]nw̃ that are inΩ , that
is, all unit vectors. LetE2 ⊂ E1 be such that bothE2 and its complementE3 :=
E1−E2 have positive measure. This is possible for a nonatomic measure as
the Lebesgue measure. We partition the setE2 into nw̃ setsE2,i by defining

E2,i = {t ∈ E2 with i = argmin|w̄N(t)−σ i|, smallest index if not unique}.

Obviously
⋃

i E2,i = E2, E2,i ∩E2, j = {} for i 6= j and eachE2,i is measurable.
Next we define a functionζ2(·) : [t0, t f ] 7→ [0,1]nw̃ by

ζ2(t) =

{
0 t ∈ [t0, t f ]−E2

1
2(w̄N(t)−σ i) t ∈ E2,i

Because of (7)ζ2 6= 0. Furthermore ¯wN ± ζ2 ∈ Ω , asζ2 is defined such that
w̄N(t)±ζ2(t) ∈ [0,1]nw̃ for all t ∈ [t0, t f ] and it holds fort ∈ E2,k

nw̃

∑
i=1

(w̄N,i(t)±ζ2,i(t)) =
nw̃

∑
i=1

w̄N,i(t)±
1
2
(

nw̃

∑
i=1

w̄N,i(t)−
nw̃

∑
i=1

σk
i ) = 1.

We define similarly a functionζ3(·) onE3 andζ (t) = α2ζ2(t)+α3ζ3(t). Now
it is clearly possible to chooseα2 andα3 such that

|α2| ≤ 1, |α3| ≤ 1, |α2|+ |α3| > 0 (8)
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and
∫

E1

nw̃

∑
i=1

f i
1 ζi(τ) dτ = α2

∫

E2

nw̃

∑
i=1

f i
1 ζ2,i(τ) dτ +α3

∫

E3

nw̃

∑
i=1

f i
1 ζ3,i(τ) dτ

= 0. (9)

The induction step is performed in a similar way. By induction hypothesis (6)
with E1 replaced byE2 resp.E3 we have nonzero measurable functionsζ2(·)
andζ3(·) such that

∫

E2

nw̃

∑
i=1

f i
j ζ2,i(τ) dτ = 0, (10)

∫

E3

nw̃

∑
i=1

f i
j ζ3,i(τ) dτ = 0, (11)

for j = 1. . .nx − 1, ζ2(·) and ζ3(·) are identical zero on[t0, t f ]− E2 resp.
[t0, t f ]−E3 andw̄N±ζ2, w̄N±ζ3 fulfill (5). Again we defineζ (t) = α2ζ2(t)+
α3ζ3(t) and chooseα2 andα3 such that (8) and the integral of the last compo-
nent vanishes overE1

∫

E1

nw̃

∑
i=1

f i
nx

ζi(τ) dτ = α2

∫

E2

nw̃

∑
i=1

f i
nx

ζ2,i(τ) dτ +α3

∫

E3

nw̃

∑
i=1

f i
nx

ζ3,i(τ) dτ

= 0.

Because of (5) and
∫ tk+1

tk

nw̃

∑
i=1

f i (w̄N,i(τ)±ζi(τ)) dτ =
∫ tk+1

tk

nw̃

∑
i=1

f i w̄N,i(τ) dτ

we have ¯wN ± ζ ∈ ΓN. This is a contradiction to ¯wN being an extreme point.
Therefore the functions ¯wN,i : [t0, t f ] 7→ [0,1] take values in{0,1} almost ev-
erywhere.

5. With fixed(w̄N,u∗,v∗, p∗)T we define ¯xN(·) as the unique solution of the ODE
(4b-4c). Uniqueness and existence follow from the Lipschitz continuity of f (·)
and therewith also of̃f (·). We write f̄ (x, w̃) for ∑nw̃

i=1 f (x,wi ,u∗,v∗, p∗) w̃i and
| · | for the Euclidean norm|| · ||2. It remains to show that|x̄N(t f )−x∗(t f )| gets
arbitrarily small for increasingN as this ensures that the continuous Mayer
term does so, too. We have

|x∗(t)− x̄N(t)|=
∣
∣
∣
∣

∫ t

t0
f̄ (x∗, w̃∗)− f̄ (x̄N, w̄N) dτ

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ t

t0
f̄ (x∗, w̃∗)− f̄ (x∗, w̄N)+ f̄ (x∗, w̄N)− f̄ (x̄N, w̄N) dτ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

t0
f̄ (x∗, w̃∗)− f̄ (x∗, w̄N) dτ

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

t0
f̄ (x∗, w̄N)− f̄ (x̄N, w̄N) dτ

∣
∣
∣
∣

(12)



12 S. Sager et al.

For a fixedN and a givent we define 0≤ k∗ < N as the unique index such that
tk∗ ≤ t < tk∗+1. The first term of (12) can then be written as

∣
∣
∣
∣

∫ t

t0
f̄ (x∗, w̃∗)− f̄ (x∗, w̄N) dτ

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ tk∗

t0
f̄ (x∗, w̃∗)− f̄ (x∗, w̄N) dτ +

∫ t

tk∗
f̄ (x∗, w̃∗)− f̄ (x∗, w̄N) dτ

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

∫ tk∗

t0
f̃ (w̃∗)− f̃ (w̄N) dτ

︸ ︷︷ ︸

=0, asw̄N∈ΓN

+

∫ t

tk∗
f̃ (w̃∗)− f̃ (w̄N) dτ

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤√
nx

∫ t

tk∗

∣
∣ f̃ (w̃∗)

∣
∣+

∣
∣ f̃ (w̄N)

∣
∣ dτ ≤ √

nx 2M (t f − t0) / N.

M is the supremum of| f̃ (·)| on the compact set[0,1]nw̃ with all other argu-
ments fixed to(x∗,u∗,v∗, p∗). As N is free, it can be chosen such that

∣
∣
∣
∣

∫ t

t0
f̄ (x∗, w̃∗)− f̄ (x∗, w̄N) dτ

∣
∣
∣
∣
≤ δe−

√
nxK|t f −t0| (13)

for any givenδ > 0, whereK is the Lipschitz constant off (·) resp. f̄ (·) with
respect to the state variablex. The second term of (12), by Lipschitz continuity

∣
∣
∣
∣

∫ t

t0
f̄ (x∗, w̄N)− f̄ (x̄N, w̄N) dτ

∣
∣
∣
∣
≤ √

nx K
∫ t

t0
|x∗− x̄N| dτ (14)

depends on an estimation of|x∗− x̄N|. With (13) we have

|x∗(t)− x̄N(t)| ≤ δe−
√

nxK|t f −t0| +
√

nx K
∫ t

t0
|x∗(τ)− x̄N(τ)| dτ. (15)

An application of the Gronwall inequality 13 gives

|x∗(t)− x̄N(t)| ≤ δe−
√

nxK|t f −t0| e
√

nxK|t−t0| ≤ δ (16)

for all t ∈ [t0, t f ].
6. The Mayer termE(x(t f )) is a continuous function ofx, hence for allε > 0 we

can find aδ > 0 such that

E(x̄(t f )) ≤ E(x∗(t f ))+ ε

for all x̄ with |x̄(t f )− x∗(t f )| < δ . For thisδ we find anN sufficiently large
such that there is a binary admissible function ¯w = w̄N and a state trajectory
x̄ = x̄N with |x̄(t f )−x∗(t f )| < δ and(x̄, w̄,u∗,v∗, p∗) is a feasible trajectory.
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One of the main ideas of the proof is the approximation of the optimal state tra-
jectoryx∗(·). As shown in the proof,x∗(·) can be approximated arbitrarily close,
uniformly. It is possible though that the state trajectory of a non–bang–bang so-
lution cannot be obtained by a bang–bang solution, althoughthe state trajectories
obtained by bang–bang controls lie dense in the space of state trajectories obtained
by relaxed controls. An example is given in [66].

Parts of the proof are similar to that of the bang–bang principle and can be
found, e.g., in [28]. [42] and [5] showed that the principle can be generalized from
a linear system of the form ˙x = Ax+ Bw to the convex hull of a function. We
extended this result to transfer the results to the control–affine case needed for (4)
and the applications under consideration here. Subsuming the results obtained so
far, we can now state the final result of this section.

Theorem 9 (Comparison of solutions)
If problem (RC) has an optimal solution(x∗, w̃∗,u∗,v∗, p∗) with objective value
ΦRC, then for any givenε > 0 there exists a binary admissible control functionw̄
and a state trajectorȳx such that(x̄, w̄,u∗,v∗, p∗) is a feasible solution of problem
(BC) with objective valueΦBC and a nw–dimensional control function w such that
(x̄,w,u∗,v∗, p∗) is a feasible solution of problem (BN) with objective valueΦBN

and it holds

ΦRN ≤ ΦRC ≤ ΦBC = ΦBN ≤ Φ̂BN

and

ΦBN = ΦBC ≤ ΦRC+ ε,

where Φ̂BN is the objective function value of any feasible solution to problem
(BN).

Proof. Feasibility follows from the fact that ¯w is constructed as an extreme point
of a setΓN with values in{0,1} and is therefore feasible. The corresponding state
trajectory is determined such as to guarantee admissibility. These results transfer
directly to the solution(x̄,w,u∗,v∗, p∗) of problem (BN), see theorem 7.

ΦRC≤ ΦBC holds as the feasible set of the relaxed problem (RC) is a superset
of the feasible set of problem (BC). The equalityΦBN = ΦBC is given by theorem
7. The global minimumΦBN is not larger by definition than any feasible solution
Φ̂BN. Theorem 8 states thatΦBC ≤ ΦRC+ ε for any givenε > 0. It remaines to
show thatΦRN ≤ ΦRC. AssumeΦRN > ΦRC. Setε = (ΦRN−ΦRC)/2, then we
have

ΦBN = ΦBC ≤ ΦRC+ ε < ΦRN,

which contradictsΦRN ≤ ΦBN as the feasible set of problem (RN) is a superset of
the one of problem (BN).

Theorem 9 is a theoretical result. If an optimal control problem has non–bang–
bang arcs, a bang–bang solution may have to switch infinitelyoften in a finite
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time interval to approximate it. This behavior is referred to aschatteringin the
optimal control community, [66]. The first example of an optimal control problem
exhibiting chattering behavior was given in [23]. In the engineering community
this behavior is calledZeno’s phenomenon, e.g., [67]. For our purposes we do
not have to care about chattering resp. Zeno’s phenomenon too much, as we are
interested in an approximate, near–optimal solution on a finite control grid only.
Knowing the best objective value that can be achieved with a bang–bang control,
we can stop an iterative process to adapt the control grid when we get closer than a
prescribed tolerance to this optimal value, obtaining a control with a desired finite
number of switches only.

3.3 Extensions

In the previous subsection we investigated a special case ofproblem (1) for no-
tational simplicity. In this subsection we will deliver the– simple – arguments to
extend theorem 9 in a nonformal way.

If the initial valuex0 is not fixed, but also free for optimization as in periodic
processes, then we fix this value obtained by the relaxed solution in the very same
way as(u∗,v∗, p∗) before.

For the path constraints (1d) and the interior point constraints (1e-1f) we need
to specify a priori additional tolerancesεc,εr > 0. These inequalities and equalities
can then only be guaranteed to be fulfilled up to these tolerances, which is anyway
the case once numerical algorithms are applied. As all functions are assumed to
be continuous, we can chooseδ > 0 in

|x̄(t)−x∗(t)|< δ , t ∈ [t0, t f ]

in the proof of theorem 8 as a minimum of the values necessary to ensure that the
objective function, the path controls and the interior point constraints are within
the prescribed tolerancesε, εc resp.εr .

Note that the path constraints (1d) may not depend explicitly on w(·) itself,
otherwise the result would not hold anymore. Consider the pathological one–
dimensional example with control constraints given by

0≤ c(w) =

(
1−10−n−w(t)

w(t)−10−n

)

, n≥ 1. (17)

These constraints exclude all binary solutionsw(t)∈{0,1}, while relaxed controls
might still be feasible. Thus it is obvious that no general bang–bang theorems are
possible for general path and control constraintsc(·) and open questions remain
that may be the topic of future research. As the main problem,a (pointwise) de-
viation between a relaxed (optimal) and any binary control with respect to the
L∞-norm that can not be driven to zero will be hard to overcome, we recommend
problem–specific analysis as performed, e.g., in [50,51].

The singlestage case can be transferred directly to the multistage one, as the
optimal trajectory depends continuously differentiable on the initial values of the
state variables. These values again can be approximated arbitrarily close with the
same argument as above.
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Theorem 9 has one very important consequence. To determine the optimal
continuous controlsuk(·)∗, parametersp∗ and binary parametersv∗, it is sufficient
to solve an associated control problem with relaxed binary control functions. For
v∗ fixed we may then in a second step find the optimal binary admissible control
functionsw̄k

∗(·). This decoupling of the computationally expensive integerprob-
lems to determine binary parameters and binary control functions is beneficial
with respect to the overall run time of a solution procedure.

4 Numerical methods

In this section we will present methods to solve MSMIOCPs numerically. We
start with a very brief introduction of the direct multiple shooting method. Then
we present concepts and algorithms that are important to obtain binary admissible
trajectories. They are heuristics that avoid the complexity one has to deal with if
one applies mixed–integer nonlinear programming techniques, [26]. Their combi-
nation and an iterative approach together with the maximal lower bound, see the
previous section, work particularly well in practice, though.

4.1 Direct multiple shooting

To solve MSMIOCPs one has to solve problems without integer variables (think of
problem (1) with relaxed (1g-1h)). The direct multiple shooting method [14] we
are using transforms the infinite dimensional optimizationproblem (1) into one
with finitely many degrees of freedom that can be treated efficiently with tailored
nonlinear optimization methods, e.g., sequential quadratic programming (SQP).

To this end the time horizon[t0, t f ] is divided into a number ofnms multiple
shooting intervals[ti, ti+1] with t0 < t1 < · · · < tnms = t f . On these intervals the
control functionsuj (t) are approximated by basis functions with finitely many pa-
rameters. We discretize the binary control functionsw(·) with piecewise constant
functions. We restrict the optimization space thus to functions that can be written
as

w(t) = qi , t ∈ [ti , ti+1], i = 0, . . . ,nms−1. (18)

The constantqi ∈R
nw have to take valuesqi ∈ {0,1}nw or, for the relaxed problem,

qi ∈ [0,1]nw to be admissible. The continuous control functionsu(·) are discretized
in a similar manner (not necessarily with constant functions), but in the following
qi will refer to a discretization ofw(·) exclusively for the sake of notational sim-
plicity. The underlying control discretization grid depends upon the numbernms
and positionsti of possible changes in the constant control function values. We
will refer to it as

G = {t0, t1, . . . , tnms}.

The differential algebraic equations (DAE) are solved independently on each of
the intervals. On intervali the initial value for the DAE solution is given bysy

i , sz
i

for differential and algebraic states. Consistency of the (often relaxed) algebraic
equations and continuity of the state trajectory at the multiple shooting grid points
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are incorporated as constraints into the nonlinear program(NLP). They are re-
quired to be satisfied only at the solution of the problem, notnecessarily during
the SQP iterations. This allows to easily incorporate information about the trajec-
tory behavior into the initial guess and leads to good convergence properties of the
multiple shooting method.

If the path constraints on the interval are relaxed to grid points only, only
finitely many optimization variables remain. These are the variablesqi that pa-
rameterize the control functions on intervali, the global parametersp, the time
horizon lengthshi = t̃i+1− t̃i and the node valuessy

i ,s
z
i . If we write them in one

vector ξ = (qi , p,h,sy
i ,s

z
i ), rewrite the objective function asF(ξ ), subsume all

equality constraints with the consistency and continuity conditions into a function
G(ξ ) and all inequality constraints into a functionH(ξ ), then the resulting NLP
can be written as

min
ξ

F(ξ ) subject to 0= G(ξ ), 0≤ H(ξ ). (19)

This NLP can be solved with tailored iterative methods, exploiting the structure
of the problem. For more details, see [14], [37] or [38].

There are several approaches to treat optimal control problems numerically,
see [11] for an overview. We will discuss briefly, why we chosethe direct multiple
shooting method.

Theoretical results on hybrid systems have been determined, e.g., by [62] and
[57]. Based on hybrid maximum principles or extensions of Bellman’s equation
approaches to treat switched systems have been proposed, e.g., by [58], [4] or [1],
that extend indirect methods or dynamic programming. Still, indirect methods do
have severe disadvantages in practice compared to direct methods. The formula-
tion of the boundary value problem in a numerically stable way requires a lot of
know how and work. Furthermore already small changes in the value of a param-
eter or in the problem definition, e.g., an additional constraint, may change the
switching structure completely. Start values for all variables have to be delivered,
which is often difficult especially for the adjoints. This iscrucial, because one has
to start inside the convergence region of Newton’s method.

If path–constrained arcs are present, compare the example in section 5, indirect
methods have difficulties to come up with solutions for binary control functions.
[13] developed theCompeting Hamiltoniansmethod in 1982 to solve an uncon-
strained subway operation problem. In the case of velocity limits it is difficult to
identify the switching structure. This is usually done by applying a homotopy, but
this is costly as it has to be done anew for every change in the parameters and no
optimal finite switching structure does exist.

Among the direct approaches we prefer direct multiple shooting, as know-
ledge about the process behavior may be used for the initialization of the opti-
mization problem. Thus it is possible to treat highly nonlinear systems efficiently.
The algorithm is stable if the problem is well–posed, e.g., an unstable system with
a terminal constraint, because small perturbations do not spread over the whole
time horizon, but are damped out by the tolerances in the matching conditions.
Sequential approaches are only stable, if the system itselfis stable. Path and ter-
minal constraints are handled in a more robust way than in direct single shooting.
Although the optimization problem may get quite large in thenumber of variables,
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it has been applied successfully to large–scale problems, making use of structure
exploiting algorithms.

Condensing algorithms for the Hessian as proposed in [46] and [14] reduce
the dimensions of the matrices in the quadratic programs considerably to the size
of those of the direct single shooting approach. Together with high–rank block–
wise updates of the Hessian it reduces the computing time considerably. Other
structure exploiting measures are the relaxed formulationof algebraic conditions
and invariants that allows inconsistent iterates, [12], [55], and the projection onto
an invariant manifold to improve convergence and reduce thedegrees of freedom,
[54], [55] and [52]. Furthermore the intrinsic parallel structure with decoupled
problems can be used for an efficient parallelization, [24].The main difference
to the other all–at–once approach, collocation, lies in thefact that the differential
equations are still solved by integration. This allows the usage of state–of–the–art
error–controlled DAE integrators.

For more details on direct multiple shooting, see one of the aforementioned
works or in particular [14], [37] or [38]. An efficient implementation of the de-
scribed method is the software packageMUSCOD-II, see [19].

4.2 Control grid adaptivity

When control functions are discretized with piecewise constant functions (18), we
restrict the search for an optimal feasible trajectory to a subspace. In this space
there may be no feasible trajectory at all. If a feasible optimal solution exists,
it typically has a higher objective value than the optimal trajectory of the full,
relaxed, infinite–dimensional control space that will be denoted byT ∗ in the fol-
lowing. But the trajectories with piecewise constant controls, being a superset of
the trajectories with bang–bang controls, lie dense in the space of all trajectories.
In other words, given a toleranceε, one can always find a control discretization
t1 . . . tnms such that the Euclidean distance between the correspondingoptimal tra-
jectory andT ∗ is less thanε for each timet ∈ [t0, t f ]. The goal of this section is to
describe adaptivity in the control discretization gridG that serves two purposes:
first, we can use it to obtain an estimation for the optimal objective function value
of T ∗ via extrapolationand second, we can use it to get a grid on which we may
approximateT ∗ arbitrarily close with a bang–bang solution.

The control grid can be modified in two different ways to get a better objective
function value. The first one is to change the position of the time pointsti where
jumps in the controls may occur. This approach corresponds to the switching time
approach presented in subsection 4.4. The second way we willfollow here is to
insert additional time points.

When we add a time point where a control may change its constant value,
we enlarge the reachable set. In fact, the insertion of an additional time point
τ ∈ [ti , ti+1] is equivalent to leaving away the restriction

w(τ−) = w(τ+)

that enforces continuity of the constant controlw(·) on [ti , ti+1].
To show that uniform convergence towards trajectoryT ∗ is possible, we used

an equidistant control parameterization with an increasing numberN ≈ nms of in-
tervals in section 3. For practical purposes this is not a good approach for two
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Fig. 1 The main idea of an adaptive control grid. By inserting an additional time pointt2 +
γ(t3− t2) wherew(·) may change its value, the noninteger control 0< q2 < 1 is transformed to
two binary controls∈ {0,1} and the optimal objective value is reduced.

reasons. First, information from the previous solution cannot be reused directly
as the time points change in every iteration. Second, we losecomputational ef-
ficiency as the control discretization grid may be too fine in regions where it is
not necessary, e.g., where the control is at its upper bound for a considerable time
interval.

Let us consider two control discretization gridsG k andG k+1. If we keep all
time points when changing the gridG k to a finer gridG k+1, i.e.,G k ⊆ G k+1, and
if we insert time points only in intervals[tk

i , t
k
i+1] if 0 < q̃k

i < 1, where ˜qk is an
optimal solution of the relaxed problem with control discretization gridG k, both
drawbacks are avoided.

In optimal control theory one distinguishes between disjoint intervals called
arcs, depending on whether the control functions are at their respective bounds
(bang–bang) or in the interior, either because they are path–constrained or because
they maximize the Hamiltonian ([59] use the term sensitivity–seeking).

Obviously this distinction is very important in our context. If an optimal con-
trol is bang–bang, the main task will be to determine a gridG that includes the
switching times from one bound to another. The optimal relaxed solution will then
be bang–bang and therefore binary admissible. If it is not, we have to apply strate-
gies that depend on the underlying time grid — so we do refine this time grid, too,
but do not have to look for specific time points, but perform a bisection.

Depending on the value of ˜q we proceed as follows

q̃i = 0 ⇒ We assumew∗(t) = 0, t ∈ [ti, ti+1] (20a)

q̃i = 1 ⇒ We assumew∗(t) = 1, t ∈ [ti, ti+1] (20b)

0 < q̃i < 1 ⇒ add an additional time pointτ ∈ [ti , ti+1], (20c)

i.e., if q̃ is already integer on an interval, we do not refine the grid anymore. Other
approaches to automatically determine the switching structure take into account
the dual variables, see, e.g., [53], [33].

It remains to answer the question how to chooseτ. Let us first consider a single
controlw(·) with value 0< q̃i < 1 on an interval[ti, ti+1] andq̃i−1 = 1, q̃i+1 = 0,
as in figure 1. For this case we guess thatT ∗ consists of two bang–bang arcs on
[ti−1, ti+2] with the switching point

τ = ti + γ(ti+1− ti), 0 < γ < 1 (21)
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somewhere in the interval[ti , ti+1]. We write f (w) = f (x(t),z(t),w(t),u(t), p) to
determineγ . We would like to have

∫ ti+1

ti
f (q̃i) dt =

∫ τ

ti
f (1) dt +

∫ ti+1

τ
f (0) dt.

on [ti , ti+1], compare the right diagram of figure 1. A first order approximation,
which is exact for linear systems, yields

∫ ti+1

ti
f (0)+ fw q̃i dt =

∫ τ

ti
f (0)+ fw 1 dt +

∫ ti+1

τ
f (0) dt

which is equivalent to

q̃i

∫ ti+1

ti
fw dt =

∫ τ

ti
fw dt. (22)

τ can thus be determined by integration offw. For our purposes it turned out that
a further simplification yields good results. If we assumefw ≈ const. on [ti, ti+1]
for smallti+1− ti , we obtain an estimate

γ ≈ q̃i (23)

for τ from (22) that can be readily inserted without any additional calculations.
This is the motivation for a choice ofγ based on an estimated 1−0 structure. If
we assume that the structure ofT ∗ is first 0 and then 1, (23) becomes

γ ≈ 1− q̃i . (24)

In all other cases, i.e., either 0< q̃i−1 < 1 or 0< q̃i+1 < 1 or q̃i−1 = q̃i+1 a guess
on the optimal switching structure is hardly possible. Therefore we do a bisection,

γ =
1
2
, (25)

and rely on the iterative nature of the adaptivity to end up with a 0-1 resp. a 1-0
structure or a purely non–binary arc with several consecutive 0< q̃i < 1.

For the casenw > 1 we have to extend the algorithm. There are at least two
reasonable ways to determine adequateτ ’s for an interval[tk

i , t
k
i+1], if severalq̃j,i 6∈

{0,1}. The first is to add more than one time point by applying one of the rules
presented above to each control function. The second is to apply it only to a control
functionwj∗(·), if

min(q̃j∗,i ,1− q̃j∗,i) = max
j

min(q̃j,i ,1− q̃j,i),

i.e., it has the maximum integer violation of allj . As the introduction of additional
time points is part of an iterative procedure, the other functions are treated in future
iterations. The latter approach is the one we prefer.
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4.3 Rounding

Rounding strategies are based upon a fixed discretizationG of the control space.
Despite the fact that we have a finite–dimensional binary optimization problem,
there is a difference to generic static integer optimization problems, because there
is a ”connection” between some of thenw ·nms variables. More precisely we have
nw sets ofnms variables that discretize the same control function, only at different
times.

The rounding approach to solve problem (1) consists of relaxing the integer
requirementsqi ∈ {0,1}nw to q̃i ∈ [0,1]nw and to solve a relaxed problem first.
The obtained solution ˜q can then be investigated – in the best case it is an integer
feasible bang-bang solution and we have found an optimal solution for the integer
problem. In case the relaxed solution is not integer, one of the following rounding
strategies can be applied. The constant valuesqj,i of the control functionswj (t),
j = 1. . .nw andt ∈ [ti , ti+1], are fixed to

– Rounding strategy SR (standard rounding)

qj,i =

{
1 if q̃j,i ≥ 0.5
0 else .

– Rounding strategy SUR (sum up rounding)

qj,i =

{

1 if ∑i
k=0 q̃j,k−∑i−1

k=0qj,k ≥ 1
0 else

.

– Rounding strategy SUR-0.5 (sum up rounding with a differentthreshold)

qj,i =

{

1 if ∑i
k=0 q̃j,k−∑i−1

k=0qj,k ≥ 0.5
0 else

.

Fig. 2 One–dimensional example of the rounding strategies. From left to right the relaxed
solutionq̃ and solutionsq obtained by rounding strategy SR, SUR and SUR-0.5.

Figure 2 shows an illustrative example of the effect of the different rounding
strategies. For strategies SUR and SUR-0.5 the values of theq̃j,i are summed up
over the intervals to have

∫ t f

t0
wj (τ) dτ ≈

∫ t f

t0
w̃j (τ) dτ

for all j = 1. . .nw.
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Special care has to be taken if the control functions have to fulfill the spe-
cial ordered set type one restriction (4e) as it arises from aconvexification. Many
rounded solutions will violate it. Rounding strategy SR preserves this property
if and only if exactly one value ˜qj,i ≥ 0.5 exists on each intervali. For the sum
up rounding strategies this is not enough, the sum of severalcontrols may show
similar behavior over the multiple shooting intervals. Forproblems with the SOS1
property we therefore propose to use one of the following rounding strategies
that guarantee (4e). We fix the constant valuesqj,i of the control functionswj (t),
j = 1. . .nw andt ∈ [ti , ti+1], to

– Rounding strategy SR-SOS1 (standard)

qj,i =

{
1 if q̃j,i ≥ q̃k,i ∀ k 6= j and j < k ∀ k : q̃j,i = q̃k,i
0 else .

– Rounding strategy SUR-SOS1 (sum up rounding)

q̂j,i =
i

∑
k=0

q̃j,k−
i−1

∑
k=0

qj,k

qj,i =

{
1 if q̂j,i ≥ q̂k,i ∀ k 6= j and j < k ∀ k : q̂j,i = q̂k,i
0 else .

Rounding strategies yield trajectories that fulfill the integer requirements, but
are typically not optimal and often not even feasible. Nevertheless rounding strate-
gies may be applied successfully to obtain upper bounds in a Branch and Bound
scheme, to get a first understanding of a systems behavior or to yield initial val-
ues for the switching time optimization approach presentedin the next subsection.
Rounding strategy SUR-SOS1 is specifically tailored to the special ordered set re-
strictions that stem from the convexification and works wellfor a suitably chosen
discretization grid, as it reflects the typical switching behavior for non–bang–bang
arcs.

4.4 Switching time optimization

One possibility to solve problem (1) is motivated by the ideato optimize the
switching times and to take the values of the binary controlsfixed on given in-
tervals, as is done for bang-bang arcs in indirect methods. Let us consider a sin-
glestage problem with ˜nmos= 1 and the one–dimensional case,nw = 1. This sin-
glestage problem will be transformed into a multistage problem. Instead of the
controlw(·) : [t0, t f ] 7→ {0,1} we do getnmos fixed constant control functions

wk : [t̃k, t̃k+1] 7→ {0,1}
defined by

wk(t) =

{
0 if k even
1 if k odd , t ∈ [t̃k, t̃k+1] (26)

with k = 0. . .nmos−1 andt0 = t̃0 ≤ t̃1 ≤ ·· · ≤ t̃nmos = t f .
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Fig. 3 Switching time optimization, one–dimensional example with nmos= 5.

If we assume that an optimal binary control functionw(·) switches only finitely
often, then the original problem is equivalent to optimizing nmos and the time
vectort̃ in a multistage formulation (1) with allwk(t) fixed to either 0 or 1 and and
for positivehk ≥ 0 the additional constraint

nmos−1

∑
k=0

hk = t f − t0. (27)

In practice one will not optimize the switching points, but the scaled vectorh of
model stage lengthshk := t̃k+1 − t̃k, see [37,25]. This approach is visualized in
figure 3 withnmos= 5.

For fixednmos we have an optimal control problem that fits into the definition
of problem (1), where the stage lengthshk take the role of parameters that have
to be determined. The approach can be extended in a straightforward way to a
nw–dimensional binary control functionw(·). Instead of (26) one defineswk as

wk(t) = wi if k = j 2nw + i −1, t ∈ [t̃k, t̃k+1] (28)

for some j ∈ N0 and some 1≤ i ≤ 2nw. Thewi enumerate all 2nw possible assign-
ments ofw(·) ∈ {0,1}nw , compare section 3. A closer look at (28) shows some
intrinsic problems of the switching time approach. First, the number of model
stages grows exponentially not only in the number of controlfunctions, but also in
the number of expected switches of the binary control functions. Starting from a
given number of stages, allowing a small change in one of the control functions re-
quires additional 2nw stages. If it is indeed exactly one functionwi(·) that changes
while all others stay fixed, 2nw −1 of the newly introduced stages will have length
0. This leads to a second drawback, namely a nonregular situation that may oc-
cur when stage lengths are reduced to zero. Assume the lengthof an intermediate
stage, sayh2, has been reduced to zero by the optimizer. Then the sensitivity of
the optimal control problem with respect toh1 andh3 is given by the value of
their sumh1 + h3 only. Thus special care has to be taken to treat the case where
stage lengths diminish during the optimization procedure.In [30], [31] and [39]
an algorithm to eliminate such stages is proposed. This is possible, still the stage
cannot be reinserted, as the time when to insert it is undetermined.

The third drawback is that the number of switches is typically not known, left
alone the precise switching structure. Some authors propose to iterate onnmos
until there is no further decrease in the objective functionof the corresponding
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optimal solution, [30,31,39]. But it should be stressed that this can only be ap-
plied to more complex systems, if initial values for the location of the switching
points that are close to the optimum are available, as they are essential for the
convergence behavior of the underlying method. This is closely connected to the
fourth and most important drawback of the switching time approach. The refor-
mulation yields additional nonconvexities in the optimization space. Even if the
optimization problem is convex in the optimization variables resulting from a con-
stant discretization of the control functionw(·), the reformulated problem may be
nonconvex.

The mentioned drawbacks of the switching time optimizationapproach can be
overcome, though, if it is combined with a bunch of other concepts, compare [48,
25]. This includes rigorous lower and upper bounds, good initial values, a strategy
to deal with diminishing stage lengths and a direct all–at–once approach like direct
multiple shooting that helps when dealing with nonconvexities as discussed in
[48].

4.5 MS MINTOC

In this section we will bring together the concepts presented so far and formulate
our novel algorithm to solve mixed–integer optimal controlproblems. We will call
this algorithmmultiple shooting based mixed–integer optimal control algorithm,
in short MS MINTOC. The algorithm gets a user specified tolerance ε > 0 as
problem specific input.ε determines how large the gap between relaxed and binary
solution may be. Furthermore an initial control discretization grid G 0 is supplied
for which a feasible trajectory of the relaxed problem exists.

1. Convexify problem (1) with respect tow(·) as described in section 3.
2. Relax this problem to ˜w(·) ∈ [0,1]nw̃.
3. Solve this problem for control discretizationG 0, obtain the grid–dependent

optimal valueΦRC
G 0 of the trajectoryT 0.

4. Refine control discretization gridnext times7 as described in subsection 4.2
and obtainΦRC

G next as the objective function value on the finest gridG next. Set
ΦRC = ΦRC

G next to this upper bound onΦ∗ andT = T next.
5. If the optimal trajectory onG next is binary admissible then STOP elsek = next.
6. Fix the variablesu∗(·), p∗,v∗ and the initial valuesx∗0.
7. REPEAT

(a) Apply a rounding heuristics toT , see section 4.3.
(b) Use switching time optimization, see section 4.4, initializedwith the rounded

solution of the previous step. If the obtained trajectory isfeasible, obtain
upper boundΦSTO. If ΦSTO< ΦRC+ ε then STOP.

(c) Refine the control gridG k by a method described in section 4.2, based on
the control values of trajectoryT .

(d) Solve relaxed problem,T = T k, k = k+1.

The first four steps aim at finding a locally or globally optimal relaxed solution. To
be able to compare this solution to binary admissible ones onfiner grids, we iterate
on a refinement of the underlying control discretization grid to have an appropriate

7 determined, e.g., by an extrapolation criterion
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discretization of the infinite–dimensional control space (something one should do
anyway when applying direct methods for optimal control). The intention of the
loop in step 7. is a determination of feasible binary controlfunctionsw(·).

Note that the MS MINTOC algorithm is stated in a quite generalway, in par-
ticular nothing is said about the topic of how to solve the relaxed problems that
may still be nonconvex in the variablesx(·),z(·),u(·), p andv. This is done on
purpose to allow for both global as local approaches. The main point following
from section 3 is that whatever relaxed solution is found in steps 3. or 4., can
be approximated arbitrarily close by a binary solution. This is especially valuable
in the case of nonconvex problems that have to be solved by methods of global
optimization, as the main work to find a global optimum has to be done for the
continuous relaxation ofw(·) only and all other variables can be fixed afterwards
(step 6.). As these variables are fixed and the problem has been convexified with
respect tow(·), the resulting problems in step 7. will be convex. The main ques-
tion to be answered therefore is how to get a relaxed reference trajectory in the
first place.

While from a theoretical point of view the relaxed problems without binary
restrictions onw(·) are assumed to be solved globally by appropriate methods, in
practice we will follow an approach where local minima are considered to be suf-
ficient. In the latter case, which is also the basis for our practical implementation
used for the case study in section 5, the algorithm tends to approximate the locally
optimal relaxed trajectory.

For reasonable values ofε and all practical problems we investigated so far,
e.g., [34,48–51], only few iterations and the fast continuous heuristics were suffi-
cient to get convergence to a given tolerance. The followingtheorem investigates
the convergence behavior in the more general case.

Theorem 10 (Behavior of the MS MINTOC algorithm)
If

– the relaxed control problem on gridG 0 possesses an admissible optimal tra-
jectory

– bisection is used to adapt the control grid on all intervals (independent of the
valuesq̃i ’s)

– all considered problems can be solved precisely to global optimality in a finite
number of iterations

then for allε > 0 algorithm MS MINTOC will terminate with a trajectory that is
binary admissible and a corresponding objective valueΦ such that

Φ ≤ ΦRL
G next + ε

whereΦRL
G next is the objective value of the optimal trajectory for the relaxed prob-

lem with the gridG next of the last iteration in the estimation ofΦRL.

A proof is given in [48], page 104. Theorem 10 needs three assumptions. The
first one, the existence of an admissible optimal trajectoryfor the relaxed optimal
control problem on a user specified grid, is an absolute must before wanting to
solve MIOCPs. The second one concerning bisection is merelyused to guarantee
that after a finite number of iterations the grid size is arbitrarily small in contrast
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to possible pathological counter examples when using a nonequidistant partition
of the intervals[ti , ti+1] as discussed in section 4.2.

The third argument, however, is a very strong one and typically does not hold
for most (local) optimal control solvers, as many problems under consideration
are nonconvex. One way to overcome this problem is to use a solver that can
handle nonconvex problems. [48] gives additional information on the topic of local
minima and how all–at–once approaches help to avoid gettingstuck in them. If, in
practice, a local solver is used, the algorithm may still be expected to converge, if
the quality of the solution given by the solver depends on theunderlying grid, as
should be expected. The algorithm will terminate then with alocal optimum on a
fine grid instead of a global solution on a coarser grid.

Remark 11 For some applications one may not want to fix the variables u∗(·)
and p∗ in step 6., as the additional degrees of freedom on a given grid may lead
to solutions with fewer switches.

The application of the MS MINTOC algorithm to several smaller case studies
as well as to different applications are discussed in [48]. In the next section we
present its application to the optimization of subway trainoperation.

5 Optimization of subway train operation

The optimal control problem we treat in this section goes back to work of [13] for
the city of New York. Here we treat for the first time velocity limits that lead to
path–constrained arcs.

The aim is to minimize the energy used for a subway ride from one station
to another, taking into account boundary conditions and a restriction on the time.
The optimization problem is given by

min
x,w,T

∫ T

0
L(x(t),w(t)) dt (29a)

subject to the ODE system

ẋ(t) = f (x(t),w(t)), t ∈ [t0,T], (29b)

path constraints

0 ≤ x(t), t ∈ [t0,T], (29c)

interior point inequalities and equalities

0 ≤ r ieq(x(t0),x(t1), . . . ,x(T),T), (29d)

0 = req(x(t0),x(t1), . . . ,x(T),T), (29e)

and binary admissibility ofw(·)

w(t) ∈ {1,2,3,4}. (29f)
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The terminal timeT denotes the time of arrival of a subway train in the next
station. The differential statesx0(·) andx1(·) describe position resp. velocity of
the train. The train can be operated in one of four different modes,

w(t) =







1 Series
2 Parallel
3 Coasting
4 Braking

(29g)

that accelerate or decelerate the train and have different energy consumption. The
latter is to be minimized and given by the Lagrange term

L(x(t),1) =







e p1 for x1(t) ≤ v1
e p2 for v1 < x1(t)≤ v2

e ∑5
i=0ci(1)

(
1
10γ x1(t)

)−i
for x1(t) > v2

, (29h)

L(x(t),2) =







0 for x1(t)≤ v2
e p3 for v2 < x1(t) ≤ v3

e ∑5
i=0ci(2)

(
1
10γ x1(t)−1

)−i
for x1(t) > v3

, (29i)

L(x(t),3) = 0, (29j)

L(x(t),4) = 0. (29k)

The right hand side functionf (·) is dependent on the modew(·) and on the state
variablex1(·). For allt ∈ [0,T] we have

ẋ0(t) = x1(t). (29l)

For operation in series,w(t) = 1, we have

ẋ1(t) = f1(x,1) =







f 1A
1 (x) for x1(t) ≤ v1

f 1B
1 (x) for v1 < x1(t)≤ v2

f 1C
1 (x) for x1(t) > v2

, (29m)

with

f 1A
1 (x) =

g e a1

Weff
,

f 1B
1 (x) =

g e a2

Weff
,

f 1C
1 (x) =

g (e T(x1(t),1)−R(x1(t))
Weff

.

For operation in parallel,w(t) = 2, we have

ẋ1(t) = f1(x,2) =







f 2A
1 (x) for x1(t) ≤ v2

f 2B
1 (x) for v2 < x1(t)≤ v3

f 2C
1 (x) for x1(t) > v3

, (29n)
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with

f 2A
1 (x) = 0,

f 2B
1 (x) =

g e a3

Weff
,

f 2C
1 (x) =

g (e T(x1(t),2)−R(x1(t))
Weff

.

For coasting,w(t) = 3, we have

ẋ1(t) = f1(x,3) = −g R(x1(t))
Weff

−C (29o)

and for braking,w(t) = 4,

ẋ1(t) = f1(x,4) = −u(t) = −umax. (29p)

The braking decelerationu(·) can be varied between 0 and a givenumax. It can be
shown easily that for the problem at hand only maximal braking can be optimal,
hence we fixu(·) to umax without loss of generality. The occurring forces are

R(x1(t)) = caγ2x1(t)
2 +bWγx1(t)+

1.3
2000

W+116, (29q)

T(x1(t),1) =
5

∑
i=0

bi(1)

(
1
10

γx1(t)−0.3

)−i

, (29r)

T(x1(t),2) =
5

∑
i=0

bi(2)

(
1
10

γx1(t)−1

)−i

. (29s)

The interior point equality constraintsreq(·) are given by initial and terminal con-
straints on the state trajectory,

x(0) = (0,0)T , x(T) = (S,0)T . (29t)

The interior point inequality constraintsr ieq(·) consist of a maximal driving time
Tmax to get fromx(0) = (0,0)T to x(T) = (S,0)T ,

T ≤ Tmax. (29u)

In the equations above the parameterse, p1, p2, p3, bi(w), ci(w), γ , g, a1, a2, a3,
Weff,C, c, b,W, umax, Tmax, v1, v2 andv3 are fixed. They are given in the appendix.
Details about the derivation of this model and the assumptions made can be found
in [13] or in [32].

[13] solved the problem at hand for different values ofS andW already in
the early eighties by theCompeting Hamiltoniansapproach. This approach com-
putes the values of Hamiltonian functions for each possiblemode of operation
and compares them in every time step. As the maximum principle holds also for
disjoint control sets, the maximum of these Hamiltonians determines the best pos-
sible choice. This approach is based on indirect methods, therefore it suffers from
the disadvantages named in section 4.1 — in particular it hasproblems with path–
constrained arcs.
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We transform the problem with the discrete–valued functionw(·) to a partly
convexified one with a four–dimensional control function ˜w∈ {0,1}4 that has to
fulfill the constraint∑4

i=1 w̃i(t) = 1 for all t ∈ [0,T] as described in section 3. This
allows us to write the right hand side functionf̃ and the Lagrange term̃L as

f̃ (x, w̃) =
4

∑
i=1

w̃i(t) f (x, i) respectively L̃(x, w̃) =
4

∑
i=1

w̃i(t) L(x, i).

Both functions still contain state–dependent discontinuities. Recent work in the
area of such implicit discontinuities has been performed by[15], who proposes
a monitoring strategy combined with switching point determination and Wron-
skian update techniques. The order of the discontinuities is quite clear in our case,
though. As the distanceS that has to be covered in timeTmax, a certain mini-
mum velocity greater thanv3 is required for a given time and any feasible solution
has to accelerate at the beginning, keep a certain velocity and decelerate by either
coasting or braking towards the end of the time horizon. Therefore we assume that
every optimal feasible trajectory fits into the structure ofthe multistage problem

– Stage 0,[t̃0, t̃1] : 0≤ x1(·) ≤ v1, only series, ˜w2 = w̃3 = w̃4 = 0
– Stage 1,[t̃1, t̃2] : v1 ≤ x1(·) ≤ v2, only series, ˜w2 = w̃3 = w̃4 = 0
– Stage 2,[t̃2, t̃3] : v2 ≤ x1(·) ≤ v3
– Stage 3,[t̃3, t̃4] : v3 ≤ x1(·)
– Stage 4,[t̃4, t̃5] : v3 ≤ x1(·)
– Stage 5,[t̃5, t̃6] : 0≤ x1(·) ≤ v3, only coasting or braking, ˜w1 = w̃2 = 0

with t̃0 = t0 = 0 and t̃6 = T ≤ Tmax. The fourth stage has been split up in two
stages, because we will insert additional constraints later on. The first two stages
are pure acceleration stages. Asf2(x,2) ≡ 0 on the first two stages, we fix ˜w1 = 1
and w̃2 = w̃3 = w̃4 = 0 on both. This allows us to compute the exact switching
timest̃1 and t̃2 between these stages and fix them. On the sixth stage we assume
that no further acceleration is necessary once the threshold velocityv3 has been
reached and allow only further deceleration by coasting or braking. Therefore no
discontinuity will occur on this stage any more. As the constraintv3 ≤ x1(·) avoids
discontinuities, the only switching point to determine ist̃3. We determinẽt3 by the
addition of an interior point constraint

x1(t̃3) = v3,

although this approach may yield numerical difficulties as the model is only ac-
curate when this condition is fulfilled. If, on the other hand, we obtain a feasible
solution that fulfills the conditions onx1(·) given above, the model restrictions are
also fulfilled and the discontinuities take place at times where the model stages
change and all derivative information is updated. For this reason all given solu-
tions are indeed local optima that are feasible, also in the sense that the model
discontinuities are treated correctly. Within our approach we use a line search in-
stead of a trust box or watchdog technique to globalize convergence. For the set of
parameters given in the appendix we determine the switchingtimes of the series
mode in stages 0 and 1 as

t̃1 = 0.631661, t̃2 = 2.43955. (30)
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Fig. 4 The controls for operation in series, ˜w1(·), in parallel,w̃2(·), coasting, ˜w3(·) and braking,
w̃4(·), from left to right. The upper solution is optimal for the relaxed problem on a given grid
G 0, the middle one for a gridG 1 obtained fromG 0 by grid refinement. The lowest row shows the
optimal solution on gridG 2 that is used to initialize the switching time optimization algorithm.

We will first have a look at a trajectory of a relaxation of thisproblem. This so-
lution is optimal on a given gridG 0 with nms = 34 intervals. This grid is not
equidistant, due to the multitude of stages that partly havefixed stage lengths.
The obtained solutions for the binary control functions ˜wi(·) on this and a refined
grid are shown in figure 4. The corresponding trajectories yield objective values
of 1.15086 resp. of 1.14611. Applying a second refinement the solution is al-
most completely integer withΦ = 1.14596. We round this solution and initialize
a switching time optimization with it. The solution in abbreviated form8 is

w(t) = S (1,2,1,3,4; 3.64338,8.96367,33.1757,11.3773,7.84002). (31)

In other words, first we operate in series untilt̂1 = 3.64338∈ [t̃2, t̃3] with state–
dependent changes of the right hand side function att̃1 andt̃2 as given by (30), then
we operate in parallel mode untilt̂2 = 12.607∈ [t̃3, t̃5], then again in series until
t̂3 = 45.7827∈ [t̃3, t̃5]. At t̂4 = 57.16∈ [t̃3, t̃5] we stop coasting and brake untilT =
Tmax= 65. All results are given as an overview in table 1. This solution is identical
in structure to the one given in [32]. The switching times area little bit different,
though. This is connected to the phenomenon of multiple local minima that occur
when applying a switching time approach, compare [48]. The trajectory given in
[32] yields an energy consumption ofΦ = 1.14780. If we use either this solution

8 the operation modes to be applied are given in order before the semicolon, the corresponding
stage lengthshi afterwards
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Time t Mode f1 = x0(t)[ f t] x1(t)[mph] x1(t)[ f t/s] Energy

0.0 S f 1A
1 0.0 0.0 0.0 0.0

0.631661 S f 1B
1 0.453711 0.979474 1.43656 0.0186331

2.43955 S f 1C
1 10.6776 6.73211 9.87375 0.109518

3.64338 P f 2B
1 24.4836 8.65723 12.6973 0.147387

5.59988 P f 2C
1 57.3729 14.2658 20.9232 0.339851

12.607 S f 1C
1 277.711 25.6452 37.6129 0.93519

45.7827 C f1(3) 1556.5 26.8579 39.3915 1.14569
46.8938 C f1(3) 1600 26.5306 38.9115 1.14569
57.16 B f1(4) 1976.78 23.5201 34.4961 1.14569
65.00 - − 2112 0.0 0.0 1.14569

Table 1 Trajectory corresponding to the optimal solution (31). Therows of the table give typical
values for the different arcs.

or the rounded solution of the relaxed solution without adaptive refinement of the
control grid as an initialization of the switching time approach, we obtain

w(t) = S (1,2,1,3,4; 3.6415,8.82654,34.5454,10.0309,7.95567),

which switches earlier into the parallel mode, has an augmented runtime in series
and a shorter coasting arc. The objective function value ofΦ = 1.14661 is worse
than the one given above, but still close enough to the relaxed value that serves as
an estimate forΦ∗.

Our algorithm has therefore the ability to reproduce the optimal results of [13]
and [32]. But we can go further, as we can apply our algorithm also to extended
problems with additional constraints. To illustrate this,we will add constraints to
problem (29). First we consider the point constraint

x1(t) ≤ v4 if x0(t) = S4 (32)

for a given distance 0< S4 < S and velocityv4 > v3. Note that the statex0(·) is
strictly monotonically increasing with time, as ˙x0(t) = x1(t) > 0 for all t ∈ (0,T).
We include condition (32) by additional interior point constraints

0 ≤ r ieq(x(t̃4)) = v4−x1(t̃4), (33a)

0 = req(x(t̃4)) = S4−x0(t̃4), (33b)

assuming that the point of the trackS4 will be reached within the stage[t̃3, t̃5]. For
a suitable choice of(S4,v4) this holds of course true. We do not change anything
in the initialization resp. in the parameters of our method and obtain forS4 = 1200
andv4 = 22/γ the optimal solution for problem (29) with the additional interior
point constraints (33) as

w(t) = S (1,2,1,3,4,2,1,3,4;

2.86362,10.722,15.3108,5.81821, (34)

1.18383,2.72451,12.917,5.47402,7.98594)

with Φ = 1.3978. Compared to (31), solution (34) has changed the switching
structure. To meet the point constraint, the velocity has tobe reduced by an addi-
tional coasting and braking arc. After this track pointS4, the parallel mode speeds
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up as soon as possible and the series mode guarantees that thevelocity is high
enough to reach the next station in time.

Not only the additional constraint influences the optimal switching structure,
but also the values of the parameters. For a speed limit at a track point in the first
half of the way, sayS4 = 700, we obtain the solution

w(t) = S (1,2,1,3,2,1,3,4;

2.98084,6.28428,11.0714,4.77575, (35)

6.0483,18.6081,6.4893,8.74202).

For this solution there is only one braking arc (w(t) = 4) left. The reason is that
the speed limit comes early enough such that the main distance can be covered
afterwards and no high speed at the beginning, followed by braking, which is very
energy consuming, is necessary. On the other hand, the braking arc at the end
of the time horizon is longer, as we have an increased velocity with respect to
solution (34) for allt ≥ 40. This can be seen in a direct comparison in figure 6.
The energy consumption isΦ = 1.32518, thus lower than for the constraint at
S4 = 1200.
A more practical restriction are path constraints on subsets of the track. We will
consider a problem with additional path constraints

x1(t) ≤ v5 if x0(t) ≥ S5. (36)

We include condition (36) by additional path and interior point constraints

0 ≤ c(x, t) = v5−x1(t), t ∈ [t̃4,T] (37a)

0 = req(x(t̃4)) = S5−x0(t̃4), (37b)

assuming again that the point of the trackS5 will be reached within the stage[t̃3, t̃5].
The additional path constraint changes the qualitative behavior of the relaxed so-
lution. While all solutions considered this far were bang–bang and the main work
consisted in finding the switching points, we now have a constraint–seeking arc.
Figure 5 (left) shows the relaxed solution. The path constraint (37) is active on
a certain arc and determines the values of series mode and coasting. The sum of
these two yields ˙x1 ≡0, ensuringx1(t)= v5. Any optimal solution will look similar
on this arc, no matter how often we refine the grid. We showed insection 3 that it
is possible to approximate this non–binary solution arbitrarily close. This implies
a fast switching between the two operation modes, though, which is not suited for
practical purposes. Our algorithm allows to define a toleranceε such that a com-
promise is found between a more energy–consuming operationmode which needs
only few switches and is therefore more convenient for driver and passengers and
an operation mode consuming less energy but switching more often to stay closer
to the relaxed optimal solution.
By a refinement of the grid we get an estimate forΦ∗. The optimal solutions for
refined grids yield a series of monotonically decreasing objective function values

1.33108,1.31070,1.31058,1.31058, . . . (38)

We use the different grids to use rounding strategy SUR-SOS1on them and initial-
ize a switching time optimization with it. On the coarsest grid we obtain a solution
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that may only switch once between acceleration in series mode and coasting. The
velocity is reduced by braking strictly below the velocity constraint, such that it
touches the constraint exactly once before the final coasting and braking to come
to a hold begins. This solution is given by

w(t) = S (1,2,1,3,4,1,3,4;

2.68054,13.8253,12.2412,4.03345, (39)

1.65001,15.3543,7.99192,7.22329)

and yields an energy consumption ofΦ = 1.38367. This value is quite elevated
compared to (38). If we use the same approach on refined grids we obtain

w(t) = S (1,2,1,3,4,1,3,1,3,1,3,4;

2.74258,12.7277,13.6654,4.57367, (40)

1.08897,1.77796,1.35181,6.41239,

1.34993,6.40379,5.43439,7.47134)

with Φ = 1.32763 respectively

w(t) = S (1,2,1,3,4,1,3,1,3,1,3,1,3,1,3,1,3,4;

2.74458,12.5412,13.5547,5.08831,

0.964007,0.0571219,0.739212,3.56618, (41)

0.744176,3.58963,0.745454,3.59567,

0.71566,3.45484,0.111917,0.549478,

4.69464,7.54318)

with Φ = 1.31822 depicted in figure 5 (right). An additional refinement yields a
solution with 51 switches andΦ = 1.31164 which is already quite close to the
limit of (38). The results show the strength of our approach.Neglecting numerical
problems when stage lengths become too small, we may approximate the relaxed
solution arbitrarily close. As this often implies a large number of switches, one
may want to obtain a solution that switches less. Our approach allows to generate
candidate solutions with a very precise estimation of the gap between this candi-
date and an optimal solution.

The calculations were done under Linux on a Pentium 1.7 GHz, using the
software packageMS MINTOC that usesMUSCOD-II [19] to solve continuous opti-
mal control problems. Computing times are in the range between 20 (pure relaxed
problem on gridG 0) to 90 seconds (four adaptive refinements, solving relaxed
problems, rounding and switching time optimization).

6 Summary

The novelties presented in this paper include

– A rigorous proof that any solution of a convexified (with respect to the bi-
nary control functionsw(·)) and relaxed control problem can be approximated
arbitrarily close by an integer solution. Therefore the global optimum of the
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Fig. 5 Two columns to the left: the optimal trajectory for therelaxedproblem (29) with the ad-
ditional path constraint (37). Note that this constraint isactive on a certain arc and determines the
values of series mode and coasting. The sum of these two yields ẋ1 ≡ 0. The energy consumption
is Φ = 1.33108. After one refinement it isΦ = 1.31070, after two refinementsΦ = 1.31058.
Two columns to the right: This is a feasible trajectory for the integerproblem (29). The path
constraint after three refinements of the gridG k is active on six touch points. The constraint–arc
is better approximated than before, therefore the energy consumptionΦ3 = 1.31822 is better
thanΦ2 = 1.32763 andΦ1 = 1.38367.

first problem yields the best lower bound for the mixed–integer optimal con-
trol problem under consideration. This is shown for a very general problem
class, in which the right hand side may depend nonlinearly ondifferential and
algebraic states as on parameters and continuous control functions.

– Novel heuristics that exploit the structure of optimal solutions of relaxed opti-
mal control problems.

– An algorithm based upon these heuristics that iterates on purely continuous
optimal control problems and avoids an enumeration of the integer variables.
Making use of the maximal lower bound on the objective value,the integer
gap is known precisely.

– The solution of a challenging control problem. As to our knowledge this is
the first MIOCP with a path–constrained arc in its relaxed form, for which an
integer solution with guaranteed integer gap could be given.

Furthermore we showed that adecouplingof the problems to find a (global) opti-
mal solution and the determination of optimal binary control functions is possible.
While the main work may still be to solve the first problem, possibly involving bi-
nary parameters, suitable binary control functions may be determined in a second
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Fig. 6 Final comparison of the different statesx1(·). Top left: the state trajectory for problem
(29) without constraints on the velocity. Top right and two plots in the middle: solutions for
the problem with path constraint, with increasing accuracyof the approximation of the relaxed
solution. Bottommost plots: optimal trajectories for point constraint. The vertical dotted lines
show whenx0 = 1200 resp.x0 = 700 are reached. The horizontal lines show the velocitiesv4
resp.v5.

step. This will speed up the computing time for problems involving both types of
difficulties significantly.

Future research should look into several directions. First, global methods to
solve optimal control problems including time–independent parameters have to be
developed. Second, switching costs to favor practical solutions with less switches
should be included. The proposed algorithm naturally yields such solutions if one
starts on a coarse grid and chooses a not to smallε, but a more rigorous ap-
proach would be helpful. The third line of investigation hasto deal with problem–
dependent and structure–exploiting analysis of path and control constraints that
explicitly depend on the binary control functions.
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7 Appendix

Theorem 12 (Krein–Milman, see, e.g., [28])
LetX be a real linear topological space with the property that forany two distinct
points x1 and x2 of X there is a continuous linear functional x′ with

x′(x1) 6= x′(x2).
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Then each nonempty compact setK of X has at least one extreme point.

Theorem 13 (Gronwall inequality)
Let x(·) : [t0, t f ] 7→ R be a continuous function, t0 ≤ t ≤ t f , α,β ∈ R andβ > 0. If
x(t) ≤ α +β

∫ t
t0

x(τ) dτ then x(t) ≤ α eβ (t−t0) for all t ∈ [t0, t f ].

Parameters of the subway optimization problem

Tmax = 65 Maximal driving time, [sec]
S= 2112 Driving distance, [ft]

S4 = 700 or 1200 Distance for point constraint, [ft]
S4 = 1200 Distance for path constraint start, [ft]
W = 78000 Weight of the train, [lbs]

Weff = W +7200 Effective weight of the train, [lbs]
γ = 3600/5280 Scaling factor for units,[ sec

h / f t
mile]

a = 100 Front surface of the train,[ f t2]
nwag = 10 Number of wagons

b = 0.045

c = 0.24+
0.034(nwag−1)

100nwag

C = 0.367 Constant braking when coasting
g = 32.2 Gravity,[ f t/sec2]
e = 1.0 Percentage of working machines

v1 = 0.979474 Velocity limits,[mph]
v2 = 6.73211
v3 = 14.2658
v4 = 22.0 Velocity limit point constraint,[mph]
v5 = 24.0 Velocity limit path constraint,[mph]
a1 = 6017.611205 Accelerations, [lbs]
a2 = 12348.34865
a3 = 11124.63729

umax = 4.4 Maximal deceleration, [ f t/sec2]
p1 = 106.1951102 Energy consumption
p2 = 180.9758408
p3 = 354.136479

The coefficientsbi(w(t)) andci(w(t)) are given by

b0(1) = −0.1983670410E02,
b1(1) = 0.1952738055E03,
b2(1) = 0.2061789974E04,
b3(1) = −0.7684409308E03,
b4(1) = 0.2677869201E03,
b5(1) = −0.3159629687E02,
b0(2) = −0.1577169936E03,
b1(2) = 0.3389010339E04,
b2(2) = 0.6202054610E04,
b3(2) = −0.4608734450E04,
b4(2) = 0.2207757061E04,
b5(2) = −0.3673344160E03,

c0(1) = 0.3629738340E02,
c1(1) = −0.2115281047E03,
c2(1) = 0.7488955419E03,
c3(1) = −0.9511076467E03,
c4(1) = 0.5710015123E03,
c5(1) = −0.1221306465E03,
c0(2) = 0.4120568887E02,
c1(2) = 0.3408049202E03,
c2(2) = −0.1436283271E03,
c3(2) = 0.8108316584E02,
c4(2) = −0.5689703073E01,
c5(2) = −0.2191905731E01.
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50. Sager, S., Diehl, M., Singh, G., Küpper, A., Engell, S.:Determining SMB superstructures
by mixed-integer control. In: Proc. of OR2006. Karlsruhe (2007)

51. Sager, S., Kawajiri, Y., Biegler, L.: On the optimality of superstructures for simulated mov-
ing beds: Is one pump sufficient for each stream? AIChE Journal (2007). (submitted)
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