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Abstract

Over the last years, psychological research has increasingly used computer-supported tests, especially in the analysis
of complex human decision making and problem solving. The approach is to use computer-based test scenarios and
to evaluate the performance of participants and correlate it to certain attributes, such as the participant’s capacity to
regulate emotions. However, two important questions can only be answered with the help of modern optimization
methodology. The first one considers an analysis of the exact situations and decisions that led to a bad or good overall
performance of test persons. The second important question concerns performance, as the choices made by humans
can only be compared to one another, but not to the optimal solution, as it is unknown in general.

Additionally, these test-scenarios have usually been defined on a trial-and-error basis, until certain characteristics
became apparent. The more complex models become, the more likely it is that unforeseen and unwanted char-
acteristics emerge in studies. To overcome this important problem, we propose to use mathematical optimization
methodology not only as an analysis and training tool, but also in the design stage of the complex problem scenario.

We present a novel test scenario, the IWR Tailorshop, with functional relations and model parameters that have been
formulated based on optimization results. We also present a tailored decomposition approach to solve the resulting
mixed-integer nonlinear programs with nonconvex relaxations and show some promising results of this approach.
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1. Introduction financial crisis, medical doctors who decide on comple-
mentary chemotherapy drug delivery strategies, or en-
trepreneurs who decide on long-term pricing strategies

for the products they offer.

Modern life imposes daily decision making, often
with important consequences. [llustrative examples are,

e.g., politicians who decide on actions to overcome a . o
The process of human decision making in such tasks

is the subject of research in the field of complex problem
solving (CPS). CPS is defined as a high-order cognitive
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process. In research, the performance of participants
in clearly defined microworlds (or tasks) is investigated.
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Figure 1: Schematic representation of the IWR Tailorshop microworld. Arrows show dependencies, the symbols (+ and -) show proportional and
reciprocal influences respectively. Diamonds indicate the influence of participants’ decisions.

The participant’s performance is evaluated and corre-
lated to certain attributes, such as the participant’s ca-
pacity to regulate emotions.

One microworld that comprises a variety of proper-
ties such as dynamics, complexity and interdependence,
discrete choices, lack of transparency, and polytely in
an economical framing is the Tailorshop. Participants
have to make economic decisions to maximize the over-
all balance of a small company, specialized in the pro-
duction and sales of shirts. The Tailorshop is sometimes
referred to as the “Drosophila” for CPS researchers [[II]
and thus a prominent example for a computer-based mi-
croworld. It has been used in a large number of studies,
e.g., [2,3, 4,8, B, ]. Comprehensive reviews on studies
with Tailorshop have been published, e.g., [, 9, I, I].

The calculation of indicator functions to measure
performance of CPS participants is by no means triv-
ial. To measure performance within the Tailorshop mi-
croworld, different indicator functions have been pro-
posed in the literature, see [I1] for a recent review. In
[I2, 3] the question how to get a reliable performance
indicator for the Tailorshop microworld has been ad-
dressed. Because all previously used indicators have un-
known reliability and validity, decisions are compared
to mathematically optimal solutions. For the first time

a complex microworld such as Tailorshop has been de-
scribed in terms of a mathematical model.

Therefore one can formulate the CPS task as an op-
timization problem. In this article, we consider dy-
namic scenarios with consecutive (turn-based) deci-
sions made by participants. Such a microworld—Ilike
the Tailorshop—can be formulated in a general way
as a discretized mixed-integer optimal control problem
(dMIOCP)

max F(xy)
X,u

sit. xpe1 =GO, ug, p,&), k=ng...N—-1,
Ui €8, k=ns...N—-1, (1)
i=1...ng,
0 < H(xy, ug, p), k=ng...N,

Xo, = X,

for different start times 0 < ng < N of the optimization
and where F, G, and H are nonlinear functionals, ¢ is a
random variable, and €; are, possibly discrete, feasible
sets. State variables are denoted by xy, scenario param-
eters by p, and decisions to be taken by the participants

at time k by u;. We define

(P, uP) = (X, XU, ) 2)



to be the vector of decisions and state variables for all
months of a participant. Certain entries x/, enter ()
as fixed initial values. Participant independent initial
values xg = xy are fixed and part of the CPS microworld
definition. The model is dynamic with a discrete time
k=0...N,and N the number of turns.

Based on (), an optimization can be performed for
every turn ng of the participant’s data, starting with ex-
actly the same conditions x}, as the participant. The
result can be used in different ways to cope with ques-
tions like how to measure performance in complex envi-
ronments in an objective way and how to determine de-
cisions which were critical for the overall performance
of a participant. This technique is described in detail in
[I3].

Thus, the assumption that the “fruit fly of complex
problem solving” is not mathematically accessible has
been disproven. However, solving () to proven global
optimality is already a challenging task. The novel
methodological approach has also been combined with
experimental studies, [B, [, I3].

So far, all CPS microworlds have been developed
in a purely disciplinary trial-and-error approach. To
our knowledge, a systematic development of CPS mi-
croworlds based on a mathematical model, sensitivity
analysis, and eventually optimization methods to choose
parameters that lead to a wanted behavior of the com-
plex system for all possible trajectories has not yet been
applied. As an example for the need to do this, the math-
ematical modeling of the Tailorshop microworld in [[[3]
led to the discovery of a priori unwanted and unrealistic
winning strategies (e.g., the vans bug).

Therefore, in this article we present a new micro-
world based on the Tailorshop, for which optimization
methods have been considered already throughout the
modeling phase, the IWR Tailorshop. To overcome
the difficulties of computing globally optimal solutions
for this test-scenario, which still yields nonconvex opti-
mization problems, we developed a decomposition ap-
proach tailored to the IWR Tailorshop.

Mathematical model reduction techniques are quite
common in other domains, see e.g., [[4, I3, T6] for an
overview. The basic idea of our new approach to solve
problem () consists of a decomposition of the MINLP
into a master and several smaller subproblems. This
works if the objective function is separable. The idea is
related to Lagrangian relaxation, one of the most used
relaxation strategies for MILPs. Its first application was
the one-tree relaxation of the traveling salesman prob-
lem in the famous Held-Karp algorithm in [I'Z, IR]. The
traditional application fields are variants of the knap-
sack problem like, e.g., facility location and capacity

planning [T9], general assignment, network flow and the
unit commitment problem [20]. The general approach
is thoroughly explained in [21] and in [2Z]. A problem-
specific decomposition approach has been proposed in
[23]. The authors reformulate the MIOCP as a large-
scale, structured nonlinear program (NLP) and solve a
small scale linear integer program on a second level to
approximate the calculated continuous aggregated out-
put of all pumps in a water works. To obtain objec-
tive performance measures, we need guaranteed upper
bounds for the maximum. Hence the mentioned tech-
niques can not be applied in a straightforward way.

The article is organized as follows. In section O, the
IWR Tailorshop is introduced. Then the tailored decom-
position approach is explained in section B. We show
some promising numerical results of the decomposition
applied to the IWR Tailorshop in section B and conclude
with an outlook in section B.

2. The IWR Tailorshop-model

Based on the experience with the original Tailorshop-
microworld described in [[3] with modeling oddities,
bugs, and other undesirable properties, we decided to
continue our work with a mathematical model devel-
oped from scratch.

We systematically build a new microworld with desir-
able (mathematical) properties based on the economical
framing of Tailorshop. These efforts lead to the new
test-scenario IWR Tailorshop. A schematic representa-
tion of this new microworld can be found in Figure 0.
Table O lists all states and controls the IWR Tailorshop
contains together with corresponding units.

Compared to the Tailorshop, the variety of variables
has been shifted towards a more abstract level. For ex-
ample, the participants have no longer the task to buy or
sell machines, but instead have to take care of the num-
ber of production sites x™ of their company. The rather
concrete variable vans has been replaced by more ab-
stract distribution sites xP5, and so on. We chose to set
up IWR Tailorshop on such an abstract level, because
this yields a more realistic position of a decision maker
for the participants. For the majority of companies, it
seems unlikely that the one who decides on the number
of employees, the shirt price, and the amount of money
spent for advertising is the same who has to ensure that
enough raw material is bought to produce the shirts.

The mathematical representation of the IWR Tailor-
shop consists of the following set of equations for k =
ng...N, which will be explained below. Remember,
that x, denote state variables, u, denote control variables
(decision variables) and p are fixed parameters.



States Variable Unit Controls Variable Unit
employees xEM person(s)  shirt price ust M.U shirt
production sites xPS site(s) advertising utP M.U.
distribution sites xS site(s) wages uA M.Ujperson
shirts in stock xSH shirt(s) maintenance uMA M.U.
production xPR shirt(s) resources quality uR@ —

sales x5A shirt(s) recruit/dismiss employees udEM | PEM  person(s)
demand xPE shirt(s) create/close production site  u?PS/uPPS  site(s)
reputation xRE — create/close distribution site ~ uPS JuPPS  site(s)
shirts quality x5 —

machine quality xMe —

motivation of employees  xM© —

capital xA M.U

Table 1: States and controls with corresponding units in the /[WR Tailorshop. M.U. means monetary units.
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A part of these equations, (Bd)-(BH), consist of a
simple linear transition from month k£ to month k£ + 1.
The amount of sites created and employees recruited is
added, the amount of sites closed and employees dis-



missed is subtracted from the inventory. Equations (BH)
and (Bi) are very similar to this type: the amount of
shirts sold is subtracted from the current stock, the num-
ber of shirts produced is added. The shirt quality is
a linear combination of three components, namely the
motivation of employees, the machine quality, and the
resource quality chosen by the participant.

The demand equation (Bd) is more complicated and
contains three factors. First, there is an exponential de-
crease with the shirt price, followed by a logarithm,
which damps the influence of advertising. Finally, these
terms are multiplied by the reputation and a certain off-
set. Demand here refers to the demand at this single
company, not on the whole market.

In equation (Bd), determining the reputation, there is
a memory term consisting of a fraction of the current
reputation. Additionally, there is a logarithm to dampen
the effects of advertising, level of wages, and the prod-
uct value—a product of shirt price and shirt quality to
the power of two.

The production equation (Bf) consists of a log-term,
which damps the efficiency of workers per site. The
assumption is, that all the employees are distributed
equally over the sum of distribution and production
sites. The more employees per site there are, the less
productivity is yielded by one more employee, e.g., be-
cause of the limitation of space or machines. This term
is multiplied by the number of production sites in com-
pensation of the denominator in the logarithm. The
sales equation (Bg) is analog to the production equation,
but with a distribution sites factor instead of production
sites. Additionally, sales are limited by the number of
shirts available, i.e., the sum of shirts in stock and shirts
produced, and by the demand. This leads to the min-
expression with three components. Note, however, that
this expression can easily be transformed into inequal-
ities by introducing a slack-variable, which is limited
by all components of the minimum. This works, be-
cause the sales only have a positive effect in the objec-
tive function.

Machine quality, see equation (Bj), decreases with
the load, represented by shirts produced per production
site. Maintenance, on the other hand, increases machine
quality, damped by a logarithm again.

The motivation equation (BK) is a convex combina-
tion of old and new motivation levels. The level is de-
termined by a logarithm containing positive effects (re-
cruiting employees, creating production and distribution
sites, wages, and reputation) and a negative exponen-
tial, where negative factors enter (dismissal of employ-
ees and closing production and distribution sites).

The last equation (B1), the capital, is a composition of

all expenses and incomes given implicitly by the other
equations: revenue per shirt, revenue per production and
distribution site sold (closed), wages per employee, pro-
duction costs depending on the resource quality, fixed
costs for production and distribution sites, maintenance
and advertising expenses, storage costs, and purchase
price for production and distribution sites. The capital
is subject to a certain interest rate p4.

IWR Tailorshop contains inequalities. There is a max-
imum storage capacity for shirts per distribution site,

xiH < pSH,O . xi)S' (4)

Recruitment depends on access to different job markets
yielded by the number of sites and is limited,

pPEMT . DS (5)

DEM DEM,0 S
™ < p xS+

The overall number of sites is limited,

X0+ < p ©6)
And finally, there is a limit on the sum of production
sites closed within two months:

dPS dPS _ _dPS

+up | < p @)
Beyond these inequalities, all states and controls except
of the capital are required to be > 0 and some controls
have additional simple upper bounds,

ZEM < pdEM (Sa)
ukDPS < pDPS’ (8b)
ui)DS < pDDS, (SC)
ulPs < paos, (8d)

Furthermore, some of the controls have to be integer,

MkDEM MZEM MkDPS dPS ui)DS dDS c Z+ (9)

and resource quality must be chosen from a finite set:
uf@ e [pRe, .. pFeme] (10)
Compared to equation (I), these equations and in-
equalities together with the reformulation of the sales
equation form the functions G and H. For the objective
function F, one could easily think of different options,
e.g., a weighted combination of maximizing profit, rep-
utation, and some other factors. We decided to use the
profit at the end of the discrete time-scale in this article
for the sake of comparability to the original Tailorshop.
Hence, we suggest the following objective:

max x$ (11)
X,u,p



Of course, the set of parameters has a significant in-
fluence on the model behavior. One could definitely
dedicate a whole article on how to determine an appro-
priate parameter set for a microworld like /WR Tailor-
shop, depending on the aims—see also section B for fu-
ture work regarding this issue. For this article, however,
we set up a parameter set manually such that the model
fulfills a certain desired behavior. The chosen param-
eters also yield a model behavior that makes sense for
the optimization, i.e. there are feasible solutions and the
optimization problem is not unbounded. The parameter
values are listed in tables @ and B.

All these components build the IWR Tailorshop,
which—from a mathematical point of view—is a mixed-
integer nonlinear program with nonconvex relaxation,
i.e. if the possibly discrete €; in the dMIOCP () are
replaced by some continuous €; D Q;, this yields a non-
convex nonlinear program. The implementation of this
new model features a web-based interface and uses the
widely spread AMPL interface [?4], which allows, e.g.,
the use of a variety of powerful optimization algorithms.

Compared to the variants of the original Tailorshop
microworld used in different studies, e.g. [2, B, 8, 5, B,
7], the dimensions of the problem are slightly smaller,
but are within the same order of magnitude (e.g. 15 (9)
vs. 11 (7) control variables (integer) and 16 vs. 12 state
variables per month). Note, however, that first, there
may be small differences between the Tailorshop mi-
croworlds used in former studies and that second, there
are some differences between the terminology used for
the variables in this article and in the articles from the
psychological community (e.g. endogenous/exogenous
vs. control/state). Structurally, the relation between the
models is as follows. Some of the equations, such as the
ones for the shirts in stock or the employees, are more
or less the same or at least very similar. The main dif-
ference is, that most of the effects, for which min / max-
expressions have been used in the old microworld, are
modelled by smoothed terms like exp and log in IWR
Tailorshop.

3. A Tailored Decomposition Approach

Now that we have a systematically built microworld
with desirable properties, we could start doing studies
with it and evaluating participants’ performance based
on optimal solutions as explained above and in [3].
The computation of an indicator function as described
in [[3], however, can only be claimed reasonably to
be objective, if we can find guaranteed globally opti-
mal solutions. But—as already mentioned above—the

parameter value

pSHo 2000 shirts/site
pPE? 600.0 shirts
pPE! 2 - 1072 shirts/p U,
pPE? 2-1072 /mu.
pDE,3 05

pRE,O 05

pRE,] 1.0

pRE2 2.5-107 I/mu.
pRE3 1074 shirts/p.U.
pRE,4 6 - 1073 persons/pu.
pPR’O 99.9 shirts/sjes
pPR’] 2.0 sites/persons
pFR2 107 sites

pSA’O 99.9 shirts/sjtes
pSA’] 2.0 sites/persons
psA2 107 sites

A3 1.0

A 0.2

pSe! 0.3

pSe? 0.5

pMeo 0.8

pMQJ 0.6 - 107 sites/shirts
pMe? 1076 sites

pMes 0.13

pMo4 02M.U.7!
pM0,0 05

pMo1 4-1072 persons™!
pMo2 0.5 sites™!

pMo3 0.25 sites™!
pMo4 2.0 - 107 persons/p U,
pM0,5 03

pMO,é 1.0

pMo7 0.7 persons™!
pMos 2.5sites™!

pMo? 2.0sites™!
pMO,]O 1.0

pMO,II 05

peAo 1.03

p! 5000 M-Usice
p? 3500 M-Usice
pCA’3 5.0 M-Upshire

pCA’4 1000 M-Ugsite
pCA’5 700 M-Ugsite

pCA’6 1.5 M-U/shirt
pA7 10000 M-Upsite
pCA,8 7000 M-Usite

Table 2: Parameter set for states used with IWR Tailorshop in this
article. M.U. means monetary units.



parameter value

nro 4

RO 0.25

pRe2 0.5

pRO3 0.75

pRe4 1.0

pDEM,O 5 persons/ite
pPEM.] 10 persons/sie
piEM 10 persons
pPPS 1 site

pPs 1 site
pPPs 2 sites
pbs 1 site

P 6 sites

Table 3: Parameter set for controls used with IWR Tailorshop in this
article.

IWR Tailorshop yields a nonconvex problem. This prop-
erty is unavoidable as long as we are interested in turn-
based scenarios with nonlinear model equations. Hence,
it is difficult to compute global solutions for such test-
scenarios.

And indeed, the computation times with Couenne 0.4
on a Intel Core 17 machine with 12 GB RAM look bad:
for N = 1 it takes less than 1sec, for N = 2 already
3sec, and for N = 3 by far more than 10 min (see also
Table B). For higher values of N, we cannot hope for a
solution at all before the machine runs out of memory.

The idea of the decomposition approach is now, to
exploit the structure of the problem—especially the sep-
arability of the objective function, see (IIl)—to create
a relaxation of the original problem where parts of the
problem are replaced by free variables (free within some
simple bounds), for which costs are computed in de-
coupled programs, which contain the complexity from
the original program. A schematic representation of
this decomposition can be found in Figure B. The de-
coupling of certain parts of the original problem obvi-
ously makes the remaining master problem smaller and
therefore easier to handle. Such a decomposition is not
unique. We chose one with few overlapping variables.
A schematic representation of the resulting master prob-
lem is shown in Figure 3.

The costs computation via the decoupled problems is
done offline on a discretized grid. The decoupled prob-
lems yield themselves an optimization problem of the

max f(x)
master problem

costs costs
»4; . i%
variables variables
) Gf) min c,(x)

decoupled:problems

Figure 2: Schematic representation of the tailored decomposition ap-
proach.

type

min costs

s.t. achieve desired value of free variable
(as in master problem)

The optimal solutions on the grid points can be used
to fit some model, which underestimates the costs, de-
tails can be found below. This cost model is now
plugged into the objective function of the master prob-
lem representing costs for the newly introduced free
variables. We then can compute a globally optimal so-
lution for the reduced master problem. If the relaxation
is valid, this yields us a valid upper bound for the orig-
inal problem. This upper bound determined by the de-
composition can then be used as an indicator, how far
a local solution for the original problem is away at the
most from a global one.

By the decomposition, the problem size has been
reduced from 12 - N state (dependent) variables and
11-(N-1) control (free) variables to 4-N+3-(N—1) free
variables and 5 - N states with 2 decoupled problems.

The master problem in our decomposition consists of
the following equations, which form a relaxation of the
original problem (B) by underestimating negative and
overestimating positive effects:

x/?ﬁ — pDE,O - exp (_pDE,I . uiP)

log (pDE,Z P 4 1) ] (XIISE + pDE,g) (12a)

x/szl = pREO. xfE + pRE Jog (pRE,2 . u,;{xD

(12b)
+ pRE,3 i ”ip . (uiQ)z + pRE,4 . MZVA + 1)
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C e 1%, up*] (129)
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D e [, ub”] (12K)
M (™, ub™) 0 Zg (121)

Here, the functions f; and f; return the costs to be de-
termined in the decoupled problems. We choose the ob-
jective again as

max xf,A. (13)
x,U,p

The first decoupled program, which determines the
costs for a given shirt quality, is

RO pR PR,cost

min U~ U p + uM_Al (14a)
St SQ pSQ,] . MQ pSQZ MRQ (14b)
MQ—pMQ3 1og(pMQ“ W+ 1) (l4c)

uf e {pRe!, .. pFeme) (14d)

' e [, up™| (14e)

Here, the variables with a hat are considered to be
given, e.g., from the free variables in the master prob-
lem. In the following, we call them input variables in
this context. The second subproblem determines the
costs for a given total number of sites and consists of

Original model Decomposition
XM = 10 M =10
PS =1 es
xDS _ 1 uglte'é - 2
o = — 67
xPR 200 PR =200
xSA 200 x4 =200
=700 =700
xRE 0.79 RE = 0.79
SQ =075 u,? = 0.75
MQ =0.81 —
xM ©=0.73 —
= 175000 ¢4 = 175000

Table 4: Initial values used for computations with original full prob-

lem and decomposition.

Original model

Decomposition

5P € [35,55]
b € [1000,2000]
uZVA € [1000, 1500]
MA € 10, 5000]
xEM € [8,16]
PS DS c [] 6]
e [0 1000]
2 €10.25,0. 75]
XSH xDE,XlISE,

xM >0

k

P € [35,55]
utP € 1000, 2000]
VA € [1000, 1500]
MA € 10,5000]
M e [8,16]
uiires c [2, 6]
PR € 10,1000]
uiQ €[0.25,0.75]

Table 5: Simple bounds used for computations with original full prob-

lem and decomposition.

the following equations.

min  u?¥ - p +uld, - p (15a)
s.t. ui’fls = ukJr1 + ukJr1 (15b)
ulf—fl = p™*? - log (”ﬁl
PRI Mfﬁ . 1) (15¢)
w3+ + i
upd, € 1675, ub”| 0z (15d)
ups, € 1675, ub™| 0 7 (15¢)

We evaluate these decoupled programs on a grid, i.e.,
on a discretization of the feasible interval for each in-

put variable. For uj" €

[2,16], e.g., we could choose



the grid 2,4, 8,10, 12, 14, 16. With more than one dis-
cretized variable, this leads to multidimensional grids.
For each grid point, we compute an optimal solution
for the corresponding decoupled program. With the so-
lutions for all grid points, we can fit e.g., a quadratic
model, like

f(uzQ; ufR) =ag+a - ufR +a- uiQ
ray ul® 2 (16)
+ay - (ufR)2 +as - (qu)z.
Of course, we could as well use a linear or a cubic model
or something completely different. The fit can then be
done by solving a simple least squares problem, with X
being the set of grid points and A(x) a function, which
returns the optimal objective value for each grid point
x€X:

min " 10 = hol (17)
" xeX
st. f(x)<h(x) VxelX (17b)

Especially when considering the integrality condi-
tions, equality constraints are unlikely to be fulfilled ex-
actly. Therefore the following reformulation is intro-
duced for each equality constraint.

=... — U+te=.. (18a)

€€ [-p.p] (18b)

Here, p should be chosen reasonably small, such that
the decoupled program is feasible for almost all of the
grid points.

4. Numerical Results

We present first results of our decomposition ap-
proach from section B for the IWR Tailorshop. All
computations have been done on an Intel Core i7 ma-
chine with 12 GB RAM running Ubuntu 11.10 (64-bit)
with the COIN-OR solvers Ipopt 3.10, Bonmin 1.5, and
Couenne 0.4. Ipopt 3.10 is a local solver for nonlin-
ear programs [25], which implements an interior point
method. It is not able to treat integer constraints and has
only been used for reference. Bonmin 1.5 is a solver
for general mixed-integer nonlinear programs including
several algorithms [2f]. For the computations in this
article, B-BB, an NLP-based branch-and-bound algo-
rithm, has been used. In contrast to these two solvers,
Couenne 0.4 is a global solver using a spatial branch-
and-bound algorithm in order to find global optima for

mixed-integer nonlinear programs with nonconvex re-
laxations [Z7]. The parameter sets used are shown in Ta-
bles & and B. Initial values and simple bounds on states
and controls used in all computations can be found in
Tables B and B.

For the decomposition, in a first step the cost func-
tions fi and f, for the new free variables qu and uf’e"
have been computed. Therefore the subproblems (I4)
and (3) have been solved on the grids

0,2 €{0.25,0.26,0.27,...,0.74,0.75}, (19a)

up® € {100,200, 300, ... ., 900, 1000}, (19b)
respectively

" € {2,3,4,5,6}, (20a)

u™ € {8,9,10,..., 15,16}, (20b)

uf® € {100,200, 300, . ..., 900, 1000}. (20¢)

By solving the corresponding problems of type (I2)
with this data, we received the following underestima-
tors for the costs:

A uM ul®) = 21.6754
—944.6455 - u)"*
+1.4968 - u} "
—28.9341 - ufM
+0.1338 - wi - uf® - (21a)
-3.3626 - uj™ - utM
- 0.0586 - u;® - ufM
- 1.3478 - (uj")?
+1.8831 - (ufM)?

Hd; ul®) = —898.0761 + 0.1991 - ul®,

k
SO
+4726.3749 - 10,

~8.5390 - uf X, - ui? (21b)

+0.0004 - (uf)?

SO \2
~5501.7182 - ('2))

The problems for all grid points of one subproblem
could be solved in less than 1 min including the fit of the
quadratic model. A plot of the resulting cost function
for the u5¢-subproblem can be found in Figure B. How-
ever, it was necessary to use the global solver Couenne
0.4 at least in this subproblem, as we got different solu-
tions with Ipopt 3.10 for a relaxed version of this sub-
problem which obviously are not globally optimal as



N Original model Decomposition
Ipopt Bonmin Couenne Couenne
1 <«1s <ls <ls <l1s
2 <l1s 4s 3s 1s
3 <ls 455 > 10min 2s
4 <ls 537s > 10 min 3s
5 <l1s > 10 min > 10min 5s
6 <ls > 10 min > 10 min 10s
7 Is > 10 min > 10 min 17s
8 <ls > 10 min > 10 min 27s
9 <ls > 10min > 10min 52s
10 ls > 10 min > 10min 88s

Table 6: Comparison of computation times between Ipopt 3.10, Bonmin 1.5, and Couenne 0.4 for the original problem, as well as Couenne 0.4 for

the decomposition.

one can observe from the comparison to the solutions
of Couenne 0.4 in Figure B. For the u***-subproblem a
plot of the cost function is not possible due to its dimen-
sions.

(2, u)

10000
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2000

0

1 1000

02 0

Figure 4: Cost values @ (blue dots) for solutions by Couenne 0.4 for
the decoupled problem for 45¢ with pR@"ke = 2 on the grid uiQ €
{0.25,0.26,..., 0.75}, uf® e {100,200, ..., 1000} together with the
underestimating cost function (colored surface).

When comparing solutions and objective function
values, three effects need to be distinguished: integral-
ity, local vs. global solutions, and full versus overes-
timating reduced model. We investigated two scenar-
ios. First, the variables u{™ respectively ut® and u?S
have been fixed to their lower bounds 2 respectively 1.
The results are listed in table 1. Here, Ipopt 3.10 and
Bonmin 1.5 found the same solutions for the original
problem, which is due to the fact that the solutions de-
termined by Ipopt 3.10 are already integer. Thus, there
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is no difference between these solvers. In this special
case, Couenne 0.4 also finds the same solutions for the
original problem in an acceptable time (< 1 min). This
setting allows us to focus exclusively on the third effect,
the gap between our reduced and the full model. The
gap determined by Couenne 0.4 in both cases reaches
from 4.0% to 16.3%.

Fortunately, this special case with fixed sites is some-
thing like a worst case. The gap is mainly due to a re-
duction in sales, which in turn relates to the differences
between equations (Bg) and (I2d). Fixing the number of
sites on the lower bounds results in an active first term
in the minimum expressions. This is also the expression
that suffers most, because the new variable uf{"’“ is in
this case twice as large as the correct expression x2° in
the original model.

If we let ui"’” free within their simple bounds as

shown in Table B, the gaps between local solution to
the full model and global solution to the reduced model
alternate from 4.0% to 8.1%. Note that the gap relat-
ing to Ipopt 3.10 is only for information, since Ipopt
3.10 cannot handle integer constraints and thus solves a
relaxed version of the problem. One observes that the
gap first increases, but then decreases, seeming to con-
verge to some ¢ > 0. This behavior can be explained
by the fact that the mentioned effect leads to an increase
in cost (due to storage of not-sold shirts) that is about
linear in the number of turns. The possible winnings
making use of a free choice of uf’“ outperforms these
additional costs if the time scale for the optimization
is long enough. Thus, the gap first increases and than
again decreases.



N Original model Decomposition Gap in %
Ipopt Bonmin Couenne
1 180995.1 180995.1 188495.0 4.0 %
2 1871700  187170.0 198599.3 5.8%
31935302  193530.2 209006.8 7.4 %
4 200081.2  200081.2 219726.5 8.9%
5 206828.8  206828.8 230767.7 10.4 %
6 213778.7  213778.7 242140.2 11.7%
7 220937.2  220937.2 253853.9 13.0%
8 2283104 2283104 265919.0 14.1%
9 235904.8  235904.8 278346.0 15.2 %
10 243727.0 2437270 291145.9 16.3 %

Table 7: Solutions using the full problem with fixed number of sites compared to the decomposition approach. Note that the solutions by Ipopt
3.10 are already integer, so that there is no difference between Bonmin 1.5 and Ipopt 3.10.

In this scenario, Couenne 0.4 is not able anymore
to find a solution for the original problem in less than
10 min for N > 3. All computation times can be found
in Table B. Obviously, the decomposition can be solved
faster by orders of magnitude. Even for N = 10, it
takes less than 2 min with Couenne 0.4, while Bonmin
1.5 even is not able to compute a local solution for the
original problem in less than 10 min for N > 5.

Summing up, we could estimate the gap between re-
duced and full model to be in the range of a few per-
cent. We identified the most important source of gaps to
be in the difference between equations (Bg) and (I24d).
For longer time horizons and more freedom of variable
choice, however, our approximation becomes better and
better. The computational gains are dramatic and allow
to calculate global solutions even on the full length of
the time horizon.

5. Summary and Outlook

We presented a new microworld for complex prob-
lem solving, the IWR Tailorshop. This turn-based test-
scenario yields a mixed-integer nonlinear program with
nonconvex relaxation and consists of functional rela-
tions based on optimization results. With the IWR Tai-
lorshop we intend to start a new era beyond trial-and-
error in the definition of microworlds for analyzing hu-
man decision making.

To be able to solve the resulting problems within rea-
sonable times, we proposed a tailored decomposition
approach, where the problem is divided into a master
problem and several subproblems. This decomposition

is built such that it yields a valid upper bound for the
corresponding global solution of the original problem
and thus can be used as an indicator for the quality of
local solutions of the original problem.

We finally presented promising numerical results us-
ing this decomposition approach, which indicated a
high potential. In a first (worst-case like) scenario with
fixed variables, the gap between decomposition and
original problem was between 4.0% and 16.3%, while
the original problem could also be solved to global opti-
mality. In a second scenario, it alternated between 4.0%
and 8.0%. For this scenario, only with the decomposi-
tion it was possible to get a globally optimal solution
for more than 2 turns. The computation times for the
decomposition are below 2 min even for 10 turns with
Couenne 0.4, while the local solver Bonmin 1.5 could
not find a local solution for the original problem within
10 min for more than 4 turns. In future work, it could
be interesting to compare these results to a Lagrangian
relaxation type approach.

The parameter set used for the computations in this
article has been set up manually to achieve a more or
less reasonable model behavior. Here we still see high
potential for improvement. For example, one could
use derivative-free optimization methods to optimize
the parameter values such that two (or even more) pre-
viously defined strategies (e.g., a high and a low price
strategy) yield a similar objective value. By that, partic-
ipants could follow different strategies and still perform
quite well.

An important step in future work will be to collect
data with participants, which will then be used to com-



Original model

Decomposition

N
Ipopt Gapin % Bonmin Gapin % Couenne

1 181835.6 3.5% 180995.1 4.0% 188495.0
2 1891614 4.8% 187170.0 5.8% 198599.3
3 196180.0 6.1% 193530.2 7.4% 209006.8
4 204760.9 6.8% 201860.5 8.1% 219726.5
5 2150979 6.8% 212332.9 8.0% 230767.7
6 226408.7 6.5%  223118.0" 7.9% 242140.2
7 239011.7 5.8%  236196.6 7.0% 253853.9
8  252536.7 5.0% 250100.3 6.0% 265919.0
9 266817.6 4.1%  264399.8 5.0% 278346.0
10 281619.2 33% 279119.3* 4.1% 2911459

Table 8: Solutions using the full problem compared to the decomposition approach. For solutions with a *, Bonmin 1.5 did not find an optimal
solution within 10 min. However, the gap between lower and upper bound was in all cases significantly below 1%.

pute optimal solutions for the IWR Tailorshop starting in
states derived by the participants—as well for the orig-
inal problem as for the decomposition. This will yield
an indicator function with guaranteed gaps to the global
solution for the original problem.

If we finally succeed to compute optimal solutions
fast enough, we can take this approach even one step
further: by computing the performance indicator online,
i.e., while participants are solving the IWR Tailorshop,
we can give an immediate feedback based on optimal
solutions. It will be subject of future research how this
feedback can be used to improve learning of complex
problem solving competences. Answers to this question
can be used to design programs to train future decision
makers.
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Figure 3: IWR Tailorshop reduced master problem with dependencies and proportional/reciprocal influences. Diamonds indicate free variables.
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Figure 5: Cost values @, (blue dots) for solutions by Couenne 0.4 and Ipopt 3.10 for the decoupled problem for #5¢ with pR2"k¢ = 2 and relaxed

uR€ on the grid uiQ € {0.25,0.26,...,0.75}, ufR € {100,200,..., 1000} together with the underestimating cost function (colored surface). From

the differences between Couenne 0.4 (global solver) and Ipopt 3.10 (local solver) one can determine, that it is necessary here to use a global solver
even for the decoupled problem.
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