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Abstract Quadratic programs obtained for optimal control problems of dynamic or
discrete-time processes usually involve highly block structured Hessian and constraints
matrices, to be exploited by efficient numerical methods. In interior point methods,
this is elegantly achieved by the widespread availability of advanced sparse symmetric
indefinite factorization codes. For active set methods, however, conventional dense
matrix techniques suffer from the need to update base matrices in every active set
iteration, thereby loosing the sparsity structure after a few updates. This contribution
presents a new factorization of a KKT matrix arising in active set methods for optimal
control. It fully respects the block structure without any fill-in. For this factorization,
matrix updates are derived for all cases of active set changes. This allows for the design
of a highly efficient block structured active set method for optimal control and model
predictive control problems with long horizons or many control parameters.

Keywords Matrix factorizations and updates · Block structured active set quadratic
programming · Direct methods for optimal control

Mathematics Subject Classification (2010) 90C20 · 90C30 · 93B40 · 15A23 ·
65F05

1 Introduction

Quadratic programs obtained for optimal control problems of dynamic or discrete-
time processes usually involve highly block structured Hessian and constraints matri-
ces, cf. [7] and [35]. This is true even for unstructured models of the process under
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320 C. Kirches et al.

consideration. For the solution of the arising problems, both active set and interior
point methods are popular and both have strong points and weaknesses.

Active set methods are known to allow for very fast solution of a sequence of closely
related quadratic problems (QPs) due to their excellent hot starting abilities. This is
of significant advantage for the design of fast algorithms, e.g. in sequential quadratic
programming (SQP) methods or in model predictive control (MPC). Popular QP tech-
niques often focus on dense problem data without any structure. This contribution is
concerned with the task of exploiting the optimal control problem’s block structure in
active set methods.

For interior point (IP) methods on the other hand, due to the widespread availability
of highly efficient symmetric indefinite factorizations such as the codes MA27 and
MA57 by Duff [13], the exploitation of both problem and model structure is easily
achieved. IP methods however still lack efficient hot starting techniques, which may
limit their efficiency especially in MPC applications. For a detailed discussion of the
respective merits of active set methods and IP methods we refer to [3]. Popular struc-
ture exploiting codes based on IP methods are IPOPT by Wächter and Biegler [42]
and the QP codes OOQP by Gertz and Wright [22] and LOQO by Vanderbei [41].

The first key task to be addressed in an active set method for the solution of opti-
mal control QPs is to devise an efficient way of exploiting the structural information
available. Several different approaches have been presented in the past.

The classical condensing algorithm by Bock and Plitt [7], cf. also Leineweber et al.
[35] for a more recent presentation, exploits the optimal control problem’s structure in
a preprocessing step that yields a considerably smaller but densely populated QP. For
a number of optimal control and MPC applications that have been treated recently we
refer e.g. to [16,33,43]. The limitations of condensing approaches become noticeable
for optimal control problems with long horizons, fine discretizations of the horizon,
and for problems with more control parameters than state variables.

Here, an active set method is desirable that solves the structured QP directly. As
active set methods tend to perform many iterations, it is crucial that a fast factorization
tailored to exploit the particular structure of the QP’s KKT system is available. Such
a factorization usually comes at the cost of O(N 3) operations, though, where N is the
total number of unknowns in the QP. Update procedures that recover the employed
factorization in O(N 2) operations after an active set change are employed to make
the large number of iterations computationally viable.

For dense QP techniques such as the null space or the range space method, such
update procedures are well established. Popular codes include ZQPCVX by Powell
[38], QPSOL and its successor QPOPT by Gill et al. [26], QPKWIK by Schmid and
Biegler [39], qpOASES for parametric quadratic programming by Ferreau et al. [16].
The code BQPD by Fletcher [18] is a generic active set code that also exploits sparsity
to a certain extent. Fletcher [19,20] present efficient factorization and storage schemes
for dense factors of general sparse matrices. In [3] a dual active set code based on Schur
complements and updates is presented that is designed for systems with optimal control
structure. Huynh [32] proposes a sparse active set QP solver based on a block LU fac-
torization of the KKT system that preserves sparsity to a certain degree. Updates based
on LUMOD are reported, cf. also Eldersveld and Saunders [15] but the method fills in
and requires refactorization after some iterations. Sparse symmetric indefinite factor-
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A factorization with update procedures for a KKT matrix 321

izations, e.g. Duff and Reid [14] and Duff [13], could also be used to solve the QP’s
KKT system in sparse active set methods. They do not commonly yield satisfactory
performance of the QP code, as fast update procedures are not available in general.

1.1 Relation to own work

Classical condensing techniques for the block structured QP require O(m2n3) opera-
tions to preprocess the block structured QP into a smaller but dense one. On the dense
active set QP solver’s part, O(m3n3) operations are required for the initial factor-
ization of the QP’s KKT matrix, and O(m2n2) operations for each active set update
of that factorization. In [33] it was observed that, depending on the problem’s char-
acteristics, the overhead of the condensing preprocessing step may effectively limit
the optimal control problem solver’s performance. This motivates our investigation of
structured active set techniques. In [34] we examined a block structured factorization
due to [40] and its applicability to a KKT matrix arising in an active set QP method
for optimal control and model-predictive control. We employed this method to solve a
partially convexified and relaxed mixed-integer optimal control problem. The results
reported in [34] indicate a significant reduction of the computational effort com-
pared to the classical condensing method. The described linear algebra techniques
however lack exploitation of simple bounds and matrix update procedures are not
provided.

1.2 New contributions

In this contribution we review from a different point of view the aforementioned block
structured factorization. Improving over [34] we show how to efficiently exploit sim-
ple bounds on the QP’s unknowns in this factorization. We propose for the first time
update procedures to this factorization for all kinds of active set changes that may
occur when solving a QP with the presented block structure. These updates improve
the run time complexity to O(mn2) as compared to O(mn3) in [34]. They are based
on well established results by Gill and Golub [23] for Cholesky and QR factorizations,
and extend the techniques commonly used in dense null-space active set QP solvers,
cf. [36]. We extend the run time comparisons of [34] to include a number of generic
sparse or structure linear algebra codes, and study the performance gains obtained by
the new matrix updates. Computational evidence obtained is promising such that the
presented factorization and update procedures are intended to lay the foundation for a
fast block structured primal and primal-dual active set QP code to be used in optimal
control and model-predictive control. Such a code promises a significant improvement
in performance over currently applied techniques.

This contribution is accompanied by MATLAB c© source code that contains a proof-
of-concept implementation of the presented factorization as well the proposed update
procedures for all four investigated cases of active set changes. A data set of sam-
ple KKT matrices is provided to enable—up to limited machine precision effects—an
exemplary verification of correctness of the computations made by the proposed update
procedures.
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322 C. Kirches et al.

1.3 Structure of the paper

This contribution is organized as follows. In Sect. 2 we introduce a class of
discrete-time optimal control problems, formulate a local quadratic model of the prob-
lems, and show connections to SQP methods, to MPC, and to the direct multiple shoot-
ing method for continuous time problems. For the solution of the local QP, we employ
active set methods and establish the need for an efficient factorization and update of the
local QP’s KKT system. Section 3 reviews a factorization that fully exploits the block
structure of the discrete time optimal control problem class. The main contribution is
made in Sect. 4, which comprises the largest part of this paper. Here, we derive for
the first time update procedures for the reviewed factorization for all cases of active
set changes. In Sect. 5 we consider an exemplary optimal control problem and give
per-iteration run times for an active set method using the proposed factorization with
matrix updates. The achieved run times are compared to several different approaches
such as classical condensing and several more generic sparse or structure-exploiting
solvers. Finally, Sect. 6 gives a summary over the achievements presented in this
contribution, and concludes with an outlook on further research efforts.

2 A discrete-time linear-quadratic optimal control problem

In this section we introduce a discrete-time linear-quadratic optimal control problem
with separable structure. An interpretation as a local quadratic subproblem in the con-
text of SQP methods and of MPC is given. A connection to direct multiple shooting
methods for continuous-time problems is mentioned.

2.1 Discrete-time optimal control problem

We start by defining the following class of discrete-time optimal control problems

Definition 21 (Discrete-time optimal control problem)

min
x,q

m∑

i=1

�i (xi , qi )

s.t. x low
i ≤ xi ≤ xup

i ∀i ∈ {1, . . . , m}
q low

i ≤ qi ≤ qup
i ∀i ∈ {1, . . . , m}

0 ≤ Ri (xi , qi ) ∀i ∈ {1, . . . , m}
0 = Gi (xi , qi ) + Pi+1(xi+1, qi+1) ∀i ∈ {1, . . . , m − 1}

(1)

in which we minimize a real-valued objective function �(x, q) = ∑m
i=1 �i (xi , qi )

depending on states xi ∈ R
nx

of a discrete-time process governed by control param-
eters qi ∈ R

nq
. The discrete-time process evolves over m points in time, indexed by

i ∈ {1, . . . , m}, and is described by the solution of a state propagation law given in
terms of the functions Gi : R

nx × R
nq → R

nx
and Pi : R

nx × R
nq → R

nx
. Both
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A factorization with update procedures for a KKT matrix 323

process states x and control parameters q are subject to simple bounds and to possibly
nonlinear constraints Ri : R

nx × R
nq → R

nr
i , containing for example initial values,

boundary conditions, or discretized general path constraints.

The problem class under investigation is quite broad, its only restrictive property
being separability of all involved functions, i.e. objective �(·), constraints R(·), and
state propagation law G(·), P(·), with respect to the m points in time. This contribution
is concerned with the efficient exploitation of the structures this separability property
imposes on the various system matrices. Separable reformulations are available for
some types of coupled constraints. One example are coupled boundary conditions
such as periodicity constraints for which the residual in the first node i = 1 can be
introduced as an additional component of the state vector x , which then enters a point
constraint on the final node i = m.

2.2 Linearly constrained quadratic model

Assuming sufficient differentiability of the problem functions, we may obtain from
problem (1) a corresponding linearly constrained convex QP, by using a linear-
quadratic model of the Lagrangian of (1) and a linearization of the constraints.

Definition 22 (Quadratic optimal control problem)

min
w

m∑

i=1

(
1
2wT

i Hiwi + gT
i wi

)

s.t. li ≤ wi ≤ ui ∀i ∈ {1, . . . , m}
ri ≤ Riwi ∀i ∈ {1, . . . , m}
hi = Giwi + Pi+1wi+1 ∀i ∈ {1, . . . , m − 1}

(2)

The linear-quadratic model is represented by the Hessians Hi ∈ R
n×n and gradients

gi ∈ R
n . We summarize the states x ∈ R

m·nx
and control parameters q ∈ R

m·nq
in the

vector w ∈ R
m·n , w(x, q) and wi = (xi , qi ), and reuse the symbols R, G, and P of the

functions in (1) for their linearization matrices Ri ∈ R
nr

i ×n , Gi ∈ R
nx×n , Pi ∈ R

nx×n

in (2). We further assume well-posedness of this problem: the Hessians Hi shall be
positive semidefinite, and the matrices Pi ∈ R

nx×n shall be invertible with respect to
the state parts xi of the wi . This property guarantees that the state propagation law’s
linearizations create a unique series of process states (x2, . . . , xm) given an initial state
x1 and control parameters (q1, . . . , qm).

2.2.1 Sequential quadratic programming

Problem (2) may be viewed as subproblem of a SQP method for the solution of a class
of nonlinear problems (NLPs) with the introduced structure. This effectively amounts
to solving QP (2) for k = 1, . . . , N with a quadratic models Hi and gi of the Lagrang-
ian as well as with new linearizations Ri , Gi and Pi of the constraints obtained in
the point w(k). The optimal solution obtained from solving (2) then is the step �w(k)

improving the iterate w(k) towards a KKT point of the NLP,
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w(k+1) = w(k) + α(k)�w(k),

α(k) ∈ (0, 1] being a suitably selected step length. We refer to the classical papers of
[30] and [37] for SQP methods, as well as to [36]. In [35] an SQP method tailored to
NLPs from direct multiple shooting is discussed.

2.2.2 Model-predictive control

In a closed-loop MPC setup, QP (2) is solved repeatedly with initial process states
xmeas

1 obtained from measurements of the real-world process, e.g. estimated by Kalman
filters or Moving Horizon Estimator (MHE) techniques, cf. [31] and [12]. The mea-
sured or estimated process state xmeas

1 is best incorporated by Initial Value Embedding
techniques due to [11], by introducing the additional constraint

x1 − xmeas
1 = 0. (3)

A discussion of the favorable properties of this linear embedding especially in con-
junction with active set methods, where it can provide a tangential predictor of the
optimal solution that is valid even across changes of the active set, is given in [11]. In
[8] a multi-level scheme for adaptive updating of selected parts of the QP’s matrices
and vectors is proposed in the nonlinear MPC context. There, efficient factorization
and update procedures for the solution of the QP (2) have decisive influence on the
achievable feedback delay and feedback rate.

2.2.3 Direct multiple shooting

The process under control may also be a continuous-time dynamic process described
by an ODE. Using the direct multiple shooting method by Bock and Plitt [7], this
case is easily incorporated. With ODE right hand side fi (·) on each time interval
[ti , ti + 1] ⊂ R for i = 1, . . . , m − 1, we have m − 1 initial value problems (IVPs)

ẋ(t) = fi (t, x(t), qi ), x(ti ) = xi ∀t ∈ [ti , ti+1] ⊂ R. (4)

If we assume continuity of the IVP solutions for the process states x(t) on the whole
of [t1, tm] ⊂ R, we have the matching conditions

x(ti+1; ti , xi , qi ) − xi+1 = 0, i = 1, . . . , m − 1 (5)

as a state propagation law for the process, whose evaluation requires solving the
ODE to find the value x(ti+1) depending on ti , xi , and qi . We denote its linearization
with respect to xi and qi by Gi = [

Gx
i Gq

i

]
and with respect to xi+1 and qi+1 it is

Pi = [−I 0
]
. The sensitivities Gx

i and Gq
i of the IVP solution with respect to xi and

qi may for example be obtained by solving the variational differential equations

Ġx
i (t)=

∂ fi

∂xi
(t, xi (t), qi ) · Gx

i (t) Gx
i (ti )= I ∀t ∈ [ti , ti+1], (6a)
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A factorization with update procedures for a KKT matrix 325

Ġq
i (t) = ∂ fi

∂xi
(t, xi (t), qi ) · Gq

i (t) + ∂ fi

∂qi
(t, xi (t), qi ) Gq

i (ti ) = 0 ∀t ∈ [ti , ti+1]
(6b)

along with the IVP (4) according to the principle of internal numerical differentiation
(IND), cf. [1] for ODE and index 1 DAE dynamics.

2.3 Primal active set method

We focus here on a primal active set method for the solution of the convex QP (2).
The presented techniques can also be used without change in the primal-dual active
set method for parametric convex QPs of [6], implemented e.g. in the code qpOASES
by Ferreau et al. [16], which is of advantage especially in MPC applications. We only
mention the key issues relevant for our contribution here and refer to [4,44] as well as
to the textbooks of [17] and [36] for more extensive discussions.

2.3.1 Active set

For a primal feasible point w we define the sets Xi of simple bounds and Ai of linear
inequality constraints that are active in the solution, i.e. satisfied to equality,

Xi := { j | li, j = wi, j ∨ ui, j = wi, j }, Ai := { j | Ri, j∗wi = ri, j } (7)

where Ri, j∗ refers to the j th row of the matrix Ri . In addition we define the set of
inactive simple bounds Fi

Fi := { j | li, j < wi, j < ui, j }. (8)

In the following we will use the symbols A, F, and X also as superscript index sets
in order to refer to submatrices. We write e.g. RAF to refer to the subset of rows of a
matrix R ∈ R

nr×n belonging to the active constraints and the subset of columns of R
associated with free unknowns.

2.3.2 One iteration of a primal active set method

Primal active set methods start with a primal feasible guess w(0) of the optimal solu-
tion and the associated active set, for which the null space Hessian must be positive
definite. They generate a series of primal iterates w(k) proceeding towards the opti-
mal solution of the QP. These iterates are obtained from the repeated solution of an
equality constrained quadratic program (EQP) constructed by restricting the QP to be
solved to the active set, and by performing active set changes in order to identify the
optimal active set. The EQP associated with an active set is found from problem (2) by
removing all inactive inequalities, and replacing all active inequalities with equalities:
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326 C. Kirches et al.

Definition 23 (Equality constrained quadratic program)

min
w

m∑

i=1

(
1
2wT

i Hiwi + gT
i w

)

s.t. bX
i = wX

i ∀i ∈ {1, . . . , m}
rA

i = RA
i wi ∀i ∈ {1, . . . , m}

hi = Giwi + Pi+1wi+1 ∀i ∈ {1, . . . , m − 1}

(9)

The vectors bX
i hold elements from both bounds vectors li and ui as selected by the

active set Xi .

In iteration (k), solving the EQP (9) requires solving the associated linear system
of KKT conditions for the optimal solution (w∗, λ∗, μ∗, ν∗), cf. [36]. Here we denote
by λi ∈ R

nx
the duals of the matching conditions, by μi ∈ R

nr
i the point constraints’

duals, and by νi ∈ R
nx+nq

the duals of the simple bounds. In Sect. 3 we present a
factorization that exploits the structure of problem (9).

On the path from the kth iterate (w(k), λ(k), μ(k), ν(k)) to the EQP’s optimal solution
(w∗, λ∗, μ∗, ν∗) three cases are now possible:

1. an active constraint becomes infeasible (“primally blocking”). A step onto the
closest primally blocking is made, and the constraint enters the active set.

2. all active constraints remain feasible but the multiplier of an inactive constraint
becomes non-optimal (“dually blocking”). A step onto the closest dually blocking
constraint is made, and the constraint leaves the active set.

3. all active constraints remain feasible and the multipliers of all inactive constraints
remain dually feasible. Then the optimal active set has been identified and the
point (w∗, λ∗, μ∗, ν∗) is the optimal solution not only of the EQP but also of the
QP itself.

In cases 1 and 2 the algorithm continues in iteration k + 1 with the solution of a new
EQP for the new active set.

Many details of this coarse description of the active set algorithm remain to be dis-
cussed and are still a topic of active research. This includes finding the step direction
and length, maintaining linear independence, finding a feasible initial guess, finite
termination and prevention of stalling and cycling. Details can be found in e.g. [6,17,
18,25,29,36].

3 A block structured factorization

In this section we address the factorization of the KKT system obtained from EQP (9).
We give a new derivation of this factorization that has first been published in [34] and
is based on prior work by Steinbach [40] and extend it to efficiently exploit simple
bounds on the unknowns. This yields an algorithm for the efficient solution of the
EQP (9) that fully respects the block structure of the KKT matrix and completes in
O(mn3) operations.
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A factorization with update procedures for a KKT matrix 327

In [34] a per-node derivation of this factorization can be found along with the
associated backsolve procedure. It is based on the ordering

(x1, q1, λ1, μ1, ν1, x2, q2, λ2, μ2, ν2, . . . , xm, qm, μm, νm)

of the primal and dual unknowns which is convenient in a direct multiple shooting
context as it joins all unknowns of a node, and gives a banded block KKT matrix of
the minimum possible bandwidth max1≤i≤m(n + nX

i + nr
i + nx).

3.1 Saddle-point problem form

It is well known that solving the KKT system of EQP (9) can also be regarded as a
saddle-point problem with mn nonnegative eigenvalues associated with the Hessian
blocks Hi (positive only if the Hi are positive definite), and with

∑m
i=1(n

X
i + nr

i ) +
(m −1)nx negative eigenvalues associated with the active simple bounds, active point
constraints, and matching conditions, see e.g. [36] for the dense case. For a survey on
saddle-point problems and numerical methods for their solution we refer to [5]. In the
following, we derive the block structured factorization of [34] based on this notion
using the ordering

(x1, q1, . . . , xm, qm, λ1, . . . , λm−1, μ1, ν1, . . . , μm, νm)

of the unknowns. We consider the following general form of a saddle-point problem,

⎡

⎣
H MT CT

M 0 0
C 0 0

⎤

⎦

⎡

⎣
w

λ

ζ

⎤

⎦ =
⎡

⎣
g
h
c

⎤

⎦ , (10)

with ζ := (μ1, ν1, . . . , μm, νm) and c := (bX
1 , rA

1 , . . . , bX
m , rA

m ) and the following
block structured submatrices H , M , and C of the KKT system of EQP (9),

Hi,i :=
[

HFF
i HFX

i

HXF
i HXX

i

]
, 1 ≤ i ≤ m, (11a)

Mi,i := [
GF

i GX
i

]
, Mi,i+1 := [

PF
i+1 PX

i+1

]
, 1 ≤ i ≤ m − 1, (11b)

Ci,i :=
[

0 I X
i

RAF
i RAX

i

]
, 1 ≤ i ≤ m. (11c)

Subscript indices denote the populated block row and column. All remaining block
entries of H , M , and C are understood to be zero. The blocks H and C of system
(10) hence take block diagonal shape and M takes block bidiagonal shape, its first
lower subdiagonal being occupied by the blocks PF

i , PX
i . The block H is positive

semidefinite by definition of problem (2), and M , C have full row rank by choice of
a linear independent active set.
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3.2 TQ factorization step

A first and well-known step to factorizing system (10) is to apply a TQ factorization
to C , see e.g. [5] or [36],

C
[
Z̃ Ỹ

] = [
0 T̃

]
, Q̃ := [

Z̃ Ỹ
]

(12)

wherein Z̃ , Ỹ are column orthogonal bases of the null-space and the range-space of
C respectively, and T̃ is a factor of C satisfying CỸ = T̃ . This factorization can e.g.
be obtained from a QR factorization by reversal of the column order. As C is block
diagonal, so are the factors Z̃ and Ỹ ,

[
0 I X

i
RAF

i RAX
i

] [
Zi Yi 0
0 0 I

]
=

[
0 0 I
0 Ti RAX

i

]
, Z̃i :=

[
Zi

0

]
, Ỹi :=

[
Yi 0
0 I

]
,

1 ≤ i ≤ m, (13)

The factor Ti is southeast triangular; its shape turns out to be of advantage in Sect. 4.
Premultiplying (10) by diag(Q, I, I )T and writing ZwZ + YwY = w we obtain

⎡

⎢⎢⎣

Y THY Y THZ Y TMT T T

Z THY Z THZ Z TMT 0
MY MZ 0 0
T 0 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

wY

wZ

λ

ζ

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

Y Tg
Z Tg

h
c

⎤

⎥⎥⎦ , (14)

3.3 Schur complement step

The difference of our approach compared to the classical dense null-space method
now is the subsystem

[
Z THZ Z TMT

MZ 0

] [
wZ

λ

]
=

[
Z T (g − HYwY )

h − MYwY

]
=:

[
g̃
h̃

]
(15)

which needs to be solved as a part of (14). We required positive definiteness of the
reduced Hessian Z THZ in (2), such that (15) is a saddle point problem by itself, with
positive eigenvalues according to the column dimension of Z and with (m−1)nx nega-
tive eigenvalues due to the matching conditions M . We propose to use a Schur comple-
ment step to resolve this system, premultiplying the first row of (15) by M Z(Z THZ)−1

and subtracting it from the second to find

[
Z THZ Z TMT

0 −MZ(Z THZ)−1 Z TMT

] [
wZ

λ

]
=

[
g̃

h̃ − M Z(Z THZ)−1g̃

]
. (16)
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By computing a Cholesky factorization Z THZ = U T U and defining M̂ := M ZU−1

we may write (16) after the Schur complement step as

[
U TU Z TMT

0 −M̂ M̂T

] [
wZ

λ

]
=

[
g̃

h̃ − M̂U−T g̃

]
. (17)

As Z THZ is block diagonal, so is the Cholesky factor U . As both Z and with U
also U−1 are block diagonal, M̂ inherits the bidiagonal block structure of M , and the
symmetric positive definite system M̂M̂T is block tridiagonal,

(M̂M̂T )i,i = Ĝi Ĝ
T
i + P̂i+1 P̂T

i+1 =: Ai , 1 ≤ i ≤ m − 1, (18a)

(M̂M̂T )i+1,i = Ĝi+1 P̂T
i+1 =: Bi+1, 1 ≤ i ≤ m − 2, (18b)

(M̂M̂T )i,i+1 = (Ĝi+1 P̂T
i+1)

T = BT
i+1, 1 ≤ i ≤ m − 2, (18c)

with all remaining blocks of (M̂M̂T ) being zero and with the definitions Ĝi :=
GF

i ZiU
−1
i and P̂i+1 := PF

i+1 Zi+1U−1
i+1 for 1 ≤ i ≤ m − 1.

3.4 Block tridiagonal factorization step

For the symmetric and positive definite, block tridiagonal system (M̂M̂T ) a tailored
block Cholesky factorization Ṽ T Ṽ = M̂M̂T may be used as described e.g in [2]. The
complete block Cholesky factor Ṽ , with blocks

Ṽi,i := Vi , 1 ≤ i ≤ m − 1, (19a)

Ṽi,i+1 := Di+1, 1 ≤ i ≤ m − 2, (19b)

and again all other blocks being zero, can be computed iteratively in a loop over
i = 1, . . . , m − 1 as follows:

Ai = V T
i Vi , Di+1 := V −T

i BT
i , Ai+1 := Ai+1 − Di+1 DT

i+1, (20)

denoting the diagonal blocks of M̂M̂T by Ai and the side diagonal ones by Bi as
defined in (18).

3.5 Computational effort and applicability

The computational effort involved in the described factorization of the saddle point
problem (10) can be classified as follows. We note first that it is indeed sufficient
to compute the following smaller TQ decompositions RAF

i

[
Zi Yi

] = [
0 Ti

]
instead

of (12). Many active simple bounds on the unknowns hence significantly reduce the
computational effort of this first step as the column dimension of RAF

i shrinks. The
same is true for both the row and column dimension of the ensuing Cholesky factor-
izations Z T

i Hi Zi = U T
i Ui . The described factorization hence is appealing for use in
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an active set method. In particular for problems with many block local parameters,
resulting e.g. from (partial) convexifications of mixed-integer problems as in [33,34],
this advantage becomes noticeable.

The described factorization allows for the independent and even parallelized com-
putation of the TQ factor’s blocks Qi , Ti and the Cholesky factor’s blocks Ui . All
factorizations can be computed in-place if the KKT matrix blocks themselves are no
longer required. The matrices to be factored are of block local size only, i.e. their
dimensions are independent of the number m of blocks. This leads to O(m) runtime
of this factorization, advantageous for the efficient treatment of long horizons or fine
discretizations.

Note finally that requiring Z THZ to be positive definite in order to employ a Schur
complement step is not a significant restriction in applicability of our method. This
requirement is in fact a subset of a well-known sufficient optimality condition for
nonlinear programming, and a common assertion in most QP codes.

4 Matrix update procedures for active set exchanges

In this section we derive for the first time updates for the presented factorization for
all cases of active set changes, namely for adding or removing a simple bound on an
unknown of a node, and for adding or removing an inequality point constraint on a
node. All updates complete in O(mn2) time as opposed to a refactorization in O(mn3)

time, and respect the block structure of the KKT matrix. The first part of each of the
four update procedures is identical to that for a dense null space active set method,
as the factorization of Sect. 3 starts with a null space projection step. These updates
need to be performed for a single node of the KKT system only, though, which already
gives a significant advantage over purely dense active set techniques. The extension
of these update procedures to the Schur complement step, to the tridiagonal system
blocks, and to the factorization of that system is a new contribution.

4.1 Existing update techniques

It is common knowledge that Cholesky factorizations of dense matrices can be recov-
ered in O(n2) time after certain operations such as a rank one modification Ã =
A + αyyT , which is referred to as an update if α > 0 and as a downdate if α < 0.
Techniques for maintaining a Cholesky factorization after appending a row and col-
umn or after removing the last row and column are well known. The same is true
for QR factorizations of dense matrices when adding or removing an arbitrary row
or column. A concise summary and comparison of relevant algorithms can already
be found in [23], cf. also the references therein. More recent work also focuses on
multiple-rank updates and on algorithms for sparse matrices, cf. [10].

For primal active-set codes for dense QPs which employ the null-space method for
solving the EQP’s KKT system, such as [16,18,27], it effective update procedures for
the involved matrix factorizations exist and details can for example be found in [36].
Schur complement updates for a dual active-set code can be found in [3]. Overviews
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over algorithmic applications for existing sparse matrix and update techniques are
given in [24] and [28].

4.2 Projections, Givens rotations, and permutations

We first need to introduce some notation and basic facts about a certain projection
matrix, about Givens rotations, and about permutations of the components xi j of the
unknown xi on a node i of the problem at hand.

4.2.1 Projections

Projections AP or PT A are used to denote that a matrix A loses a column or a row.
Some identities for these projections are given that ease the derivation of the update
procedures.

Definition 41 (Projection matrix P) For a matrix A ∈ R
m×n , the column cutting

projection P and the row cutting projection PT are defined as

P :=
[

I n−1

0T

]
∈ R

n×n−1, PT := [
I m−1 0

] ∈ R
m−1×m . (21)

The projection P is multiplied onto A from the right to cut off the last column,
and it is multiplied onto A from the left to cut off the last row. Note that the row and
column dimensions of P and PT depend on those of the matrix A and are defined
only in the context of usage.

The projection matrices P and PT satisfy the identities of Lemma 42, of which
(3–5) will be of particular interest in the upcoming proofs.

Lemma 42 (Identities for the projection matrices) The projection matrices P and
PT of Definition 41 satisfy the following identities.

1. For A ∈ R
m×n with A = [

Ã a
]
, it holds AP = Ã ∈ R

m×n−1, i.e. the matrix A
loses the last column.

2. For A ∈ R
m×n with A =

[
Ã

aT

]
, it holds PT A = Ã ∈ R

m−1×n, i.e. the matrix A

loses the last row.
3. For triangular A ∈ R

n×n for which both A and PT AP are regular, it holds that(
PT AP

)−1 = PT A−1P .
4. For orthogonal matrices O ∈ R

n×n it holds OPPT OT = I n − ooT where
o ∈ R

n is the last column vector of the matrix O.

5. For a square matrix A ∈ R
n×n with zero bottom row, A =

[
Ã

0T

]
, it holds that

PPT =
[

I n−1 0
0T 0

]
∈ R

n×n and hence PPT A = A and AT PPT = AT .

All identities are easily verified by direct computation.
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4.2.2 Orthogonal eliminations

Orthogonal eliminations, also referred to as Givens rotations or plane rotations, will
be employed to restore the triangular structure of certain factors of various matrices.

Definition 43 (Orthogonal eliminations O
j

i ) The orthogonal elimination matrix

O
j

i (v) ∈ R
n×n , i, j ∈ {1, . . . , n}, i 
= j for a vector v ∈ R

n is defined element-
wise as

(
O

j
i (v)

)

kl
:=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vi/ρ if (k, l) = (i, i) ∨ (k, l) = ( j, j),
v j/ρ if (k, l) = (i, j),
−v j/ρ if (k, l) = ( j, i),
1 if k = l ∧ k 
= i ∧ l 
= j,
0 otherwise,

(22)

where ρ :=
√

v2
i + v2

j .

The purpose of an orthogonal elimination matrix O
j

i (v) is to eliminate element j of
the vector v by modifying element i only, and Gill and Golub [23] provide more details
on the properties of these matrices. The form (22) is not used in an actual numerical
code for issues of efficiency and numerical stability. We refer the reader to [28] for
instructions on how to compute Givens matrices accurately and for fast multiplication
algorithms.

Lemma 44 (Identities for the orthogonal eliminations) The orthogonal elimination
matrices O

j
i (v) of Definition 43 satisfy the following identities:

1. Orthogonality: O
j

i (v)O
j

i (v)
T = I .

2. Modification of element i:
(
O

j
i (v)v

)
i = ρ.

3. Elimination of element j:
(
O

j
i (v)v

)
j = 0.

4. All other elements remain:
(
O

j
i (v)v

)
k = vk for k 
= i, k 
= j .

Again, all identities may easily be verified by direct computation.

4.2.3 Permutations of the free unknowns

For the matrix updates adding or removing a simple bound we will make assumptions
on the index j ∈ {1, . . . , n} of the unknown component xi j to be fixed to or freed from
its lower or upper simple bound. In order to satisfy these assumptions in a numerical
code, a suitable permutation must be applied to a vector xi of node unknowns and
to the existing KKT factorization as well. Lemma 45 shows that the effect of these
permutations is limited to the TQ factorization’s column base matrix Qi . In particular,
the southeast triangular matrix Ti is not affected.

Lemma 45 (Factorization after permutation of the free unknowns) Let 
i ∈ R
nF

i ×nF

i

be permutation matrices such that x̂F
i = 
i xF

i are the permuted vectors of free
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unknowns. Then the block matrices Q̂i ,
ˆ̂Gi ,

ˆ̂Pi , B̂i and the block factors T̂i , R̂i , Âi of
the permuted KKT system’s factorization satisfy

Q̂i = 
i Qi (23)

and

T̂i = Ti , R̂i = Ri ,
ˆ̂Gi = Ĝi ,

ˆ̂Pi = P̂i , Âi = Ai , B̂i = Bi . (24)

Proof We first consider the block matrix entries of the permuted KKT system itself.
For invariance under the permutations 
i of the free unknowns xF

i , it must hold that

R̂AF
i := RAF

i 
T
i , ĜF

i := GF
i 
T

i , P̂F
i := PF

i 
T
i , and ĤFF

i := 
i HFF
i 
T

i .

(25)

This is easily seen by multiplication with x̂i and elimination of 
T
i 
i = I . For the

block local TQ factorizations of the free unknowns part of the active point constraints’
Jacobians RAF

i , observe

[
0 Ti

] = RAF
i

[
Zi Yi

] = RAF
i 
T

i 
i︸ ︷︷ ︸
=I

[
Zi Yi

] = R̂AF
i

[

i Zi 
i Yi

]

=: R̂AF
i

[
Ẑi Ŷi

] = [
0 T̂i

]
, (26)

which proves the claimed relations for Ŷi and Ẑi , hence for Q̂i (Eq. 23), and in par-
ticular shows invariance of the southeast triangular factor T̂i = Ti (Eq. 24). For the
Cholesky factors Ui of the projected Hessians H̃i , we find

Û T
i Ûi = Ẑ T

i ĤFF
i Ẑi = Z T

i 
T
i (
i︸ ︷︷ ︸
=I

HFF
i 
T

i )
i︸ ︷︷ ︸
=I

Zi = Z T
i HFF

i Zi = U T
i Ui , (27)

hence the Cholesky factors Ûi of the permuted KKT system’s factorization are iden-

tical to the factors Ui of the original one. The Schur complements ˆ̂Gi and ˆ̂Pi after
permutation are unaffected as well,

ˆ̂Gi = ĜF
i Ẑi Û

−1
i = (GF

i 
T
i )
i︸ ︷︷ ︸
=I

ZiU
−1
i = GF

i ZiU
−1
i = Ĝi , (28)

and analogously for ˆ̂Pi . Invariance carries over to the blocks Âi and B̂i of the positive
definite block tridiagonal system by (Eq. 18), and hence also to the Cholesky factor
blocks V̂i , D̂i by (Eq. 20).
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4.3 Adding a simple bound

In the following we distinguish values after the active set update by a bar (as in T )
from their counterpart values before the update. The dimensions nF and nX denote the
number of free and fixed unknowns, while nY and nZ denote the range-space and the
null-space dimensions of the TQ factorization of the point constraint matrix RAF

i . If a
primally blocking simple bound is encountered as a result of the step length determi-
nation, we may assume it w.l.o.g. to fix the last component j = nF of the vector wF

i
of unknowns by applying a suitable permutation to wF

i , to the columns of the matrix
Qi prior to the update, and to the KKT matrix, cf. Lemma 45.

4.3.1 TQ factorization update

The new bounds’s unit row vector enF is added to the TQ factorization of the constraints
matrix (13) comprising the simple bounds and the decoupled point constraints

⎡

⎢⎣
eT

nF
0T

0 I X
i

RAF
i RX

i

⎤

⎥⎦
[

Zi Yi

I X
i

]
=

⎡

⎢⎣
tZT

tYT

I X
i

Ti RAX
i

⎤

⎥⎦ . (29)

We eliminate the elements of t using a sequence OZT of nF − 1 Givens rotations

OZ := O1
2

T · · · · · OnZ−1
nZ

T
, OT := OnZ

nZ+1

T · · · · · OnF−1
nF

T
, OZT :=

[
OZ 0
0 I

]
OT,

(30)

to transform it to the unit vector enF as follows,

⎡

⎣
eT

nF
0T

0 I X
i

RAF
i RAX

i

⎤

⎦
[

Zi Yi

I X
i

] [
OZT

I

]
=

⎡

⎣
0T 0T 1

I X
i

T i r RAX
i

⎤

⎦ =
[

0T 0T I
X

i

T i R
AX

i

]
,

(31)

having thus restored the required shape of the right hand side matrix as follows: The
last nF −nZ rotations of the sequence OT introduce an additional reverse subdiagonal
into Ti . Shifting it to the left we obtain the new TQ southeast triangular factor T i and

the null space dimension shrinks by one. The remaining column r enters R
AX

i , now
belonging to first fixed component wX

i,1 of the unknown.

The first nZ − 1 rotations of the sequence OZ affect the basis matrix Zi , whose last
column is eliminated to zero and cut off as the null space dimension shrinks,

[
Zi Yi

]
OZ =

[
Zi Y i

1

]
, Zi = PT ZiOZP. (32)

123

Author's personal copy



A factorization with update procedures for a KKT matrix 335

The projected Hessian’s factor after applying the rotations OZ would be UiOZP
which can be seen from

U
T
i Ui = Z

T
i H

FF

i Z i = PT OT
Z Z T

i P(PTHFF
i P)PT ZiOZP (33a)

= PT OT
Z Z T

i HFF
i ZiOZP (by Lemma 42, 5.) (33b)

= (UiOZP)T (UiOZP), (33c)

which no longer is a Cholesky type factor. The sequence OZ introduces a subdiagonal
of nonzero elements into UiOZP , destroying its shape. A second sequence OU of
nZ − 1 Givens rotations

OU := OnZ−1
nZ

· · · · · O1
2 (34)

is used to restore the triangular form of the new projected Hessian factor Ui ,

Ui = PT OUUiOZP. (35)

whose last row is eliminated to zero as the row dimension shrinks by one, reflecting
the shrinked null space dimension.

4.3.2 Schur complement update

The principal procedure so far can also be found in e.g. in [36] for the dense null-
space active set method. We continue our presentation by contributing an extension
of the matrix update procedures to the further steps of Sect. 3. We denote by g the
last column of GF

i belonging to the component wF
i j that gets fixed to its bound, by

zT the last row of the null space basis matrix Zi , and by o the the last column of the
Givens sequence OZ. For the update to the Schur complement parts Ĝi and P̂i we find
constructively

Ĝi = G
F

i Z iU
−1
i = GF

i P
(
PT ZiOZP

) (
PT OUUiOZP

)−1
(36a)

= GF
i P

(
PT ZiOZP

)
PT (OUUiOZ)−1 P (Lemma 42, 3.) (36b)

= GF
i (PPT Zi )

(
OZPPT OT

Z

)
U−1

i OT
U P (36c)

= GF
i Zi

(
OZPPT OT

Z

)
U−1

i OT
U P (Lemma 42, 5.) (36d)

=
(

GF
i Zi − gzT

) (
I − ooT

)
U−1

i OT
U P (Lemma 42, 4.) (36e)

=
(

GF
i Zi − gzT

)
U−1

i OT
U P −

(
GF

i Zi − gz
)

o
(

oT U−1
i OT

U P
)

︸ ︷︷ ︸
=0

(36f)

= (GF
i ZiU

−1
i )OT

U P − g (zT U−1
i OT

U P)
︸ ︷︷ ︸

=0

= ĜiO
T
U P. (36g)
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In step (36f ) consider that oT U−1
i OT

U is the last row of the inverse of the updated
Cholesky factor OUUiOZ in (Eq. 35). Since Ui is upper triangular, so is its inverse,
and of its last row only the last element is nonzero. This element is cut off such that
we have oT U−1

i OT
U P = 0. For step (36g) consider that

[
qT

1 q2
] = zT U−1

i OT
U ⇔ [

qT
1 q2

]
OUUiOZ = zT OZ = [

0T ζ
]

(37)

holds by construction of the rotation sequence OZ in (32). Since OUUiOZ is upper
triangular, it also holds that 0 = qT

1 = zT U−1
i OT

U P .

Summarizing, we have shown that the updated matrices Ĝi and P̂i are obtained
from the old ones Ĝi and P̂i by applying the sequence OU of Givens rotations used

to restore the projected Hessian factor’s triangular shape. Note that Ĝi and P̂i lose
a column compared to Ĝi and P̂i , reflecting that the number of free variables nF

decreased.

4.3.3 Block tridiagonal system update

For the tridiagonal system blocks Ai−1, Ai (exemplarily), and Bi affected by the
updates to Ĝi and P̂i we denote by oT the last row of the sequence OU and find

Ai = Ĝi Ĝi

T + P̂i+1 P̂T
i+1 = ĜiO

T
U P

(
ĜiO

T
U P

)T + P̂i+1 P̂T
i+1

= Ĝi

(
OT

U PPT OU

)
ĜT

i + P̂i+1 P̂T
i+1

= Ĝi

(
I − ooT

)
ĜT

i + P̂i+1 P̂T
i+1 (Lemma 42, 4.)

= Ĝi Ĝ
T
i −

(
Ĝi o

) (
Ĝi o

)T + P̂i+1 P̂T
i+1 = Ai − ggT

where ĝ := Ĝi o. By the same mechanism we find with p̂ := P̂i o that Ai−1 =
Ai−1 − p̂ p̂T and Bi = Bi − ĝ p̂T . Writing this as

⎡

⎢⎢⎢⎢⎣

. . .

Ai−1 B
T
i

Bi Ai
. . .

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

. . .

Ai−1 BT
i

Bi Ai
. . .

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0
p̂
ĝ
0
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0
p̂
ĝ
0
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(38)

we see that these modifications take the form of a subtraction of a dyadic product from
a 2×2 subblock of the block tridiagonal system (18). We’re left with devising a down-
date procedure for the block Cholesky factorization of this system. As this situation
will arise for all four update procedures proposed, this task shall be postponed until
they have all been presented.
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4.4 Adding a point constraint

If any of the inactive decoupled point constraints on a node i becomes active, the row
r T := RF

j and its TQ factorization, j ∈ {1, . . . , nr} is appended to the end of RAF
i ,

[
RAF

i

r T

]
[

Zi Yi
] =

[
0 Ti

vT uT

]
. (39)

To restore the triangular structure of the right hand side of (39), a series of nZ − 1
Givens rotations

OT := O1
2

T · · · · · OnZ−1
nZ

T
(40)

is applied. Elements of vT are eliminated step by step by modifying the element to
the right, until the transformed last element γ remains and the southeast triangular
structure has been restored,

R
AF

i

[
Zi Y i

] :=
[

RAF
i

r T

] [
Zi Yi

] [
OT 0

0 I nY

]
=

[
0 0 Ti

0T γ uT

]
=: [

0 T i
]
. (41)

The factor T i gains a row and column as the range space dimension increases. The
sequence OT affects the old null space basis Zi only and we find

Zi := ZiOTP, Y i := [
z Yi

]
(42)

where z is the last column of ZiOT. As in Sect. 4.3.1 the projected Hessian factor’s
triangular shape needs to be recovered by the sequence

OU := OnZ

nZ−1 · · · · · O2
1 , (43)

resulting in the following update procedure to find Ui ,

Ui := PT OUUiOTP. (44)

For the matrices Ĝi (exemplarily) and P̂i the relation ĜiUi = GF
i Zi holds, so Ĝi

loses a column like Zi did. We find with t denoting the last row of OT that

Ĝi = GF
i Z iU

−1
i (45a)

= GF
i (ZiOTP)(PT OUUiOTP)−1 (45b)

= GF
i Zi (OTPPT OT

T )U−1
i OT

U P (Lemma 42, 3.) (45c)

= (GF
i ZiU

−1
i − GF

i Zi t t
T U−1

i )OT
U P (Lemma 42, 4.) (45d)

= ĜiO
T
U P − GF

i Zi t (t T U−1
i OT

U P)
︸ ︷︷ ︸

=0

. (45e)
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With the reasoning of Sect. 4.3.2, we find that in the last step (45e) that the second
term vanishes. With this result we proceed as in Sect. 4.3.3.

4.5 Deleting a simple bound

If an active simple bound on wi j becomes inactive on node i , we may assume by
Lemma 45 that it is the bound j = nF + 1 on the first of the fixed components of wi

by applying a suitable permutation to wX
i , to νi , and to the KKT matrix blocks. In the

extended constraints matrix (13), the first column rAX of RAX
i becomes the last one

of Ti ,

[
I X
i

RAF
i rAX R

AX

] ⎡

⎣
Zi Yi

1
I X
i

⎤

⎦ =
[

I X
i

0 Ti rAX R
AX

i

]
. (46)

The sequence OT of nY Givens rotations

OT := OnF+1
nF

T · · · · · OnZ+2
nZ+1

T
(47)

restores the triangular shape of the right hand side of (46) by eliminating each element
on the reverse subdiagonal using the element to the right,

[
0 T i

] := [
Ti rAX

]
OT. (48)

This sequence leaves Zi unaffected, but affects the first column of Yi which becomes
the new last one of Zi as the null space dimension grows by one,

Zi :=
[

Zi z
0T ζ

]
where

[
z Y i

ζ yT

]
:=

[
Yi 0
0T 1

]
OT. (49)

To find the new projected Hessian factor Ui we denote its new column’s by u ∈ R
nZ

and ρ ∈ R, and denote the elements of the new Hessian H
FF

i by h ∈ R
nF

and η ∈ R,

Ui =:
[

Ui u

0T ρ

]
, H

FF

i =:
[

HFF
i h

hT η

]
. (50)

From expanding Z
T
i H

FF

i Z i = U
T
i Ui we find that

[
Z T

i 0

zT ζ

] [
HFF

i h

hT η

][
Zi z

0T ζ

]
=

[
U T

i Ui U T
i u

uT Ui uT u + ρ2

]
. (51)

123

Author's personal copy



A factorization with update procedures for a KKT matrix 339

Hence we can compute the factor’s new entries u and ρ from the now unfixed entries

h and η of the Hessian H
FF

i of the free variables,

U T
i u = Z T

i (HFF
i z + hζ ), (52a)

ρ =
√

zT (HFF
i z + hζ ) + ζ(hT z + ηζ ) − uT u. (52b)

Since the initial nZ components of Zi and Ui remained unchanged from Zi and Ui ,

we find for Ĝi (exemplarily) and P̂i that Ĝi = [
Ĝi ĝ

]
where ĝ is a new additional

column that can be found as follows:

[
Ĝi ĝ

]
Ui = [

GF
i gX

1

]
Zi (53a)

⇐⇒ [
ĜiUi Ĝi u + ĝρ

] = [
GF

i gX
1

] [
Zi z
0T ζ

]
= [

GF
i Zi GF

i z + gX
1 ζ

]
(53b)

thus ĝ = (GF
i z + gX

1 ζ − Ĝu)/ρ. Finally, for the tridiagonal system blocks Ai−1
(exemplarily), Bi , and Ai we find

Ai = Ĝi Ĝ
T

i + P̂i+1 P̂T
i+1 = Ĝi Ĝ

T
i + ĝĝT + P̂i+1 P̂T

i+1 (54)

thus they are affected by a rank one update this time. With this result we proceed as
in Sect. 4.7.

4.6 Deleting a point constraint

If a decoupled point constraint on node i becomes inactive, a row j ∈ {1, . . . , nr
i } is

removed from RAF
i and the triangular factor Ti . This yields

R
AF

i

[
Zi Yi

] = [
0 T̃i

]
(55)

after which we restore the triangular structure of T̃i , that has been destroyed by the
removal of row j , using the series of nY − j Givens rotations

OT := O
nZ+nY− j+2
nZ+nY− j+1

T · · · · · OnZ+1
nZ+2

. (56)

This results in

[
0 T i

] := [
T̃i

]
OT. (57)

We find that Ti shrinks by one row and column reflecting the increased dimension of
the null space. The null space basis Zi remains unaffected by OT and we have

Zi := [
Zi y

]
,

[
y Y i

] := YiOT (58)
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where y denotes the first column of Yi . The factorization U
T
i Ui of the projected

Hessian Z
T
i HFF

i Z i is easily restored: Denoting the new elements of the Hessian fac-
tor with a vector u and a scalar ρ as in (52) we find

Z
T
i HFF

i Z i = U
T
i Ui ⇐⇒

[
Z T

i HFF
i Zi Z T

i HFF
i y

yT HFF
i Zi yT HFF

i y

]
=

[
U T

i Ui U T
i u

uT Ui uT u + ρ2

]

(59)

and from this we determine the new column
[
uT ρ

]T
of the Hessian factor Ui to be

u := U−T
i Z T

i HFF
i y, ρ :=

√
yT HFF

i y − uT u. (60)

Since the initial nZ components of Zi and Ui remained unchanged, we find Ĝi =[
Ĝi ĝ

]
where ĝ is a new additional column that is determined as follows. From

[
Ĝi ĝ

]
Ui = GF

i Z i ⇐⇒ [
ĜiUi Ĝi u + ĝρ

] = [
GF

i Zi GF
i y

]
(61)

we determine that new new column ĝ of Ĝi is

ĝ = (GF
i y − Ĝi u)/ρ. (62)

Finally, for the tridiagonal system blocks Ai−1, Bi , and Ai (exemplarily) we find

Ai = Ĝi Ĝ
T

i + P̂i+1 P̂T
i+1 = Ĝi Ĝ

T
i + ĝĝT + P̂i+1 P̂T

i+1, (63)

thus Ai is affected by a rank one update again. With this result we proceed as in
Sect. 4.7.

4.7 Modifying the tridiagonal block Cholesky factorization

We conclude the presentation of the proposed update procedures by deriving modifica-
tions for the tridiagonal block Cholesky factorization of system (18). Our modification
procedures will treat a rank one update or downdate of two neighboring blocks Ai−1
and Ai together with their subdiagonal block Bi . As we have seen, this situation
arises as common final part of all four cases of active set changes. In order to derive
a downdate procedure for this factorization, we carry out a single step of the block
tridiagonal Cholesky factorization of Sect. 3.4, incorporating the subtraction of the
dyadic product.
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4.7.1 Downdating a diagonal block

For downdating a single diagonal block Ai

V
T
i−1V i−1 = Ai−1 = Ai−1 − ppT , (64)

we employ method C3 of [23], which works by forming

[
v Vi−1

δn 0T

]
(65)

with v = V −T
i−1 p, δ2

n := 1 − vT v and transforming
[
vT δn

]
into the scaled unit vector

δ0eT
n by applying a sequence of Givens plane rotations

OV = O1
nZ+1 · · · · · OnZ

nZ+1 (66)

to (65), yielding

OV

[
v Vi−1

δn 0T

]
=:

[
G11 g12

gT
21 γ22

] [
v Vi−1

δn 0T

]
=

[
0 V i−1

δ0 r T

]
. (67)

Correctness can be verified by multiplying each side of (Eq. 67) by its transpose and

comparing entries, which yields V
T
i−1V i−1 + ppT . By comparison of elements in

(Eq. 67) we find with V i−1 = G11Vi−1 an explicit expression for V i−1 and also find
the identity g21 = v to be used in the next section.

4.7.2 Downdating a side diagonal block

From the block tridiagonal Cholesky algorithm we have the identity Di = V
−T
i−1 B

T
i

which for the subdiagonal block’s update leads to Di = G−T
11 V −T

i−1 B
T
i . The difficulty

here lies with finding G−T
11 , as G11 is not orthogonal. To this end, we expand to

[
Di

d

]
= OV

[
v Vi−1

δn 0T

]−T [
0

BT
i − pgT

]
(68)

Forming the inverse and carrying out the right matrix–vector product yields

[
Di

d

]
= OV

[
V −T

i−1 (BT
i − pgT )

− 1
δn

vT V −T
i−1 (BT

i − pgT )

]
= OV

[
Di − vgT

− 1
δn

(Di − vgT )

]
(69)

which can easily be computed by alongside the updated factor V i−1 by applying the
sequence of Givens plane rotations.
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4.7.3 The dyadic downdate to the following diagonal block

We now compute D
T
i Di for the third step. We define β := 1/(1 − vT v) = 1/δ2

n for
brevity.

D
T
i Di = Bi V −1

i−1G−1
11 G−T

11 V −T
i−1 B

T
i (70a)

= Bi V −1
i−1(I − g21gT

21)
−1V −T

i−1 B
T
i (70b)

= Bi V −1
i−1

(
I + βvvT

)
V −T

i−1 B
T
i (70c)

= (DT
i − gvT )(Di − vgT ) + β(DT

i v − gvT v)(vT Di − vT vgT ) (70d)

Here we have exploited orthogonality of GV and applied the Sherman–Morrison for-
mula in step (70c) to find (GT

11G11)
−1. Expanding, collecting identical terms and using

the identity 1 + βvT v = β we find

D
T
i Di = DT

i Di − βDT
i vgT − βgvT Di + βvT vggT + βDT

i vvT Di (71a)

= DT
i Di − βDT

i vgT − βgvT Di + βggT + βDT
i vvT Di − ggT (71b)

= DT
i Di + β(DT

i v − g)(DT
i v − g)T − ggT (71c)

Using this relation, the third step of the block tridiagonal Cholesky factorization reads:

V
T
i V i = Ai − D

T
i Di − ggT = Ai − DT

i Di − ddT = V T
i Vi − ddT (72)

with a vector d = 1
δn

(DT
i v−g). This vector may also be written as d = 1

δn
D̃T

i v−δng in

terms of the matrix D̃i := D −vgT , which may be computationally more convenient.
We have thus derived a rank one downdate for the blocks Ai−1 and Bi under the tri-

diagonal block Cholesky factorization, depending on the vectors g and p defining the
original dyadic downdate. With this, we can start over in Sect. 4.7.1 for Ai and Bi+1.
The derived procedure eventually has to be carried out for all blocks i −1, i, . . . , m−1
of (Eq. 18). As the initial vectors p and g forming the dyadic products to be subtracted
affect the nodes i − 1 and i only, the downdate for all nodes except node i − 1 is
carried out with g = 0, allowing for simplified computations.

We finally note that the same derivation can be carried out with minor modifica-
tions for the update Ai−1 = Ai−1 + ppT , Bi = Bi + gpT , Ai = Ai + ggT , which is
required for the third and fourth kind of active set change. We omit the derivation for
brevity, as it does not provide any additional insight.

5 Numerical results

In this section we consider an exemplary optimal control problem and solve it with a
direct multiple shooting approach as briefly mentioned in Sect. 2.2.3. The nonlinear
programs resulting from the direct multiple shooting discretization and parameteriza-
tion are solved by a standard line search SQP method using an L-BFGS approximation
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of the Hessian of the Lagrangian. The QP subproblems arising in this SQP method
are solved using a primal-dual parametric active set method, cf. [6] and [16] for more
details. The KKT system arising in each iteration of this active set method is solved
using the factorization of Sect. 3 and using the updates of Sect. 4. We report aver-
age per-iteration run times for several instances of this problem with differing size
and compare to several different other algorithms, including the classical condensing
preprocessing in conjunction with a dense null-space primal active set solver.

5.1 An exemplary problem

In order to exemplarily investigate the relative performance of the proposed factoriza-
tion and update procedures, we consider a time-optimal control problem from auto-
mobile test driving due to [21]. The problem models a single-track vehicle evading an
obstacle on a predefined track, aiming to complete this track in minimal time. For more
details on this problem we refer to [21,33]. The problem’s dimensions are nx = 10
states and nq = 3 + nμ controls. The size of this problem after a direct multiple
shooting discretization is influenced by the choice of the number nμ ≥ 1 of available
gears and the choice of the number m of direct multiple shooting nodes, resulting in
a structured QP with m(nx + nq) unknowns, (m − 1)nx matching conditions, nr

i = 3
point constraints on the shooting nodes 1 ≤ i ≤ m − 1, and nr

m = 4 terminal point
constraints.

5.2 Evaluated approaches at solving the KKT system

We examine 16 instances of this problem combined from the choices nμ ∈
{4, 8, 12, 16} and m ∈ {21, 41, 81, 161}. Dimensions and sparsity of the Hessians
H and the constraint Jacobians M , C of the resulting QPs can be found in Table 1.
Examined approaches at the solution of the QP subproblems comprise

– Preprocessing the structured QP using the classical condensing algorithm, cf.
[7,35], and solving the obtained smaller but densely populated QP using the dense
null-space active set QP solver QPOPT [26], in version 1.0–10.

– Solving the KKT system of the structured QP using the multifrontal sparse sym-
metric indefinite code MA57, see [13], in the version available from the Harwell
Subroutine Library.

– Solving the KKT system of the structured QP using the code UMFPACK, cf. [9], in
version 5.1. Note that [32] presents KKT repair techniques for a sparse LU factor-
ization computed by UMFPACK, which give significant speed-ups but obviously
fill in after several iterations.

– Solving the KKT system of the structured QP using the banded LU factorization
code DGBTRF available in LAPACK, see [2].

– Solving the KKT system of the structured QP using the factorization proposed in
Sect. 3 of this paper.

– Solving the KKT system of the structured QP using the factorization proposed
in Sect. 3 of this paper for the first active set QP iteration, and updating this
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Table 1 Dimensions and sparsity of the Hessians H and the constraints M, C for the exemplary problem

m nμ Hessian of the Lagrangian Jacobian of the constraints

Size Elements Nonzeros Rows Elements Nonzeros

21 4 336 112,896 5,262 4.7% 264 88,704 1,906 2.1%

8 420 176,400 7,878 4.5% 264 110,880 2,465 2.2%

12 504 254,016 11,918 4.7% 264 133,056 3,024 2.3%

16 588 345,744 16,254 4.7% 264 155,232 3,584 2.3%

41 4 656 430,336 10,382 2.4% 524 343,744 3,806 1.1%

8 820 672,400 15,814 2.4% 524 429,680 4,924 1.1%

12 984 968,256 22,718 2.3% 524 515,616 6,044 1.2%

16 1,148 1,317,904 31,934 2.4% 524 601,552 7,166 1.2%

81 4 1,296 1,679,616 20,622 1.2% 1,044 1,353,024 7,607 0.6%

8 1,620 2,624,400 30,950 1.2% 1,044 1,691,280 9,845 0.6%

12 1,944 3,779,136 46,478 1.2% 1,044 2,029,536 12,087 0.6%

16 2,268 5,143,824 60,478 1.2% 1,044 2,367,792 14,325 0.6%

161 4 2,576 6,635,776 41,048 0.6% 2,084 5,368,384 15,208 0.3%

8 3,220 10,368,400 62,316 0.6% 2,084 6,710,480 19,688 0.3%

12 3,864 14,930,496 92,208 0.6% 2,084 8,052,576 24,169 0.3%

16 4,508 20,322,064 121,924 0.6% 2,084 9,394,672 28,648 0.3%

factorization using the techniques proposed in Sect. 4 of this paper in all subsequent
active set iterations of the same SQP step.

All algorithms were run with their default settings. We did not make use of an accel-
erated BLAS library. The computing environment is a single core of an Intel Core i7
CPU at 2.67 GHz running a 64-bit Ubuntu Linux 9.10. Condensing and the proposed
factorization and updates are implemented in ANSI C99, and compiled with applicable
machine-specific optimization flags enabled.

5.3 Achieved run times

For each of the 16 problem instances and each of the 5 examined algorithmic
approaches, the optimal control problem of Sect. 5.1 was solved to an acceptable
KKT tolerance of 10−8 and the average run time per QP iteration was computed after-
wards and is shown in Table 2. Only the QP code’s share of the overall solution time
was taken into account, i.e. run time spent for ODE system solution, sensitivity gen-
eration, or computation of the Hessian approximation was omitted. As can be seen
clearly, the factorization proposed in Sect. 3 is the fastest of the examined algorithmic
approaches by a wide margin for the largest examined problem instances. The dense
active set solver QPOPT is faster for the smallest instances, although the condensing
preprocessing has to be taken into account. Due to its O(m3) runtime complexity,
condensing quickly falls behind for longer horizons. Both generic sparse solvers fall
behind in performance as the size of the problem grows. This may be attributed to a
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Table 2 Average run times in milliseconds per active set iteration (columns 4–9)

m nμ Condensing
(once)

QPOPT
(dense)

MA57 UMFPACK LAPACK DGBTRF Sect. 3 With
updates

21 4 4.49 0.247 1.366 1.396 1.734 0.737 0.457

8 7.14 0.359 1.992 6.119 2.664 0.632 0.439

12 10.3 0.365 2.550 6.129 4.116 0.765 0.426

16 14.0 0.656 3.316 6.487 7.488 0.681 0.447

41 4 24.9 1.010 2.589 9.588 3.426 1.035 0.717

8 42.6 1.392 3.429 11.58 5.304 1.130 0.750

12 64.0 1.916 4.832 11.88 14.12 1.154 0.751

16 90.6 2.763 6.299 13.09 14.15 1.234 0.797

81 4 158 4.337 4.995 19.21 6.204 1.922 1.261

8 289 5.478 6.637 23.11 9.360 2.161 1.384

12 451 9.101 9.278 23.97 14.31 2.703 1.402

16 662 15.60 12.17 26.39 27.32 2.327 1.502

161 4 1,128 17.10 10.18 38.90 13.55 3.755 2.410

8 2,224 26.92 13.88 46.35 22.67 4.115 2.601

12 3,577 38.04 19.21 47.25 30.78 4.311 2.706

16 5,322 55.30 25.39 53.79 59.06 4.586 2.907

Run time in milliseconds per SQP iteration for the condensing preprocessing (column 3), done for QPOPT
only

lack of sparsity in the sensitivity matrices G computed by the direct multiple shooting
approach. Collocation schemes would create larger, but sparser systems here. These
better suit the generic sparse methods, while the proposed factorization could not
easily exploit the additional in-block sparsity created by collocation. UMFPACK and
DGBTRF in addition do not exploit the symmetry of the KKT system.

6 Summary and outlook

In this contribution, we have addressed the issue of solving a certain class of block
structured quadratic programs using a a primal or primal-dual active set method. The
examined class of QPs is widely encountered in optimal control and model predictive
control, and its connections to SQP methods and the direct multiple shooting method
have briefly been introduced.

A new derivation of a factorization for the block structured KKT system of the
examined class of QPs, first published in [34], has been given taking the point of view
of a nested saddle-point problem, and has been extended to exploit simple bounds on
the unknowns. The factorization fully respects the block structure and completes in
O(mn3) operations, where m is the number of nodes and n is the number of process
states and control parameters per node. The factorization is as widely applicable as
the popular dense null space method, given a QP with the required block structure.
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We have seen that in active set methods, update procedures that recover the KKT
system’s factorization after a change of the active set are of vital importance. The
main part of the contribution is concerned with the detailed first-time derivation of
update procedures for the block structured factorization. We have shown for the first
time how to recover this factorization after any of the four possible changes to the
active set, namely adding or deleting a simple bound, and adding or deleting a point
constraint. The presented update procedures are built on the well established updates
for the dense null space method, but extend to two further interconnected factorization
steps, namely a Schur complement and a block tridiagonal Cholesky factorization.

Using the proposed updates, an active set loop of a block structured primal active
set method has to compute this factorization only once for the initially guessed active
set, and may then compute cheap updates of this factorization after every iteration of
the active set loop. The proposed algorithms hence allow for a block structured active
set method with a setup run time complexity of O(mn3) and a per iteration run time
complexity of O(mn2). This is in sharp contrast to classical condensing approaches,
which require up to O(m3n3) operations for the setup and O(m2n2) operations per
iteration.

We compared the computational demand of the described algorithms to several
alternative approaches. These included classical condensing plus a dense active set
method, as well as a number of more generic sparse and structured linear algebra codes
for the solution of the structured KKT system. Computational evidence obtained for
an exemplary optimal control problem suggests that the proposed factorization with
update procedures is competitive in terms of per-iteration run times. The presented
matrix updates give an additional speed-up that has becomes increasingly important
as the control dimension nq grows.

Our contribution is accompanied by a proof-of-concept MATLAB c© implemen-
tation of all the proposed update procedures. It is intended to provide an additional
means of exemplary verification of the derived updates. A realization in ANSI C as
part of a block structured primal-dual active set QP code is envisioned and will be the
topic of a forthcoming publication.

Acknowledgments The authors would like to thank the two anonymous referees whose extensive com-
ments have helped to significantly improve this paper. In particular, the alternative presentation of the
structured factorization in Sect. 3 was suggested by one of the referees. The research leading to these results
has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant
agreement no. FP7-ICT-2009-4 248940. This work has been supported by the Heidelberg Graduate School
of Mathematical and Computational Methods for the Sciences (HGS MathComp) funded by Deutsche
Forschungsgemeinschaft (DFG).

References

1. Albersmeyer, J., Bock, H.: Efficient sensitivity generation for large scale dynamic systems. Technical
report, SPP 1253 Preprints, University of Erlangen (2009)

2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial
and Applied Mathematics, Philadelphia (1999)

3. Bartlett, R., Biegler, L.: QPSchur: a dual, active set, Schur complement method for large-scale and
structured convex quadratic programming algorithm. Optim. Eng. 7, 5–32 (2006)

123

Author's personal copy



A factorization with update procedures for a KKT matrix 347

4. Bartlett, R., Wächter, A., Biegler, L.: Active set vs. interior point strategies for model predictive control.
In: Proceedings of the American Control Conference, Chicago, IL, pp. 4229–4233 (2000)

5. Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle-point problems. Acta Numerica 14,
1–137 (2005)

6. Best, M.: An algorithm for the solution of the parametric quadratic programming problem. In:
Fischer, H., Riedmüller, B., Schäffler, S. (eds.) Applied Mathematics and Parallel Computing—Fest-
schrift for Klaus Ritter, Chap. 3, pp. 57–76. Physica-Verlag, Heidelberg (1996)

7. Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In:
Proceedings of the 9th IFAC World Congress, pp. 242–247. Pergamon Press, Budapest (1984)

8. Bock, H., Diehl, M., Kostina, E., Schlöder, J. : Constrained optimal feedback control for DAE. In:
Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waanders, B. (eds.) Real-Time
PDE-Constrained Optimization, Chap. 1, pp. 3–24. SIAM, Philadelphia (2007)

9. Davis, T.: Algorithm 832: UMFPACK—an unsymmetric-pattern multifrontal method with a column
pre-ordering strategy. ACM Trans. Math. Softw. 30, 196–199 (2004)

10. Davis, T., Hager, W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix
Anal. Appl. 22(4), 997–1013 (2000)

11. Diehl, M., Bock, H., Schlöder, J., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and
nonlinear model predictive control of processes governed by differential-algebraic equations. J. Proc.
Contr. 12(4), 577–585 (2002)

12. Diehl, M., Kuehl, P., Bock, H., Schlöder, J.: Schnelle Algorithmen für die Zustands- und Parameter-
schätzung auf bewegten Horizonten. Automatisierungstechnik 54(12), 602–613 (2006)

13. Duff, I.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM
Trans. Math. Softw. 30(2), 118–144 (2004)

14. Duff, I., Reid, J.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans.
Math. Softw. 9(3), 302–325 (1983)

15. Eldersveld, S., Saunders, M.: A block-LU update for large scale linear programming. SIAM J. Matrix
Anal. Appl. 13, 191–201 (1992)

16. Ferreau, H., Bock, H., Diehl, M.: An online active set strategy to overcome the limitations of explicit
MPC. Int. J. Robust Nonlinear Control 18(8), 816–830 (2008)

17. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)
18. Fletcher, R.: Resolving degeneracy in quadratic programming. Numerical Analysis Report NA/135,

University of Dundee, Dundee, Scotland (1991)
19. Fletcher, R.: Approximation Theory and Optimization. Dense Factors of Sparse Matrices, pp. 145–166.

Tributes to M.J.D. Powell. Cambridge University Press (1997)
20. Fletcher, R.: Numerical Analysis 1997. Block Triangular Orderings and Factors for Sparse Matrices

in LP, pp. 91–110. Pitman Research Notes in Mathematics, vol. 380. Longman, Harlow (1998)
21. Gerdts, M.: Solving mixed-integer optimal control problems by Branch&Bound: a case study from

automobile test-driving with gear shift. Optimal Control Appl. Methods 26, 1–18 (2005)
22. Gertz, E., Wright, S.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw.

29, 58–81 (2003)
23. Gill, P., Golub, G., Murray, W., Saunders, M.A.: Methods for modifying matrix factorizations. Math.

Comput. 28(126), 505–535 (1974)
24. Gill, P., Murray, W., Saunders, M., Wright, M.: Sparse matrix methods in optimization. SIAM J. Sci.

Stat. Comput. 5(3), 562–589 (1984)
25. Gill, P., Murray, W., Saunders, M., Wright, M.: A practical anti-cycling procedure for linearly con-

strained optimization. Math. Program. 45(1–3), 437–474 (1989)
26. Gill, P., Murray, W., Saunders, M., Wright, M.: Inertia-controlling methods for general quadratic

programming. SIAM Rev. 33(1), 1–36 (1991)
27. Gill, P., Murray, W., Saunders, M.: User’s Guide For QPOPT 1.0: A Fortran Package for Quadratic

Programming (1995)
28. Golub, G., van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore

(1996)
29. Hall, J., McKinnon, K.: The simplest examples where the simplex method cycles and conditions where

the EXPAND method fails to prevent cycling. Math. Program. Ser. A & B 100(1), 133–150 (2004)
30. Han, S.: Superlinearly convergent variable-metric algorithms for general nonlinear programming prob-

lems. Math. Program. 11, 263–282 (1976)

123

Author's personal copy



348 C. Kirches et al.

31. Haseltine, E., Rawlings, J.: Critical evaluation of extended Kalman filtering and moving-horizon esti-
mation. Ind. Eng. Chem. Res. 44, 2451–2460 (2005)

32. Huynh, H.: A large-scale quadratic programming solver based on block-LU updates of the KKT system.
PhD thesis, Stanford University (2008)

33. Kirches, C., Sager, S., Bock, H., Schlöder, J.: Time-optimal control of automobile test drives with gear
shifts. Optimal Control Appl. Methods 31(2), 137–153 (2010)

34. Kirches, C., Bock, H., Schlöder, J., Sager, S.: Block structured quadratic programming for the direct
multiple shooting method for optimal control. Optim. Methods Softw. 26(2), 239–257 (2011)

35. Leineweber, D., Bauer, I., Schäfer, A., Bock, H., Schlöder, J.: An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization (Parts I and II). Comput. Chem.
Eng. 27, 157–174 (2003)

36. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin, Heidelberg, New York
(2006)

37. Powell, M.: Algorithms for nonlinear constraints that use Lagrangian functions. Math. Program.
14(3), 224–248 (1978)

38. Powell, M.: ZQPCVX: a Fortran subroutine for convex quadratic programming. Technical report,
Department of Applied Mathematics and Theoretical Physics, Cambridge University (1983)

39. Schmid, C., Biegler, L.: Quadratic programming methods for tailored reduced Hessian SQP. Comput.
Chem. Eng. 18(9), 817–832 (1994)

40. Steinbach, M.: Fast recursive SQP methods for large-scale optimal control problems. PhD thesis,
Ruprecht-Karls-Universität Heidelberg (1995)

41. Vanderbei, R.: LOQO: an interior point code for quadratic programming. Optim. Methods Softw.
11(1–4), 451–484 (1999)

42. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

43. Wirsching, L., Albersmeyer, J., Kühl, P., Diehl, M., Bock, H.: An adjoint-based numerical method for
fast nonlinear model predictive control. In: Chung, M., Misra, P. (eds.) Proceedings of the 17th IFAC
World Congress, Seoul, Korea, July 6–11, 2008. IFAC-PapersOnLine, vol. 17, pp. 1934–1939 (2008)

44. Wright, S.: Applying new optimization algorithms to model predictive control. In: Fifth International
Conference on Chemical Process Control—CPC V, pp. 147–155. CACHE Publications (1997)

123

Author's personal copy


	A factorization with update procedures for a KKT matrix arising in direct optimal control
	Abstract
	1 Introduction
	1.1 Relation to own work
	1.2 New contributions
	1.3 Structure of the paper

	2 A discrete-time linear-quadratic optimal control problem
	2.1 Discrete-time optimal control problem
	2.2 Linearly constrained quadratic model
	2.2.1 Sequential quadratic programming
	2.2.2 Model-predictive control
	2.2.3 Direct multiple shooting

	2.3 Primal active set method
	2.3.1 Active set
	2.3.2 One iteration of a primal active set method


	3 A block structured factorization
	3.1 Saddle-point problem form
	3.2 TQ factorization step
	3.3 Schur complement step
	3.4 Block tridiagonal factorization step
	3.5 Computational effort and applicability

	4 Matrix update procedures for active set exchanges
	4.1 Existing update techniques
	4.2 Projections, Givens rotations, and permutations
	4.2.1 Projections
	4.2.2 Orthogonal eliminations
	4.2.3 Permutations of the free unknowns

	4.3 Adding a simple bound
	4.3.1 TQ factorization update
	4.3.2 Schur complement update
	4.3.3 Block tridiagonal system update

	4.4 Adding a point constraint
	4.5 Deleting a simple bound
	4.6 Deleting a point constraint
	4.7 Modifying the tridiagonal block Cholesky factorization
	4.7.1 Downdating a diagonal block
	4.7.2 Downdating a side diagonal block
	4.7.3 The dyadic downdate to the following diagonal block


	5 Numerical results
	5.1 An exemplary problem
	5.2 Evaluated approaches at solving the KKT system
	5.3 Achieved run times

	6 Summary and outlook
	Acknowledgments
	References


