
INAUGURAL-DISSERTATION
zur

Erlangung der Doktorwürde
der

Naturwissenschaftlich-Mathematischen Gesamtfakultät
der

Ruprecht-Karls-Universität Heidelberg

vorgelegt von
Dipl.-Math. Dennis Janka

aus Herborn

Tag der mündlichen Prüfung:

Sequential quadratic programming with indefinite Hessian
approximations for nonlinear optimum experimental design
for parameter estimation in differential–algebraic equations

Gutachter: Dr. Stefan Körkel

Zusammenfassung

In dieser Arbeit entwickeln wir Algorithmen zur numerischen Lösung von Problemen der
nichtlinearen optimalen Versuchsplanung zur Parameterschätzung in differential–algebra-
ischen Gleichungen. Diese Probleme können als spezielle, steuerungs- und pfadbeschränkte
Probleme der optimalen Steuerung formuliert werden. Als Zielfunktion wird ein Funktional
auf der Kovarianzmatrix der Modellparameter minimiert, wobei die Kovarianzmatrix durch
Sensitivitäten erster Ordnung der Modellgleichungen gegeben ist. Zusätzlich ist die Zielfunk-
tion nichtlinear in der Zeit gekoppelt, weshalb Probleme der optimalen Versuchsplanung
eine schwierige Klasse von Optimalsteuerungsproblemen darstellen. Zur numerischen Lö-
sung schlagen wir eine Parametrisierung mittels der direkten Mehrzielmethode vor, die auf
ein strukturiertes Problem der nichtlinearen Programmierung (NLP) führt. Ein erweitertes
System von Nominal- und Variationszuständen für die Modellsensitivitäten wird auf Mehr-
zielintervallen parametrisiert und die Zielfunktion mit Hilfe von zusätzlichen Variablen und
Nebenbedingungen entkoppelt. Im resultierenden NLP identifizieren wir verschiedene Struk-
turen, die eine wesentlich effizientere Auswertung von Ableitungen erlauben im Vergleich
zu einem Ansatz für herkömmliche Optimalsteuerungsprobleme.

Zur Lösung der blockstrukturierten NLPs entwickeln wir eine neue Methode der sequenti-
ellen quadratischen Programmierung (SQP). In dieser werden partitionierte quasi-Newton
Updates verwendet um die Hessematrix der Lagrange-Funktion zu approximieren, welche
Blockdiagonalstruktur besitzt. Wir analysieren ein Modellproblem mit indefiniter blockdiago-
naler Hessematrix und beweisen, dass positiv definite Approximationen der einzelnen Blöcke
superlineare Konvergenz verhindern. Für ein Modellproblem der optimalen Versuchsplanung
zeigen wir, dass, wenn das Mehrzielgitter verfeinert wird, in der Hessematrix immer mehr
negative Eigenwerte auftauchen und bestätigen die negativen Auswirkungen positiv definiter
Hessematrix Approximationen auf die Konvergenzgeschwindigkeit. Wir schlagen daher
vor, indefinite SR1 Updates zu verwenden, die schnelle lokale Konvergenz garantieren. Wir
entwickeln eine Filter-Liniensuche Globalisierungsstrategie, welche indefinite Hessematri-
zen akzeptiert. Dies basiert auf einem Kriterium, das aus dem globalen Konvergenzbeweis
der Liniensuche abgeleitet ist. BFGS Updates mit einer Skalierungsstrategie, die zu große
Eigenwerte verhindert, werden als Ausweichstrategie eingesetzt, falls die SR1 Updates die
Konvergenz nicht begünstigen. Zur Lösung der anfallenden dünnbesetzten und nichtkonve-
xen quadratischen Teilprobleme wird eine parametrische Aktive-Mengen-Methode mit einer
Steuerung des Trägheitsindex innerhalb eines Schur Komplement Ansatzes entwickelt. Die
Methode benutzt eine symmetrische, indefinite LBLT -Faktorisierung der großen, dünnbesetz-
ten KKT Matrix und verwaltet und modifiziert QR-Faktoren eines kleinen, dichtbesetzten
Schur Komplements.

Die neuen Methoden werden durch zwei C++ Implementierungen ergänzt: muse trans-
formiert ein Problem der optimalen Versuchsplanung oder der optimalen Steuerung in ein
strukturiertes NLP mittels der direkten Mehrzielmethode. Ein spezielles Merkmal der neu-
en Implementierung ist, dass vollständig unabhängige Gitter für die Parametrisierung der

Steuerungen, Zustände, Pfadbeschränkungen und Messzeitpunkte eingesetzt werden. Dies
bietet eine höhere Flexibilität um die NLP Formulierung den Charakteristiken des konkreten
Problems anzupassen und ermöglicht es, verschiedene Formulierungen im Lichte des Lifted
Newton Verfahrens zu untersuchen. Das Softwarepaket blockSQP ist eine Implementierung
der neuen SQP Methode und benutzt eine neu entwickelte Variante des quadratischen Lösers
qpOASES. Numerische Ergebnisse für eine Kollektion von Testbeispielen der optimalen
Versuchsplanung und optimalen Steuerung werden präsentiert, die zeigen, dass SR1 Appro-
ximationen die lokale Konvergenz gegenüber BFGS verbessern. Die neue Methode wird
dann auf zwei schwierige Probleme der optimalen Versuchsplanung aus der chemischen
Verfahrenstechnik angewandt und erweist sich als schneller als eine erhältliche vorhandene
Implementierung.

6

Abstract

In this thesis we develop algorithms for the numerical solution of problems from nonlinear
optimum experimental design (OED) for parameter estimation in differential–algebraic
equations. These OED problems can be formulated as special types of path- and control-
constrained optimal control (OC) problems. The objective is to minimize a functional on
the covariance matrix of the model parameters that is given by first-order sensitivities of the
model equations. Additionally, the objective is nonlinearly coupled in time, which make
OED problems a challenging class of OC problems. For their numerical solution, we propose
a direct multiple shooting parameterization to obtain a structured nonlinear programming
problem (NLP). An augmented system of nominal and variational states for the model
sensitivities is parameterized on multiple shooting intervals and the objective is decoupled
by means of additional variables and constraints. In the resulting NLP, we identify several
structures that allow to evaluate derivatives at greatly reduced costs compared to a standard
OC formulation.

For the solution of the block-structured NLPs, we develop a new sequential quadratic
programming (SQP) method. Therein, partitioned quasi-Newton updates are used to approx-
imate the block-diagonal Hessian of the Lagrangian. We analyze a model problem with
indefinite, block-diagonal Hessian and prove that positive definite approximations of the
individual blocks prevent superlinear convergence. For an OED model problem, we show
that more and more negative eigenvalues appear in the Hessian as the multiple shooting grid
is refined and confirm the detrimental impact of positive definite Hessian approximations.
Hence, we propose indefinite SR1 updates to guarantee fast local convergence. We develop
a filter line search globalization strategy that accepts indefinite Hessians based on a new
criterion derived from the proof of global convergence. BFGS updates with a scaling strat-
egy to prevent large eigenvalues are used as fallback if the SR1 update does not promote
convergence. For the solution of the arising sparse and nonconvex quadratic subproblems, a
parametric active set method with inertia control within a Schur complement approach is
developed. It employs a symmetric, indefinite LBLT -factorization for the large, sparse KKT
matrix and maintains and updates QR-factors of a small and dense Schur complement.

The new methods are complemented by two C++ implementations: muse transforms an
OED or OC problem instance to a structured NLP by means of direct multiple shooting.
A special feature is that fully independent grids for controls, states, path constraints, and
measurements are maintained. This provides higher flexibility to adapt the NLP formulation
to the characteristics of the problem at hand and facilitates comparison of different formu-
lations in the light of the lifted Newton method. The software package blockSQP is an
implementation of the new SQP method that uses a newly developed variant of the quadratic
programming solver qpOASES. Numerical results are presented for a benchmark collection of
OED and OC problems that show how SR1 approximations improve local convergence over
BFGS. The new method is then applied to two challenging OED applications from chemical
engineering. Its performance compares favorably to an available existing implementation.

8

Contents

List of acronyms 13

List of selected symbols 15

Introduction 17
Problem description and challenges . 18
Contributions of the thesis . 20
Thesis overview . 22

I. Background 25

1. Elements of nonlinear programming 27
1.1. Theoretical foundations . 27
1.2. Sequential quadratic programming methods 30
1.3. Other nonlinear programming methods . 39

2. Optimization of dynamic processes 43
2.1. Problem formulation . 43
2.2. Direct multiple shooting for optimal control problems 45
2.3. Direct multiple shooting: practical issues 51

II. Optimum experimental design for parameter estimation 57

3. Formulation of optimum experimental design problems 59
3.1. Parameter estimation . 60
3.2. Sensitivity analysis of the estimates . 62
3.3. The optimum experimental design problem 67
3.4. Discussion and problem variants . 72

4. Direct shooting parameterizations for optimum experimental design problems 79
4.1. General approach . 80
4.2. Direct multiple shooting parameterization 82
4.3. Derivatives of the structured NLPs . 85
4.4. Application to related problems . 97

9

Contents

4.5. Problem modifications . 99

III. Sequential quadratic programming 103

5. Preliminary considerations: SQP and multiple shooting 105
5.1. Requirements for an SQP method for direct multiple shooting 105
5.2. Multiple shooting and the lifted Newton method 106
5.3. Nonconvexity in block-structured problems 108

6. A filter line search SQP method with indefinite Hessians 115
6.1. The algorithm . 115
6.2. Filter line search procedure . 117
6.3. Feasibility restoration phase . 122

7. Hessian approximations 125
7.1. Choice of the Hessian sequence . 125
7.2. Partitioned quasi-Newton updates . 126
7.3. Sizing of quasi-Newton updates . 132

8. Solution of sparse and nonconvex quadratic programs 137
8.1. A parametric active set method . 137
8.2. Linear algebra . 142
8.3. Handling nonconvexity . 147
8.4. Practical issues . 151

IV. Software and numerical results 153

9. Implementations 155
9.1. blockSQP: An SR1-BFGS SQP method for NLPs with block-diagonal

Hessian matrix . 155
9.2. muse: A multiple shooting method for optimum experimental design 158

10. Performance of blockSQP on benchmark collection 171
10.1. Test problems and algorithmic parameters 171
10.2. Comparison of Hessian scaling strategies 174
10.3. Comparison of Hessian approximation sequences 175
10.4. Comparison with SNOPT . 179

11. Optimum experimental design case studies 181
11.1. A continuous stirred-tank reactor . 181
11.2. The Urethane reaction . 185

10

Contents

12. Numerical study of lifting 191
12.1. Experimental setup and results . 191
12.2. A Lotka–Volterra OED problem . 193
12.3. Problems with a tracking objective . 195

Conclusions and future work 199

Danksagungen 201

Appendix 203
A. Model equations for the oc-ocean and oc-fermenter problems 203
B. Control and parameter values for the optimization benchmark collection . . 205

Bibliography 207

11

List of acronyms

AD Algorithmic differentiation
BVP Boundary value problem
DAE Differential–algebraic equation
DMS Direct multiple shooting
IND Internal numerical differentiation
IVP Initial value problem
KKT Karush-Kuhn-Tucker
NLP Nonlinear programming problem
OC Optimal control
ODE Ordinary differential equation
OED Optimum experimental design
QP Quadratic programming problem
VDAE Variational differential–algebraic equation
SQP Sequential quadratic programming

13

List of selected symbols

Optimum experimental design: analytical problem

Symbol meaning

y differential states
z algebraic states
yv variational differential states/sensitivities with respect to v
zv variational algebraic states/sensitivities with respect to v
u controls
p parameters
spe parameterization variables from parameter estimation problem
v (pT ,speT)T

f ODE right-hand side
g algebraic equation right-hand side
h observable
cd dynamic constraints
cb multi-point boundary constraints
Nb number of boundary constraints evaluation points
cpe parameterized boundary constraints from parameter estimation

Optimum experimental design: finite-dimensional problem

Symbol meaning

Ns number of multiple shooting intervals
Nc number of control intervals
Nd number of intervals between dynamic constraints evaluation points
Nm number of intervals between measurement grid points
Npe number of evaluation points for parameterized boundary constraints
τs multiple shooting grid points
τc control grid points
τd path constraint grid points
τd

ji path constraint grid point i on shooting interval j
τm measurement grid points
sy multiple shooting variables for nominal differential states
sz multiple shooting variables for nominal algebraic states

15

List of selected symbols

sy,i multiple shooting variables for variational differential state i
sz,i multiple shooting variables for variational algebraic state i
s̄y multiple shooting variables for nominal and variational differential states
s̄z multiple shooting variables for nominal and variational algebraic states
q variables for discretized control
q̂ j variables for discretized controls within multiple shooting interval j
w measurement weights
ŵ j measurement weights within multiple shooting interval j
W diag(w1, . . . ,wNm)
H1 variables for Fisher matrix JT

1 WJ1
H2 variables for Jacobian J2

Sequential quadratic programming
Iteration indices for all quantities appear as superscripts in squared brackets, for example,
x[k] denotes the iterate of primal variables during iteration k.

Symbol meaning

k SQP iteration index
ν QP iteration index
ϕ objective function
c constraints
x primal variables
λ Lagrange multipliers
L Lagrangian
d QP solution
A active bounds
S set of active bounds for which additionally d = 0
A Jacobian of equality constraints
AA matrix A augmented by unit row-vectors corresponding to indices in A
B (Approximation of the) Hessian of the Lagrangian
γ difference of gradients of the Lagrangian
δ difference of (primal) iterates

16

Introduction

Modeling, simulation, and optimization have become indispensable tools to understand and
improve processes in science and engineering. A common approach is to derive a model
from physical first principles to describe the process under consideration. In this thesis, we
are interested in processes that can be modeled by systems of differential–algebraic equations
(DAEs). This applies to numerous processes from chemical engineering, biology, astronomy,
and many other fields. The model can then be simulated, meaning that the model equations
are solved, provided that all initial values and parameters are known. This is typically done by
suitable algorithms that approximate the solution and can be done for a variety of scenarios.
For example, a chemical process can be simulated for different temperatures. Ideally, we
now use the model to optimize the process: We want to select those settings which allow to
run the process in an optimal way with respect to a given performance indicator, e.g., time or
energy consumption.

But how can we be sure that the model correctly predicts the behavior of the process? This
leads to the problem of model validation, which can be outlined as follows. First, we take
observations or measurements under defined conditions and fit the model to the observations
by adjusting the values of so-called model parameters. In our setting, model parameters
are intrinsic quantities of the system. Examples are heat transfer coefficients, or activation
energies for chemical reactions. If we knew the value of the parameters, we could make
accurate predictions for the process. A reasonable way is to choose those values for the
parameters such that the model reproduces the given observations. We call those values
parameter estimates. Now, one can analyze the statistical uncertainty of these estimates
that arises due to uncertainty in the observations. Only if the model can reproduce the
observations and the uncertainty of the model parameters is sufficiently low, we say that
the model is validated. Only then we can expect it to make accurate predictions about the
process.

If the uncertainty of the estimates is too high and hence the model is not validated, more
measurements are required. However, experiments to obtain new measurements usually are
expensive and tight restrictions often apply under which the process may be operated and
measurements may be obtained. This leads to the question of optimum experimental design
(OED): Within the given restrictions, find those experimental conditions and take those
measurements that allow to identify the model parameters with minimum uncertainty. In
this thesis, we develop theory, algorithms, and software for the formulation and the efficient
numerical solution of OED problems.

17

Introduction

Problem description and challenges

OED for general statistical models has been studied for several decades and it is a well-
established field of research, see the textbooks [10, 36, 67, 167]. Nonlinear OED for
processes modeled by differential equations can be posed as a special type of optimal control
problems, in which the sensitivities of the model states with respect to the model parameters
are used to compute an approximation of the covariance matrix or the Fisher information
matrix. Consequently, differential equations for the model sensitivities also appear in the
optimal control problem formulation. In an optimal control framework, this gives rise to
large systems of DAEs of dimension nx + nx · np, where nx is the dimension of the DAE
system describing the process and np is the number of model parameters. In this form, the
problem has been discussed by various authors, e.g., [15, 66, 134, 135, 146]. A certain
maturity was reached with the advent of the dedicated OED software package VPLAN [134],
that allows to apply OED within an industrial context.

Due to their high-dimensionality and complicated structure, OED problems are usually
solved using the direct approach: The control functions that represent experimental conditions
are approximated in a finite-dimensional space and the states are parameterized by finitely
many variables. That way, the OED optimal control problem is replaced by a suitable,
finite-dimensional nonlinear programming problem (NLP). This thesis is concerned with
the following two aspects of OED: How to best transcribe the infinite-dimensional OED
problem to a structured, finite-dimensional NLP, and how to efficiently solve this NLP using
sequential quadratic programming (SQP) methods.

Most methods use embedded initial value problem (IVP) solvers to implement a single-
shooting approach, wherein states and sensitivities are repeatedly evaluated within an outer
optimization loop, see, e.g., the methods proposed in [15, 134, 135], [66], [85], or [177].
The so-called simultaneous optimization approach proposed in [122] applies orthogonal
collocation to the full system of nominal and variational states, giving rise to a large-scale
NLP. Further references on OED methods and applications can be found in the survey
paper [83].

In this work, we concentrate on the direct multiple shooting (DMS) method for OED.
Based on Bock’s direct multiple shooting method for optimal control problems [34, 142], it
was first discussed in [136] and in the diploma thesis [124]. Here, nominal and variational
states are discretized on a coarse grid of shooting intervals, and IVP solvers are employed to
compute approximate solutions and sensitivities on the subintervals. Continuity constraints
ensure equivalence to the solution of the original DAE after convergence. DMS offers
several advantages over single shooting: It often reduces nonlinearity of the problem, which
results in an enlargement of the local domain of full-step convergence for the NLP solver.
Furthermore, the higher-dimensional NLPs possess a decoupled structure, which makes
them suitable for parallelization. In this thesis, we further investigate DMS for OED. A
main challenge of OED is that the systems are much larger than for standard optimal control
problems because the nominal system must be augmented by a variational system for the
problem sensitivities. Consequently, the resulting NLP comprises many constraints. An
NLP solver needs to repeatedly linearize the problem and for DMS, the evaluation of the

18

Problem description and challenges

constraint Jacobian is usually the most expensive part of the solution process. A solution
approach using a standard optimal control software package that ignores the structures of
OED is therefore not suitable for practical use, see [124]. Addressing this situation, we
analyze the derivative structures in detail and show how to efficiently evaluate derivatives by
taking sparsity into account and by re-using certain directional sensitivities. This ensures
that the problem can be linearized very efficiently in a given point.

Another major issue in the numerical treatment of OED problems is that NLP solvers
often need excessively large numbers of iterations to converge. To overcome this problem,
the second focus of this work is on efficient SQP methods specialized for NLPs that arise in
DMS for OED. SQP methods date back to the classical methods of Wilson [203], Han [117],
and Powell [165] proposed in the 1960s and 70s. Together with interior point methods, they
rank among the most efficient and popular NLP methods today. We favor SQP methods over
interior point methods because they usually require less function and derivative evaluations
and are especially efficient when second derivatives are not available, see [99]. During the
last decades, many SQP methods have been proposed, see the survey papers [35], [109],
and [100]. State-of-the-art implementations of some of the methods are available, e.g.,
SNOPT [93] or filterSQP [76]. However, they were developed for a very broad set of NLPs
and make it difficult to address the special structures that arise in DMS. On the other hand,
dedicated solvers in multiple shooting packages, such as the SQP method in MUSCOD-II [59,
142], are very closely intertwined with the problem data and do not provide the flexibility
required to efficiently treat specially structured subclasses such as OED.

In this thesis, we present a new SQP method that takes into account the structures that
arise in DMS and is at the same time separated from the problem data as much as possible.
By analyzing an OED model problem, we prove that indefinite Hessians are needed to ensure
fast local convergence. This poses challenges for the solution of quadratic subproblems as
well as the globalization strategy. For the new method, we enhance the parametric QP solver
qpOASES [70] to treat sparse, nonconvex quadratic programming problems. This is achieved
by a Schur complement approach [27, 94, 97, 104] in connection with a new inertia control
mechanism. Global convergence is achieved by a filter line search based on [197, 198]. We
extend the line search framework by an inner loop where indefinite Hessians can be accepted.
The Hessian of the Lagrangian is approximated blockwise by low-rank update formulae:
The Symmetric Rank One (SR1) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
formulae. Our new method is able to switch between indefinite block-SR1 updates and
specially scaled, positive definite block-BFGS updates that provide progress if the SR1
update does not promote convergence. A new criterion allows to efficiently detect when the
SR1 update is acceptable, such that the SR1-BFGS strategy incurs only little overhead when
compared to a pure BFGS strategy.

Finally, the quality and usefulness of numerical methods is not only judged by theoretical
considerations but also by software implementations that can solve practically relevant
problems. The new methods developed in this thesis are complemented by two efficient C++
implementations: The software package muse has been developed to enhance the established
software package VPLAN by multiple shooting capabilities for OED and OC problems.

19

Introduction

The solver blockSQP is a new implementation of the filter line search SQP method with
indefinite block updates that is interfaced to muse. Their favorable performance is illustrated
on a range of demanding applications from OED and OC.

Contributions of the thesis

The thesis contributes nonlinear programming techniques for the numerical treatment of
optimum experimental design problems for differential-algebraic equation models. We
propose algorithms based on the direct multiple shooting method to transform OED problems
into finite-dimensional NLPs, which we thoroughly analyze. Motivated by the problem
structures that we identify, we develop a new, suitable sequential quadratic programming
method to solve the NLPs. Together with dedicated software implementations, the new
methods constitute a powerful toolkit for the efficient solution of nonlinear OED problems.
More specifically, the main contributions of this thesis are:

Direct multiple shooting formulation for OED constrained by DAE
We present a decoupled formulation, wherein nominal and variational states are parameter-
ized by multiple shooting. We propose to resolve the nonlinear coupling in the objective
by means of a linearly coupled constraint. We introduce four grids for controls, shooting
intervals, potential measurements, and path constraints that are explicitly allowed to be
chosen independently. We describe how the framework can be applied in four different
settings: constrained parameter estimation problems, OED for key performance indicators,
the design of multiple experiments, and the presence of continuous measurements.

Analysis of derivative structures of the resulting NLP
We give, for the first time, a detailed analysis of the constraint Jacobian as well as the
objective gradient and Hessian of the resulting NLPs. Due to the specific structure induced
by the continuity conditions for the variational DAEs, a special sparsity pattern is discovered.
Furthermore, many directional derivatives can be re-used, which greatly reduces the compu-
tational load for evaluation of the constraint Jacobian. We derive the objective Hessian of the
A-criterion in a form that can be efficiently evaluated and exploited in an SQP method with
blockwise updates.

muse – A parallel multiple shooting method for optimum experimental design
We provide a C++-implementation of the new multiple shooting formulation as an extension
to the software package VPLAN. It uses the established VPLAN interfaces to describe
the problem input and sets up the multiple shooting NLP exploiting all discovered OED
derivative structures. As additional benefit, support for generic optimal control problems is
included. For the first time, fully independent grids for controls, shooting intervals, potential
measurements, and path constraints are supported in the implementation. Evaluation of
sensitivities is parallelized using OpenMP on shooting interval and multi-experiment level.
With muse, OED and OC problems can now be treated efficiently by the direct multiple
shooting method.

20

Contributions of the thesis

Analysis of different Hessian update strategies using an OED model problem
For a model problem with indefinite, block-diagonal Hessian, we prove that every positive
definite block-diagonal Hessian approximation yields only a linear rate of convergence.
Then, we analyze an OED model problem parameterized by multiple shooting in the light
of the lifted Newton method [5] and show that for every lifted term, the Hessian gains a
negative eigenvalue. Numerical experiments confirm that increasing the number of multiple
shooting intervals leads to an increasing number of SQP iterations if positive definite Hessian
approximations are used, while indefinite SR1 approximations provide fast local convergence.

A filter line-search SQP method compatible with indefinite Hessians
We describe a filter line-search SQP framework based on [198]. We extend the method by
an inner loop, in which different Hessian approximations are tried that are allowed to be
indefinite. We use an assumption from the proof of global convergence to derive a new
criterion when to accept a Hessian. We show that this criterion can be efficiently evaluated
by modifying a QP solver with inertia control. A disadvantage of most filter methods is the
need for a feasibility restoration phase which is computationally expensive. As a remedy,
we present an efficient heuristic for problems arising in DMS that allows to circumvent the
feasibility restoration phase on most occasions.

Selective sizing strategy for block-diagonal Hessians
We show that the selective sizing strategy proposed for unconstrained optimization in [50] can
be applied to block-diagonal Hessians in constrained optimization. We observe that block-
BFGS updates often accumulate many large eigenvalues that result in unnecessarily small
steps. The selective sizing strategy mitigates this effect by multiplying the approximations in
every iteration with a suitable, small scalar based on recently observed curvature information.
This strategy greatly improves the performance of the BFGS update in all of our numerical
experiments.

An active-set quadratic programming solver for sparse, nonconvex problems
A new version of the parametric active-set solver qpOASES [70] is developed that is capable
of reliably solving sparse and nonconvex problems. It is based on the Schur complement
approach described in [27, 94, 97, 104] and uses the sparse, symmetric, indefinite solver
MA57 [63] to factorize the sparse KKT systems. We build on previous developments by A.
Wächter (Northwestern University) and provide a new inertia control mechanism to find
critical points of sparse and nonconvex QPs. The inertia control is based on monitoring the
sign of the determinant of the Schur complement every time a bound is removed from the
working set. Furthermore, we describe details of our implementation of the new method that
improve the numerical stability of the method.

blockSQP: An SR1-BFGS SQP method for NLPs with block-diagonal Hessian matrix
We provide a new implementation of the proposed SQP method in the C++-package
blockSQP. The new Schur-complement variant of the QP solver qpOASES is used to solve
the sparse, nonconvex quadratic subproblems. blockSQP approximates the block-diagonal
Hessian of the Lagrangian by blockwise, limited- or full-memory SR1 and BFGS update

21

Introduction

schemes. Parallel solution of the SR1 and BFGS QPs is supported. When used in connection
with muse, blockSQP can benefit from the restoration heuristic for problems arising in
DMS. A minimum 2-norm constraint violation restoration phase is implemented as fallback.
blockSQP has been designed with OED and OC problems in mind, but can also be used
stand-alone to solve generic NLPs.

Numerical results on a benchmark collection of OED and OC problems for different
SQP variants
We compare blockSQP with different Hessian approximations and find that using SR1
updates when possible provides faster convergence than using only BFGS updates. Further-
more, we show that a dedicated SQP method with block-diagonal Hessian approximations is
necessary to solve problems arising in DMS by showing that the general purpose SQP solver
SNOPT fails on a number of OED problems.

Numerical results to show the effect of lifting with respect to convergence speed
The flexibility in our implementation makes it possible to compare problem instances with
identical grids for controls and path constraints but different multiple shooting grids, which
corresponds to a lifting of the constraints in the sense of the lifted Newton method [5]. We
identify problems with a tracking objective as a class of problems that clearly benefit from
lifting in terms of convergence speed. We also find that for most problems other, non-local
effects dominate the speed of convergence.

Two OED case studies with DMS
We illustrate the efficiency of the new methods and implementations with case studies for
two challenging example applications, a continuous stirred-tank reactor and the Urethane
reaction. For both examples, the new method is significantly better than the existing single
shooting implementation in VPLAN in terms of SQP iterations and CPU time.

Thesis overview

The thesis is divided into four parts that comprise a total of twelve chapters. Part I consists
of two chapters that provide background material for parts II and III. In the first chapter,
we compile basic results from constrained nonlinear optimization. Then we give a broad
overview of SQP methods by describing different parts that characterize a method such as,
e.g., setup of the quadratic subproblem, choice of the Hessian approximation, globalization
strategy, and globalization mechanism. In the second chapter, we give a detailed description
of the direct multiple shooting method for optimal control problems. We consider DMS in a
general form and introduce notation that allows different grids for controls, states, and path
constraints. We briefly comment on practical issues and give an overview of existing DMS
methods.

The second part of this thesis deals with optimum experimental design problem formula-
tions. In Chapter 3, we derive the OED problem at the solution of a parameter estimation
problem. We explain how to obtain the covariance matrix and discuss the relation between

22

Thesis overview

covariance matrices for constrained and unconstrained parameter estimation problems. Then
we set up the OED problem as a special kind of optimal control problem. Finally, we discuss
several problem variants such as OED with multiple experiments, continuous measurements
or OED for key performance indicators. While Chapter 3 discusses OED only from the
point of view of infinite-dimensional optimal control, Chapter 4 is dedicated to formulations
suited for the numerical solution of the problem. We first discuss a classical single shooting
approach. Then we describe a multiple shooting parameterization that forms the core of
the new methods in this thesis. Afterwards, we provide a detailed analysis of the derivative
structure of the resulting NLP. Finally, we describe how to formulate several problem variants
within our numerical framework.

Part III comprises four smaller chapters and describes the newly developed SQP techniques.
We start with the NLPs that result from DMS for OED and discuss desirable features of
SQP methods for their solution. The discussion is supported by the analysis of Hessian
update strategies using an OED model problem in the light of the lifted Newton method that
shows that indefinite Hessian approximations are needed for fast convergence. The following
three chapters deal with the different ingredients of the new SQP method. Most results are
formulated for general NLPs but always maintain a view towards multiple shooting structured
NLPs. We begin with a filter line search SQP framework with an additional inner loop for
indefinite Hessian approximations in Chapter 6. The following chapter deals with specific
definite and indefinite Hessian approximations based on the SR1 and BFGS updates. Finally,
in Chapter 8, we describe how to find critical points of the sparse and indefinite subproblems
with a Schur complement variant of the quadratic programming solver qpOASES.

Part IV is dedicated to the new software developed in the context of the thesis and
numerical tests that illustrate the capabilities of the new methods. In Chapter 9, we describe
our multiple shooting implementation muse and the SQP solver blockSQP. We outline
the object-oriented program structure and highlight important classes. We also report
default values for all algorithmic parameters. The numerical results achieved with the new
software are divided into three chapters: Chapter 10 evaluates different algorithmic variants
of blockSQP on a benchmark collection of 6 OED and 10 OC case studies. There, we
compare different Hessian scaling strategies and approximation sequences. In Chapter 11,
we investigate two applications from chemical engineering where optimum experimental
designs are computed with the new methods. In Chapter 12, we study the effect of lifting on
the convergence behavior. To this end, we create a family of equivalent NLPs with a fixed
grid for the control functions but different grids for the multiple shooting nodes.

23

Part I.

Background

25

Chapter 1.

Elements of nonlinear programming

In this chapter, we give an introduction to central concepts of nonlinear optimization, often
called nonlinear programming. In the first part, we review some definitions and theoretical
results on constrained nonlinear optimization. We follow the presentation of [154], but all
results can be found in every textbook on the subject, e.g., [74, 87, 148, 191].

In the second part we give an overview of sequential quadratic programming (SQP)
methods that rank among the most popular methods for the numerical solution of nonlinear
optimization problems and play an important role throughout this work. An overview is
given in [35], more recent surveys include [109, 143, 100].

In the third part, we briefly present alternative nonlinear programming methods, namely
augmented Lagrangian and interior point methods.

1.1. Theoretical foundations

Nonlinear programming is concerned with the solution of the following nonlinear constrained
optimization problem:

min
x∈Rn

ϕ(x) (1.1a)

s.t. ci(x) = 0, i ∈ E , (1.1b)

ci(x)≥ 0, i ∈ I, (1.1c)

where ϕ and the functions ci are all smooth, real-valued functions on a subset of Rn, and E
and I are two finite, disjoint sets of indices with E ∪I = {1, . . . ,m}. We call φ the objective
function, while ci, i∈ E are the equality constraints and ci, i∈ I are the inequality constraints.
A point x is said to be feasible for problem (1.1) if it satisfies both the equality and inequality
constraints. We denote the set of all feasible points by Ω.

Definition 1.1 (Local and global solution). A vector x? is a local solution of the problem (1.1)
if it is feasible and there is an open neighborhood U of x? such that ϕ(x) ≥ ϕ(x?) for
x ∈ U ∩Ω. A vector x? is a global solution of the problem (1.1) if it is feasible and
ϕ(x)≥ ϕ(x?) for x ∈Ω.

All algorithms developed in this work are concerned with finding local solutions. For
global optimization, entirely different algorithms are needed but the maximum size of

27

Chapter 1. Elements of nonlinear programming

problem instances that can be handled in practical computations is considerably smaller,
see [81, 160] for an overview.

We now introduce some definitions that are required to formulate conditions for local
optimality.

Definition 1.2 (Active set). The active setA(x) at any feasible point x consists of the equality
constraint indices from E together with the indices of the inequality constraints i for which
ci(x) = 0; that is,

A(x) = E ∪{i ∈ I | ci(x) = 0}.

At a feasible point x, the inequality constraint i ∈ I is said to be active if ci(x) = 0 and
inactive if the strict inequality ci(x)> 0 is satisfied.

Definition 1.3 (Lagrangian function). The Lagrangian function for problem (1.1) is defined
as

L(x,λ) = ϕ(x)−
m

∑
i=1

λici(x).

The quantities λi, i ∈ E ∪I are called Lagrange multipliers.

Definition 1.4 (LICQ). Given a feasible point x and the active set A(x), we say that the
linear independence constraint qualification (LICQ) holds if the set of active constraint
gradients {∇ci(x), i ∈ A(x)} is linearly independent.

Note that LICQ is a rather strong condition and in fact does not always hold in practice.
An important problem class where LICQ is violated are so-called mathematical programs
with equilibrium constraints (MPEC) that arise, for example, in bilevel optimization [118] or
in mixed integer optimal control [128]. Several other constraint qualification exist to allow
the formulation of optimality conditions and facilitate the development of algorithms for
problem classes where LICQ does not hold, see, e.g., [1].

We are now able to formulate the Karush–Kuhn–Tucker (KKT) conditions which are the
foundation for most nonlinear programming algorithms.

Theorem 1.5 (First-order necessary conditions). Suppose that x? is a local solution of (1.1),
that the functions ϕ and ci in (1.1) are continuously differentiable, and that the LICQ holds at
x?. Then there exists a unique Lagrange multiplier vector λ ?, with components λ ?

i , i ∈ E ∪I
such that the following conditions are satisfied at (x?,λ ?):

∇xL(x?,λ ?) = 0, (1.2a)

ci(x?) = 0, for all i ∈ E (1.2b)

ci(x?)≥ 0, for all i ∈ I (1.2c)

λ
?
i ≥ 0, for all i ∈ I (1.2d)

λ
?
i ci(x?) = 0, for all i ∈ E ∪I. (1.2e)

28

1.1. Theoretical foundations

A point that satisfies the KKT conditions (1.2) is called a KKT point. We sometimes
refer to condition (1.2a) as stationarity, conditions (1.2b) and (1.2c) as primal feasibility,
condition (1.2d) as dual feasibility and to condition (1.2e) as complementarity conditions. A
special case of complementarity is important and deserves its own definition.

Definition 1.6 (Strict complementarity). Given a local solution x? of (1.1) and a vector λ ?

satisfying (1.2), we say that the strict complementarity condition holds if exactly one of
λ ?

i and ci(x?) is zero for each index i ∈ I. In other words, we have that λ ?
i > 0 for each

i ∈ I ∩A(x?).
We denote by A(x∗) = [∇ci(x∗)]Ti∈A(x∗) the matrix whose rows are the active constraint

gradients at x∗. Let further Z be a matrix whose columns are a basis for the null space of
A(x?), that is,

Z ∈ Rn×(n−|A(x?)|), A(x?)Z = 0.

Then we can formulate second-order necessary and sufficient optimality conditions as
follows.

Theorem 1.7 (Second-order necessary conditions). Suppose x? is a local solution of (1.1)
and that the LICQ as well as strict complementarity are satisfied. Let λ ? be the Lagrange
multiplier vector for which the KKT conditions (1.2) are satisfied and Z be a matrix whose
columns form a basis of the null space of A(x?). Then

vT ZT
∇xxL(x?,λ ?)Zv≥ 0, for all v ∈ Rn−|A(x?)|, (1.3)

that is, the Hessian of the Lagrangian is positive semidefinite on the null space of the active
constraints.

Theorem 1.8 (Second-order sufficient conditions). Given the assumptions of Theorem 1.7
we further assume that

vT ZT
∇xxL(x?,λ ?)Zv > 0, for all v ∈ Rn−|A(x?)|\{0}, (1.4)

that is, the Hessian of the Lagrangian is positive definite on the null space of active con-
straints. Then x? is a strict local solution for (1.1).

We also call ZT ∇xxL(x?,λ ?)Z the reduced or projected Hessian.

1.1.1. Rates of convergence

Algorithms for nonlinear programming typically start with an initial guess for the solution
x[0] and then produce a sequence of iterates {x[k]} to find a KKT point. For these algorithms,
we distinguish between two notions of convergence: Global convergence of an algorithm
means that the limit point of the sequence of iterates produced by the algorithm is in fact
a KKT point, independent of the choice of the initial point. On the other hand, the term
local convergence describes how fast the iterates approach a KKT point from within a
neighborhood around that point. Rates of (local) convergence are typically defined in the
following terms:

29

Chapter 1. Elements of nonlinear programming

Definition 1.9 (Q-rates of convergence). Let {x[k]} be a sequence in Rn that converges to x?.
We say that the convergence is

• Q-linear if there is a constant r ∈ (0,1) such that∥∥x[k+1]− x?
∥∥∥∥x[k]− x?
∥∥ ≤ r, for all k sufficiently large,

• Q-quadratic if there is a constant M ∈ R such that∥∥x[k+1]− x?
∥∥∥∥x[k]− x?
∥∥2 ≤M, for all k sufficiently large,

• Q-superlinear if

lim
k→∞

∥∥x[k+1]− x?
∥∥

x[k]− x?
= 0.

A weaker form of convergence is given by

Definition 1.10 (R-rates of convergence). Let {x[k]} be a sequence in Rn that converges to
x?. We say that the convergence is R-{linear | superlinear | quadratic} if∥∥∥x[k]− x?

∥∥∥≤ β
[k], for all k

and {β [k]} converges Q-{linearly | superlinearly | quadratically} to zero.

Note that in R-convergent sequences the error is allowed to increase, which cannot occur
for Q-convergent sequences, as they insist on a decrease at every step k, for k sufficiently
large.

1.2. Sequential quadratic programming methods

The term sequential quadratic programming (SQP) method rather describes a conceptual
approach than a specific algorithm. The first SQP method was formulated by Wilson in his
thesis in 1963 [203] but SQP has gained popularity mainly due to the methods formulated by
Han [117] and Powell [165]. Since then, a great variety of methods have been proposed and
SQP remains an active field of research.

30

1.2. Sequential quadratic programming methods

1.2.1. General solution approach

To solve the general NLP (1.1), SQP methods try to find a KKT point by producing a
sequence of iterates (x[k],λ [k]), k = 0,1,2, . . ., starting with an initial guess for the solution
(x[0],λ [0]). To obtain the new iterate, a step or displacement d[k] is computed by minimizing
a quadratic model subject to a linearization of the constraints about the current iterate:

min
d∈Rn

1
2 dT B[k]d +∇ϕ

[k]T d (1.5a)

s.t. ∇c[k]Ti d + c[k]i = 0, i ∈ E , (1.5b)

∇c[k]Ti d + c[k]i ≥ 0, i ∈ I, (1.5c)

where we use the notation c[k]i := ci(x[k]), ∇c[k]i := ∇ci(x[k]), ∇ϕ [k] := ∇ϕ(x[k]), and B[k] :=
∇2

xxL(x[k],λ [k]). The new iterate is x[k+1] = x[k]+ d[k] and λ [k+1] are the multipliers of the
linearized constraints (1.5b) and (1.5c). The procedure is repeated until an optimum is found.
We have summarized this basic SQP iteration scheme in Algorithm 1. This approach is

Algorithm 1: Local SQP iteration.

Given initial estimate x[0], λ [0], set k = 0.
while x[k] is not optimal do

Evaluate ϕ(x[k]), ∇ϕ(x[k]), c(x[k]), ∇c(x[k]), ∇2
xxL(x[k],λ [k]).

Solve the quadratic program (1.5) to obtain d[k] and multipliers λ
[k]
QP.

Set the new iterates x[k+1] = x[k]+d[k], λ [k+1] = λ
[k]
QP.

Set k = k+1.
end

closely related to Newton’s method for the solution of nonlinear equations. It is easy to show
that the SQP method described above applied to the equality constrained problem,

min
x∈Rn

ϕ(x), s.t. c(x) = 0, (1.6)

is equivalent to Newton’s method applied to the KKT conditions (1.2) of this problem
(cf. [154, ch. 18]).

Note that the basic iteration in Algorithm 1 does not constitute an SQP method that is
suitable for practical use. The following issues must be addressed to obtain a practical
method:

1. Convergence tests and termination criteria to decide when an iterate is sufficiently
close to a minimum

2. Algorithms for quadratic programming to compute the step

3. Choice of the Hessian of the quadratic subproblem

31

Chapter 1. Elements of nonlinear programming

4. Globalization strategies that monitor progress of the iterates and thus ensure conver-
gence from remote starting points

5. Globalization mechanisms to reduce a step computed by the quadratic subproblem

For all these aspects several options have been proposed, giving rise to a broad family of
algorithms that all fall in the category of SQP methods.

1.2.2. Convergence test

Since SQP methods aim to find a KKT point, it is reasonable to base the convergence test on
the KKT conditions, i.e. declare optimality if∥∥∥c[k]+

∥∥∥≤ ε,
∥∥∥∇xL(x[k],λ [k])

∥∥∥≤ ε, (1.7)

λ
[k]
i ≥−ε, i ∈ I, c[k]i λ

[k]
i ≤ ε, i ∈ E ∪I (1.8)

where ε is a given tolerance and the vector c[k]+ = c+(x[k]) denotes the constraint violation
and consists of the components

[c[k]+]i :=
{

ci(x[k]) if i ∈ E ,
min{0,ci(x[k])} if i ∈ I. (1.9)

We refer to [62] for a survey of convergence tests based on this observation.
An alternative is the so-called KKT tolerance that also takes into account the current step,

see [141]: ∣∣∣∇ϕ
[k]T d[k]

∣∣∣+ m

∑
i=1

∣∣∣λ [k]
i c[k]i

∣∣∣≤ ε

However, a disadvantage of this criterion is that small stepsizes can lead to small values of
the KKT tolerance and thus premature termination at non-optimal points.

Further measures need to be taken to detect (local) infeasibility of the problem (1.1) in
which case the convergence tests given above fail, see, for example, the method described
in [42].

1.2.3. Solution of the quadratic subproblem

A key requirement for any SQP method is the efficient and reliable solution of the quadratic
subproblem (1.5) in every step. Quadratic programming is a field of research in its own right
and here we only give a very brief overview of the main concepts of a quadratic programming
method. A comprehensive bibliography on the subject is compiled in [108].

Algorithms for quadratic programming can be broadly classified as interior point or active
set methods. Interior point methods generate a sequence of points that lie in the interior
of the feasible region. To this end, a barrier function is constructed such that it becomes

32

1.2. Sequential quadratic programming methods

(infinitely) expensive to violate the constraints, e.g., by choosing a logarithmic barrier. The
resulting equality constrained nonlinear program is then solved by Newton’s method, and
the procedure is repeated with a decreased barrier weight, see also Section 1.3.2. Typically,
interior point methods require fewer, but more expensive iterations than active set methods to
solve a single QP. However, they lack the good warm-start capabilities of active set methods
when solving a series of related QPs and are thus less common in an SQP context.

Active set methods maintain a working set of active constraints and solve the resulting
equality constrained QP problem. The working set is updated repeatedly until the optimality
conditions of the QP are satisfied. Active set methods are closely related to the simplex
method of linear programming [204]. In primal active set methods, a sequence of primal
feasible iterates is generated until dual feasibility and hence optimality is reached [154].
Note that an initial primal feasible point is required. It can be obtained by a so-called Phase
I which usually is an iterative—possibly computationally expensive—procedure itself. Dual
active set methods generate a sequence of dual feasible points until primal feasibility and
hence optimality is reached, see [102]. A third class of active set methods are parametric
QP methods. Introduced in [21], they trace the solution of a linear homotopy between a QP
problem with known solution and the QP problem to be solved, while maintaining primal as
well as dual feasibility for all intermediate, perturbed problems. In Chapter 8, we describe
some extensions to the parametric active set method qpOASES [70]. A major advantage of
all active set methods over interior point methods in an SQP context is that they can be
warm-started. Practical experience shows that active set obtained in one SQP iteration is
a very good guess for the quadratic subproblem in the following SQP iteration, that means
only few active set iterations are needed. In the following, we mention further aspects of
active set methods that also affect the corresponding SQP method.

Convex and nonconvex problems
Many quadratic programming methods require the QP to be convex, which means the
Hessian B[k] needs to be positive definite. In this case, SQP methods usually need to
guarantee convexity of the QP by employing positive definite approximations to the exact
Hessian or make use of suitable convexification schemes if the exact Hessian or an indefinite
approximation should be used.

For general nonconvex QPs, so-called inertia-controlling algorithms such as [73] or [95]
monitor the eigenvalues of the reduced Hessian over the course of the active set iterations.
Note, however, that the solution of nonconvex QPs and even the verification of the optimality
conditions for a given point is known to be an NP-hard problem [49, 161, 162]. In practice,
methods for nonconvex QPs usually only provide solutions that satisfy the first- and second-
order necessary conditions 1.5 and 1.7.

Numerical linear algebra techniques
In theory, many algorithms for quadratic programming are equivalent in the sense that they
produce the same iterates if exact arithmetic and the same pivot rules are used [20]. In
practice, however, their performance largely depends on the numerical procedures used.
Numerical linear algebra techniques form a vital part of any practial quadratic programming

33

Chapter 1. Elements of nonlinear programming

method and must guarantee that the method is numerically stable as well as efficient. Most
active set methods maintain matrix factorizations that are efficiently updated every time the
working set changes thus keeping the cost of a working set change comparably low. Existing
methods maintain, e.g., a LDLT factorization of the (positive definite) reduced Hessian and a
QR or T Q factorization of the constraint matrix [92, 70]. For sparse problems, the symmetric
indefinite KKT matrix for the initial working set can be factored efficiently by means of a
direct sparse factorization and in subsequent iterations a dense factorization of the Schur
complement is constructed and updated according to the changes in the working set [27,
94]. A variant of this Schur complement method for general nonconvex QPs is presented in
Chapter 8.

Finally, for large and sparse problem, iterative linear algebra techniques can be applied if
the iteration matrices cannot be explicitly formed or factored to produce inexact solutions of
the QP. This gives rise to the class of inexact SQP methods, see, e.g., [51].

1.2.4. Choice of the Hessian

The local rate of convergence is largely determined by the choice of the Hessian B[k] in the
QP (1.5). The exact Hessian of the Lagrangian yields a method that is locally equivalent
to Newton’s method for solving the KKT conditions and inherits the fast local quadratic
convergence rate of Newton’s method. However, using the exact Hessian suffers from several
drawbacks: First of all, in many applications, second derivatives are not available or very
expensive to evaluate. Secondly, the Hessian is only required to be positive definite on the
null space of active constraints at a solution and it is usually not a positive definite matrix.
The resulting nonconvex QPs may be unbounded and usually a trust region must be employed
to guarantee the existence of a solution.

The most popular alternatives are so-called quasi-Newton approximations of the Hessian
that are used in many SQP methods. They usually start with an initial approximation, e.g.,
B[0] = I and then update it in a simple manner to incorporate curvature measured in the most
recent step. This is done by imposing the secant condition on the new approximation B[k+1]:

B[k+1]
δ
[k] = γ

[k],

where δ [k] is the displacement and γ [k] denotes the difference of the gradients of the La-
grangian at x[k] and x[k+1]. This secant condition gives rise to a family of quasi-Newton
update formulae that add a simple rank 1 or rank 2 correction to the current Hessian approx-
imation. A generalization of the quasi-Newton approach are total quasi-Newton methods,
that additionally rely on an adjoint secant condition to approximate not only the Hessian of
the Lagrangian but also the constraint Jacobian by low rank update formulae [114].

The first quasi-Newton update formula was proposed by W.C. Davidon in 1959 [54] and
popularized by Fletcher and Powell in 1963 [80]. The most widely used update formula
today is the BFGS update (named after Broyden [37], Fletcher [72], Goldfarb [101], and
Shanno [184]). In particular, the BFGS update can be modified to retain positive definiteness,
always leading to convex subproblems, see [166]. In contrast, the Symmetric Rank One

34

1.2. Sequential quadratic programming methods

(SR1) may become indefinite or even undefined in some iterations yet it is often found to
yield better approximations of the Hessian, see [40, 46, 129].

A successful variant of quasi-Newton methods are limited memory methods [153, 41],
where only curvature from the M most recent SQP iterations is incorporated to form the
current approximation. Chapter 7 deals with Hessian approximations based on the BFGS
and SR1 updates that are modified by special scaling techniques.

Note that the choice of the Hessian is largely responsible for the local rate of convergence
of the SQP method. An SQP method that uses the exact Hessian of the Lagrangian converges
locally Q-quadratic under certain assumptions [154]. A quasi-Newton BFGS method for
unconstrained problems can be shown to converge Q-superlinearly [55]. A similar result
carries over to the constrained case if the Hessian of the Lagrangian is positive definite at the
solution and the unmodified BFGS update is used. However, this assumption is not satisfied
for many applications and the BFGS update needs to be damped as described in [166], in
which case the rate of convergence is only R-superlinear. For the limited memory version
of BFGS, only R-linear convergence can be shown, however, it is often found to be very
efficient in practice [145].

1.2.5. Globalization strategies: merit functions and filters

Like Newton’s method for nonlinear equations, the general solution approach outlined above
guarantees convergence only in a small neighbourhood of a solution. Globalization strategies
are concerned with ensuring convergence from remote starting points by monitoring progress
of the iterates generated by the quadratic subproblems. If progress is deemed insufficient the
step must be modified appropriately. How the modification is done is defined by globalization
mechanisms that are described in the next section. Note that in the literature one often only
finds the term globalization strategies to describe both concepts. However, we feel that a
distinction between these two is appropriate as both are complementary to each other. Thus
we adopt the terms globalization strategy and globalization mechanism as used, e.g., in [143].

Merit functions
The idea of merit or penalty functions is to combine objective and a measure of the constraint
violation into a single function, whose local minimizers correspond to the ones of the
NLP (1.1). Convergence from remote starting points can then be achieved by forcing descent
in the merit functions using one of the mechanisms presented in the next section.

A popular merit function is the `1 exact penalty function:

Φρ(x) = ϕ(x)+ρ ‖c+(x)‖1 ,

where ρ > 0 is the penalty parameter and c+(x) is the constraint violation as defined in (1.9).
It can be shown that a local minimizer x? of Φρ(x) is a local minimizer of problem (1.1) if
ρ > ‖λ ?‖

∞
, where λ ? are the corresponding Lagrange multipliers. Other possibilities for

penalty functions that have been used to promote global convergence include augmented
Lagrangian functions of the form ϕ(x)−λ T c(x)+ ρ

2 ‖c+(x)‖
2
2.

35

Chapter 1. Elements of nonlinear programming

For all penalty functions, the choice of the parameter ρ in every step is a critical issue
because one would have to know λ ? in advance to make sure that a minimum of the penalty
function corresponds in fact to a minimum of problem (1.1). Furthermore, an inappropriate
choice of ρ can cause an unnecessary modification of the full step and thus interference
with the progress of the iterations. Strategies for choosing the penalty parameter can be
found, e.g., in [154, ch. 18.3]. A recent approach suggests to steer the penalty parameter by
comparing predicted and actual decrease of the constraint violation, see [45].

Filters
The difficulty of choosing an appropriate penalty parameter eventually lead to the develop-
ment of filter methods. First introduced by Fletcher and Leyffer [77], other filter methods
have been proposed subsequently, e.g., [106, 192] along with analysis of global and local
convergence properties [75, 79, 193, 197, 198]. A brief history of filter methods is given
in [78].

Filter methods require an iterate to improve either the objective or the constraint violation
compared to all previous iterates instead of a linear combination of both. More precisely, filter
methods maintain a set of pairs—called filter—F [k] of objective function values ϕ [l] :=ϕ(x[l])
and constraint violation η [l] :=

∥∥c+(x[l])
∥∥ from previous iterations l that define a “prohibited”

region in the (ϕ,η) plane. A new point x̂ is acceptable if it sufficiently decreases objective
function or constraint violation, that is, if

ϕ(x̂)≤ ϕ
[l]−β

F
ϕ η

[l] or ‖c+(x̂)‖ ≤ (1−β
F
η)η [l], for all (ϕ [l],η [l]) ∈ F [k],

where βFη ,βFϕ ∈ (0,1) are constants that define a so-called slanting envelope to ensure that
iterates cannot accumulate at infeasible limit points. Figure 1.1 illustrates the concept of a
filter that defines a prohibited region of dominated points. If a step is rejected by the filter it
can be modified by means of a line search or a trust region mechanism. A related concept
are so-called funnel methods proposed by Gould and Toint [107] that can be viewed as filter
methods with just a single filter entry. This entry corresponds to an upper bound of the
constraint violation and the upper bound is reduced during iterations that mostly reduce the
constraint violation.

1.2.6. Globalization mechanisms: line search and trust region

Whenever a step computed by the quadratic subproblem does not yield sufficient progress as
defined by the globalization strategy, it must be modified appropriately. Two broad concepts
exist that can be combined with merit functions as well as filters: line search and trust region
methods.

Line search methods
Line search methods search along the direction d[k] produced by the quadratic subprob-
lem (1.5) until sufficient reduction in either a merit function or a filter is found. Different
criteria for sufficient reduction can be defined, e.g., the Armijo condition [154]. Algorithm 2
presents a generic backtracking line search method with a merit function. It is important that

36

1.2. Sequential quadratic programming methods

Figure 1.1.: A filter defined by a set of iterates (dots) in the (ϕ,η) plane with slanting
envelope defined by βFη = βFϕ = 0.1 (dotted line). The gray area corresponds to
the set of dominated points. For comparison, the level set of a penalty function
evaluated at one iterate for a fixed penalty parameter ρ is given (dashed line).
The choice of ρ determines the slope of the line. Iterates on the left-hand side of
the dashed line provide descent in the merit function.

the direction d[k] is indeed a descent direction. This is the case, e.g., for positive definite
Hessian approximations. In Chapter 6, we present a filter line search method that also accepts
indefinite Hessians, provided they are positive definite on a certain subspace.

Trust region methods
Trust region methods explicitly restrict the step before solving the QP by adding a trust
region constraint of the form ‖d‖ ≤ ∆[k] to the QP. The trust region radius ∆[k] is adjusted
in every iteration depending on how well the QP approximates the NLP inside the trust
region. A disadvantage of trust region methods is that the QPs can be become inconsistent if
∆[k]→ 0, which can be dealt with, e.g., by invoking a feasibility restoration phase, see [77].
Algorithm 3 describes a generic trust region SQP method, for a comprehensive treatment of
trust region methods we refer to [48].

1.2.7. Examples of SQP methods

SNOPT
SNOPT [93] implements a line search SQP method. A full space or limited memory BFGS
update is used as Hessian approximation. Its quadratic programming solver SQOPT [98] is a
reduced Hessian active set method and solves a convex QP in every iteration. Sparsity in the
constraints is exploited. Convergence from remote starting points is ensured via a line search

37

Chapter 1. Elements of nonlinear programming

Algorithm 2: Generic line search SQP method with merit function.

Given initial estimate x[0], λ [0], set k = 0.
while x[k] is not optimal do

Evaluate ϕ(x[k]), ∇ϕ(x[k]), c(x[k]), ∇c(x[k]), ∇2
xxL(x[k],λ [k]).

Solve the quadratic program (1.5) to obtain d[k] and multipliers λ
[k]
QP.

Set α [k,0] = 1, l = 0.
repeat

Set α [k,l+1] = α [k,l]/2.
Evaluate Φ(x[k]+α [k,l+1]d[k]).
Set l = l +1.

until Φ(x[k]+α [k,l]d[k]) is sufficiently smaller than Φ(x[k])

Set the new iterates x[k+1] = x[k]+α [k,l]d[k], λ [k+1] = α [k,l]λ
[k]
QP +(1−α [k,l])λ [k−1].

Set k = k+1.
end

Algorithm 3: Generic trust region SQP method.

Given initial estimate x[0], λ [0], initial trust region radius ∆[k], set k = 0.
while x[k] is not optimal do

Evaluate ϕ(x[k]), ∇ϕ(x[k]), c(x[k]), ∇c(x[k]), ∇2
xxL(x[k],λ [k]).

Set ∆[k,0] = ∆[k], l = 0.
while x[k]+d[k,l] is not sufficiently better than x[k] do

Solve the quadratic program

min
d

1
2 dT B[k]d +∇ϕ

[k]T d

s.t. ∇c[k]Ti d + c[k]i = 0, i ∈ E ,
∇c[k]Ti d + c[k]i ≥ 0, i ∈ I,
‖d‖ ≤ ∆

[k,l].

to obtain d[k,l] and λ
[k+1,l]
QP .

if x[k]+d[k,l] is sufficiently better than x[k] then
Choose trust region radius for next iteration ∆[k+1] ≥ ∆[k,l].

else
Decrease the trust region radius, e.g., ∆[k,l+1] = ∆[k,l]/2, set l = l +1.

end
end
Set the new iterates x[k+1] = x[k]+d[k,l] and λ [k+1] depending on if the trust region
constraint is active. Set k = k+1.

end

38

1.3. Other nonlinear programming methods

on an augmented Lagrangian merit function.

filterSQP
filterSQP [76] is a trust region SQP method and global convergence is enforced by a filter. It
accepts exact Hessians of the Lagrangian. It employs BQPD as QP solver, which solves the
resulting nonconvex quadratic subproblems and is able to exploit sparsity to some extent. If
the QPs become inconsistent because the trust region radius becomes too small, a feasibility
restoration phase is invoked.

KNITRO
The software package KNITRO [44] comprises three algorithms one of which, KNITRO
active, is a sequential linear quadratic programming (SLQP) algorithm [43]. It uses two
kinds of trust regions: First, a linear programming problem with a trust region is solved to
obtain a guess for the active set. Afterwards, an equality constrained QP with a trust region
is solved whose objective is a quadratic approximation of the Lagrangian. The solution of
the LP and the QP are used to produce a search direction and a penalty function enforces
global convergence.

1.3. Other nonlinear programming methods

For this section, we consider a special form of problem 1.1 where we only allow simple
bounds on some of the variables instead of general inequalities:

min
x∈Rn

ϕ(x) (1.11a)

s.t. ci(x) = 0, i = 1,2, . . . ,m, (1.11b)

xi ≥ 0, i ∈ I. (1.11c)

Note that the general NLP 1.1 can be transformed to this form by introducing slack variables.

1.3.1. Augmented Lagrangian methods

Penalty or augmented Lagrangian methods are named after the augmented Lagrangian
function for problem 1.11:

LA(x,λ ; µ) = ϕ(x)−
m

∑
i=1

λici(x)+
µ

2

m

∑
i=1

c2
i (x), (1.12)

where µ is called the penalty parameter. They try to find a minimum of problem 1.11 by
successively minimizing the following bound constrained problem for an increasing sequence
of penalty parameters µ:

min
x∈Rn

LA(x,λ ; µ), s.t. xi ≥ 0, i ∈ I. (1.13a)

A general framework is described by Algorithm 4. For details on how to solve the bound
constrained minimization problem in every step or how to update the multipliers we refer

39

Chapter 1. Elements of nonlinear programming

to the literature, e.g., [154, ch. 17]. Examples of augmented Lagrangian methods are
LANCELOT [47] and MINOS [151].

Algorithm 4: Bound-constrained augmented Lagrangian method.

Given starting point x[0]s , λ [0], penalty parameter µ [0], tolerance τ [0], set k = 0.
while x[k] is not optimal do

Find an approximate minimizer x[k] of LA(·,λ [k]; µ [k]) satisfying xi ≥ 0, i ∈ I,
starting at x[k]s , with convergence tolerance τ [k].
Update Lagrange multipliers to obtain λ [k+1].
Choose new penalty parameter µ [k+1] ≥ µ [k].

Set starting point for the next iteration x[k+1]
s = x[k].

Select tolerance τk+1.
Set k = k+1.

end

1.3.2. Interior point methods

Interior point or barrier methods solve problem 1.11 by solving a sequence of barrier
problems with a decreasing barrier parameter µ > 0 given by:

min
x∈Rn

ϕ(x)−µ ∑
i∈I

logxi (1.14a)

s.t. ci(x) = 0, i = 1,2, . . . ,m. (1.14b)

Note that the objective of this problem becomes arbitrarily large as xi, i ∈ I approach zero.
Hence, a solution to Problem 1.14 lies in the interior of the feasible region of problem 1.11,
i.e. the strict inequalities xi > 0 hold for i ∈ I.

Interior point methods often come in the form of primal-dual methods. The following
dual variables are introduced:

vi :=
µ

xi
, i ∈ I.

With this definition, the KKT conditions for problem 1.14 are:

∇ϕ(x)−
m

∑
i=1

λi∇ci(x)− v = 0, (1.15a)

ci(x) = 0, i = 1,2, . . . ,m (1.15b)

xivi−µ = 0, i ∈ I. (1.15c)

Note, that for µ = 0 these conditions together with the inequalities

xi ≥ 0 and vi ≥ 0, i ∈ I (1.16)

40

1.3. Other nonlinear programming methods

are the KKT conditions for the original problem 1.11. The dual variables v then correspond
to the multipliers for the bound constraints (1.11c). Primal-dual interior point methods solve
system (1.15) by a Newton-type approach, maintaining iterates for the primal variables x and
the dual variables v and possibly λ . Different strategies exist to choose a sequence of barrier
parameters with µ → 0. Either µ is changed after the perturbed KKT conditions (1.15) are
satisfied to some accuracy or it is changed adaptively in every iteration.

Popular interior point methods are, e.g., IPOPT [199], KNITRO [44], and LOQO [195].

1.3.3. The generalized Gauss–Newton method

The generalized Gauss–Newton method is a method for solving special types of NLPs,
namely constrained nonlinear least squares problems of the form

min
x∈Rn

1
2 ‖F1(x)‖2

2 (1.17a)

s.t. F2(x) = 0. (1.17b)

with twice continuous differentiable functions F1 : Rn → Rm1 and F2 : Rn → Rm2 . Least
squares problems appear, e.g., in the context of maximum likelihood parameter estimation,
see Sec. 3.1.

Search directions for the generalized Gauss–Newton method are computed by solving
constrained linear least squares problems of the form:

min
∆x∈Rn

1
2‖F1(x)+ J1(x)∆x‖2

2 (1.18a)

s.t. F2(x)+ J2(x)∆x = 0, (1.18b)

where Ji(x) are the Jacobians of Fi:

J1(x) := ∇F1(x)T ∈ Rm1×n,

J2(x) := ∇F2(x)T ∈ Rm2×n.

Note that problem (1.18) is a special case of the quadratic program (1.5). In exact arithmetic,
a Gauss–Newton method produces (locally) the same iterates as an SQP method that uses
J1(x)T J1(x) as approximation of the Hessian. However, for solving the linear least squares
problems (1.18), tailored linear algebra based on suitable factorizations of J is used instead
of a general QP algorithm. The generalized Gauss–Newton method was first described in
[29] and is analyzed in detail in [31]. Algorithm 5 describes the basic steps of the method.

41

Chapter 1. Elements of nonlinear programming

Algorithm 5: Generalized Gauss–Newton method.

Given initial estimate x[0], set k = 0.
while a convergence test for x[k] is not satisfied do

Solve the following linear least squares problem to obtain ∆x[k]:

min
∆x∈Rn

1
2‖F

[k]
1 + J[k]1 ∆x‖2

2 (1.19a)

s.t. F [k]
2 + J[k]2 ∆x = 0, (1.19b)

where F [k]
i := Fi(x[k]) and J[k]i := Ji(x[k]), i ∈ {1,2}.

Set the new iterate

x[k+1] = x[k]+α
[k]

∆x[k],

with α [k] ∈ (0,1] obtained by a suitable globalization strategy.
Set k = k+1.

end

42

Chapter 2.

Optimization of dynamic processes

In this chapter, we describe optimization problems that are constrained by differential
algebraic equations. First, we introduce the problem class of optimal control problems
along with some notation that is used throughout this work. Then we present the direct
multiple shooting method as one of the most prominent methods for the numerical solution
of optimal control problems. It transforms the problems into specially structured nonlinear
programs that can be efficiently solved by tailored NLP methods. In contrast to the original
formulations of the direct multiple shooting method [34, 163], a more generic variant is
described here which allows the parameterization grids for the states, controls, and path
constraints to be chosen independently. We conclude with a brief discussion of the structures
of the resulting NLPs that are characteristic for the direct multiple shooting method.

For a more comprehensive overview on optimization of dynamic processes we refer to the
textbooks [22, 24, 38, 89].

2.1. Problem formulation

We start our discussion of dynamic optimization with two classes of problems, that appear
in various contexts throughout this work. First, we give a brief description of differential
algebraic equation models. Many optimization problems involving differential algebraic
equations can be cast in the form of optimal control problems, which are described afterwards.

2.1.1. Differential algebraic equation models

Processes in science and engineering can often be modeled by differential equations derived
from physical principles. Throughout this work, we consider dynamic systems described by
semi-explicit differential algebraic equations (DAE). Given a finite time horizon t0 ≤ t ≤ tf,
they have the form

ẏ(t) = f (t,y(t),z(t), p,u(t)), (2.1a)

0 = g(t,y(t),z(t), p,u(t)). (2.1b)

We call y(t) ∈ Rny differential states and z(t) ∈ Rnz algebraic states. We assume the system
to be of index 1, which means that ∂zg(t,y,z, p,u) is regular. The right-hand side functions f
and g are assumed to be piecewise sufficiently smooth.

43

Chapter 2. Optimization of dynamic processes

The system also depends on parameters p ∈Rnp and (time-dependent) controls u(t) ∈Rnu .
We think of a parameter as some intrinsic property of the process that has a true and constant
value, for example a material constant or a frequency factor for a chemical reaction. Because
their true values are usually not known, parameters must be estimated from measurement
data.

Controls, on the other hand, are extrinsic quantities that act upon the process such as
temperature or pressure. They can usually be selected within certain ranges. In general,
controls are time-dependent but sometimes we want to explicitly consider time-independent
controls u0 ∈ Rnu0 , e.g., initial concentrations of substances in a reactor. For notational
convenience, we just identify them with continuous, constant functions and think of them
as the first nu0 components of u. This means that whenever we refer to the vector u0, we
mean in fact

(
u1(t), . . . ,unu0

(t)
)T for some t ∈ [t0, tf]. Typically, controls and states must stay

within certain bounds. We denote these dynamic or path constraints by

0≤ cd(t,y(t),z(t), p,u(t)) ∈ Rnd , t ∈ [t0, tf]. (2.2)

Initial conditions are required for the differential states only. For the algebraic states,
initial values are given implicitly by the algebraic equation (2.1b) which must be satisfied in
particular at t0. Note that it is a nontrivial task to find initial values z(t0) that are consistent
with Equation (2.1b). Within an optimization context, this is often done with the help of a
relaxed formulation, see the discussion in Sec. 2.2.1 below. Depending on the process, initial
conditions for the differential states (2.1a) can be fixed, or modeled as parameters or controls.
We use the following general setting of linearly coupled multi-point boundary constraints
that include the initial conditions as special case:

0 =
Nb

∑
i=1

cb
i (ti,y(ti),z(ti), p,u0) ∈ Rnb , ti ∈ [t0, tf]. (2.3)

Remark 2.1. Note that we do not allow pointwise evaluation of control functions except for
u0, the ones that are explicitly marked as continuous constant functions. The reason is that a
control could be altered at a single point, i.e., a set of measure zero, without affecting the
state trajectories.

2.1.2. The optimal control problem

When we have a model describing a process, the model can be used to optimize the process
with respect to some performance index, e.g., time, energy, or yield. Many optimization
problems for dynamic systems can be formulated as optimal control (OC) problems of the

44

2.2. Direct multiple shooting for optimal control problems

following form:

min
u,y,z

Φ(y(tf),z(tf),u0) (2.4a)

s.t. ẏ(t) = f (t,y(t),z(t), p,u(t)), t ∈ [t0, tf] (2.4b)

0 = g(t,y(t),z(t), p,u(t)), t ∈ [t0, tf] (2.4c)

0≤ cd(t,y(t),z(t), p,u(t)), t ∈ [t0, tf] (2.4d)

0 =
Nb

∑
i=1

cb
i (ti,y(ti),z(ti), p,u0). (2.4e)

The task is to choose control functions u for the states y and z such that the performance
index Φ is minimzed. The objective (2.4a) is of Mayer-type, which means it depends on the
differential states evaluated at the final time tf only. The states y and z are required to satisfy
the DAE system (2.4b)–(2.4c) with multi-point boundary constraints (2.4e) as well as path
constraints (2.4d).

Remark 2.2. The model parameters p do not appear as degrees of freedom in the optimal
control problem (2.4). This is because they have to be estimated from measurement data
obtained under known experimental conditions u. A model is only valid and suitable for
making predictions if we have reliable estimates for the model parameters p. In Part II we
investigate in detail how to obtain a validated model using optimum experimental design
for parameter estimation. In the remainder of this chapter, we omit dependencies on the
parameters p to improve readability.

2.2. Direct multiple shooting for optimal control problems

Methods for the solution of the optimal control problem (2.4) can be roughly classified as
direct or indirect. In indirect methods, necessary optimality conditions in function space
are derived that result in a two-point boundary value problem for state and so-called co-
state equations. For the solution of the boundary value problem, multiple shooting can
be employed [39, 28]. However, the practical applicability of indirect methods is limited,
especially for large systems with path constraints. In direct methods the infinite-dimensional
OCP (2.4) is replaced by a finite dimensional NLP which is then solved by suitable numerical
methods.

Various direct methods for the solution of problem (2.4) have been proposed, ranging from
single shooting approaches [173, 196, 178], where only the control vector is parameterized
and the states are repeatedly solved by suitable integration schemes, to direct collocation
methods [23, 52, 181, 187, 188], where a full discretization of the states is part of the
resulting NLP.

A somewhat hybrid approach is the direct multiple shooting method (DMS) for OC
problems. It was first introduced by Bock and Plitt [163, 34] and has been applied and
extended subsequently in different contexts, e.g., for multi-stage DAE problems [16, 88,
142] or nonlinear model predictive control [58]. It usually comprises a multiple shooting

45

Chapter 2. Optimization of dynamic processes

parameterization of problem (2.4) and a tailored, structure exploiting sequential quadratic
programming method for the solution of the resulting highly structured NLP. Suitable
numerical integration schemes are employed to solve the DAE and evaluate derivatives of the
states on subintervals, the multiple shooting intervals. In this section, we first give a detailed
description of multiple shooting parameterization. Practical issues concerning derivative
evaluation and solution of the resulting structured NLP are discussed in Section 2.3.

2.2.1. Problem parameterization

In any direct method, the following infinite-dimensional objects in problem (2.4) must be
treated appropriately when replacing it by a finite-dimensional NLP:

• control functions u

• differential and algebraic states y and z

• path constraints cd

In Bock’s original method as well as in most subsequent works, states, controls, and path
constraints are discretized on a single common time grid. In this work, we explicitly want to
consider independent grids as they lead to NLPs that—while providing identical solutions
for the controls—may exhibit very different convergence behaviours for different shooting
grids. This requires some more complicated notation, but the core ideas of the “classical”
DMS method still apply to this more general method.

Control functions
We consider a time grid

t0 = τ
c
0 < τ

c
1 < · · ·< τ

c
Nc = tf (2.5)

on which the control function u is parameterized by means of local basis functions:

u(t) = π j(t,q j), t ∈ [τc
j ,τ

c
j+1), j = 0, . . . ,Nc−1,

where q j are vectors of finitely many real optimization variables and the functions π j are
typically polynomials of low degree, e.g. linear or constant functions. At the single point tf
we also introduce a variable qNc but require continuity of the control via a linear constraint:

u(tf) = qNc , πNc−1(tf,qNc−1)−qNc = 0. (2.6)

Depending on parameterization further linear constraints might arise, e.g. to implement a
piecewise linear control. We define q :=

[
qT

0 ,q
T
1 , . . . ,q

T
Nc

]T ∈ Rnq .
Keep in mind that the choice of the discretization grid (2.5) is often guided by practical

considerations rather than an analytical solution of the problem in function space. For
example, switping of the control function may be possible only at certain points in time for a
given system.

46

2.2. Direct multiple shooting for optimal control problems

States
In shooting methods, initial value problem solvers are employed to obtain representations of
the states y and z for given discretized controls q. In the case of direct single shooting and
pure ODEs, the states are regarded as dependent variables, and only q is kept as variable in
the optimization problem. Thus the tasks of simulation and optimization are kept separate.

The DMS method for DAEs is a simultaneous strategy to resolve simulation and optimiza-
tion in parallel. Again, we consider a discretization of the time horizon

t0 = τ
s
0 < τ

s
1 < · · ·< τ

s
Ns = tf. (2.7)

Without loss of generality, we choose the grid points of the shooting grid (2.7) as a subset of
the grid points of the control grid (2.5) (in particular Nc ≥ Ns).

Remark 2.3. If a finer shooting discretization is desirable, e.g. because an error-controlled
state integration is only possible on small intervals, we can achieve an equivalent formulation
as follows: Assume there is a grid point τc

j < τs
k j
< τc

j+1. Then we introduce an additional
grid point τc

k j
= τs

k j
. We choose πk j = π j and introduce variables qk j for which we explicitly

require qk j = q j by means of a linear constraint that we add to the NLP.

Let us denote by q̂ j all variables that parameterize the control functions on interval j of
the shooting grid and by π̂ j(t, q̂ j) the corresponding local basis functions. The number of
control discretization intervals that are contained in shooting interval j is denoted by Nc

j .
Formally, we have:

q =
[
q̂T

0 , q̂
T
1 , . . . , q̂

T
Ns

]T
, (2.8)

q̂ j :=
[
qT

j0 ,q
T
j1 , . . . ,q

T
jNc

j
−1
]T
, τ

s
j = τ

c
j0 < .. . < τ

c
jNc

j
= τ

s
j+1, j = 0, . . . ,Ns−1,

q̂Ns := qNc .

On the shooting grid (2.7) we consider the following set of initial value problems with
initial values sy =

[
syT

0 ,syT
1 , . . . ,syT

Ns

]T for the differential states and sz =
[
szT

0 ,szT
1 , . . . ,szT

Ns

]T
for the algebraic states that become variables in the optimization problem:

ẏ(t) = f (t,y(t),z(t), π̂ j(t, q̂ j)), y(τs
j) = sy

j (2.9a)

0 = g(t,y(t),z(t), π̂ j(t, q̂ j))−θ j(t)g(τs
j ,s

y
j,s

z
j, π̂ j(τ

s
j , q̂ j)), z(τs

j) = sz
j, (2.9b)

where θ j is a fast decreasing damping function with θ j(τ
s
j) = 1, e.g.

θ j(t) = exp

(
−α j

t− τs
j

τs
j+1− τs

j

)
, α j > 0.

This relaxed formulation was proposed in [32] and implies that the algebraic condition (2.9b)
is automatically consistent for any initial values sz

j. That means a DAE solver does not need
to solve the (nonlinear) algebraic condition in every iteration of the optimization algorithm
to find feasible initial values. Instead, nonlinear algebraic consistency conditions

0 = g(τs
j ,s

y
j,s

z
j, π̂ j(τ

s
j , q̂ j)), j = 0, . . . ,Ns

47

Chapter 2. Optimization of dynamic processes

t❝✵
ts✵

t❝✶ t❝✷ t❝✸
ts✶

t❝✹ t❝✺
ts✷

t❝✻
ts✸

t❝✼
ts✹

t❝✽ t❝✾
ts✺

t❝✶✵ t❝✶✶
ts✻

�♦✁✂r♦✄

☎✂❛✂❡

t❝✵
ts✵

t❝✶ t❝✷ t❝✸
ts✶

t❝✹ t❝✺
ts✷

t❝✻
ts✸

t❝✼
ts✹

t❝✽ t❝✾
ts✺

t❝✶✵ t❝✶✶
ts✻

�♦✁✂r♦✄

☎✂❛✂❡

Figure 2.1.: Concept of DMS for one state and one piecewise constant control. In the upper
plot the continuity conditions are violated (vertical dotted lines), in the lower
plot they are satisfied. Note that the control grid τc is finer than the shooting
grid τs so the control is sometimes allowed to switch within a shooting interval.

are added to the optimization problem to ensure that the original DAE is solved at the solution
of the optimization problem.

Note that the DAEs (2.9) are solved independently on the smaller time intervals [τs
j ,τ

s
j+1]

as the initial values (sy
j,s

z
j) are variables of the optimization problem. To ensure equivalence

to the original system (2.1), continuity conditions are added to the optimization problem
for every shooting interval. Let us denote by y(·;sy

j,s
z
j, q̂ j) and z(·;sy

j,s
z
j, q̂ j) a representation

of the solution to problem (2.9) on the intervals [τs
j ,τ

s
j+1] for given (sy

j,s
z
j, q̂ j). Then the

continuity conditions read as:

y(τs
j+1;sy

j,s
z
j, q̂ j) = sy

j+1, j = 0, . . . ,Ns−1.

Figure 2.1 illustrates the concept of DMS. Note how we use different grids for controls
and states. A special case is of course to choose the same grid for both. However, in our
experience, the decoupling of grids provides greater flexibility: sometimes a smaller number
of shooting intervals can greatly accelerate convergence of an SQP method for problems
where a relatively fine discretization of the controls is desirable.

In this and the following chapters which deal with experimental design problems we will
use the letter x to denote the combined differential and algebraic states, i.e.

x :=
[

y
z

]
,

48

2.2. Direct multiple shooting for optimal control problems

as this should not create any ambiguity with the usage of x as optimization variables in
the context of nonlinear programming and simplifies the notation. Also, we use sx for the
corresponding shooting variables:

sx =

 sx
0
...

sx
Ns

 :=

sy

0
sz

0
...

sy
Ns

sz
Ns

 . (2.10)

Path constraints
Path constraints of the form (2.4d) are generally required to hold everywhere on [t0, tf] which
makes the constraints infinite-dimensional. In DMS, we evaluate the path constraints on a
grid of finitely many points:

t0 = τ
d
0 < τ

d
1 < · · ·< τ

d
Nd = tf. (2.11)

Depending on the choice of the time grid, the constraints might be violated in between grid
points. There are strategies how to adaptively add checkpoints, see, e.g., [164]. For the scope
of this text, however, we will assume that grid (2.11) is always chosen sufficiently dense.

Again, we assume that all points of the shooting grid (2.7) are also part of grid (2.11). We
assign the points (2.11) to the multiple shooting grid by introducing the following notation:

τ
s
j = τ

d
j0 < τ

d
j1 < · · ·< τ

d
jNd

j
= τ

s
j+1, j = 0, . . . ,Ns−1

τ
s
j = τ

d
j0 , j = Ns,

where Nd
j denotes the number of constraint checkpoints on shooting interval j. The dis-

cretized path constraints read as

0≤ cd(τd
ji ,y(τ

d
ji ;sx

j, q̂ j),z(τd
ji ;sx

j, q̂ j), π̂ j(τ
d
ji , q̂ j)), j = 0, . . . ,Ns, (2.12)

i = 0, . . . ,Nd
j −1.

Note that (2.12) has the following simple form if the same grids for multiple shooting and
the discretization of path constraints are used:

0≤ cd(τs
j ,s

x
j, π̂ j(τ

s
j , q̂ j)), j = 0, . . . ,Ns.

Multi-point boundary constraints
We split up the sum in the linearly coupled multi-point boundary constraints (2.4e) according
to the multiple shooting grid and plug in the solution representation depending on discretized
controls q and shooting variables sy and sz. Equation (2.4e) is then replaced by:

0 =
Ns

∑
j=0

∑
i:

τs
j≤ti<τs

j+1

cb
i (ti,y(ti;sx

j, q̂ j),z(ti;sx
j, q̂ j), π̂ j(ti, q̂ j)).

49

Chapter 2. Optimization of dynamic processes

We formally set τs
Ns+1 = ∞ to avoid additional notation.

Structured NLP
We have now addressed all constraints of the OC problem and can formulate the resulting
structured NLP as follows:

min
sx,q

Φ(sx
Ns , q̂Ns) (2.13a)

s.t. 0 = y(τs
0; q̂0)− sy

0 (2.13b)

0 = y(τs
j+1;sx

j, q̂ j)− sy
j+1, j = 0, . . . ,Ns−1 (2.13c)

0 = g(τs
j ,s

x
j, π̂ j(τ

s
j , q̂ j)), j = 0, . . . ,Ns (2.13d)

0≤ cd(τd
ji ,x(τ

d
ji ;sx

j, q̂ j), π̂ j(τ
d
ji , q̂ j)), (2.13e)

j = 0, . . . ,Ns i = 0, . . . ,Nd
j −1

0 =
Ns

∑
j=0

∑
i:

τs
j≤ti<τs

j+1

cb
i (ti,x(ti;sx

j, q̂ j), π̂ j(ti, q̂ j)) (2.13f)

0≤ L(sx
0, q̂0, . . . ,sx

Ns , q̂Ns), (2.13g)

where (2.13b) are the ODE initial conditions and (2.13c) and (2.13d) are the continuity and
consistency conditions that guarantee the solution of the original DAE (2.1) at the solution
of the optimization problem. Furthermore, we have the discretized path constraints (2.13e)
and multi-point boundary constraints (2.13f). The number of variables and constraints
depend on the selection of the grids τs, τc, and τd. A finer grid τc increases the number
of variables, a finer grid τd increases the number of nonlinear constraints. Refinement
of the multiple shooting grid τs simultaneously increases the number of variables and
constraints. An important difference, however, is that different grids τc and τd usually lead
to different solutions of problem (2.13), while the choice of the shooting grid τs does not
affect the solution but only changes the dimension and structure of the NLP and possibly the
convergence behavior of the NLP method.

For the following discussion, we group the variables according to their shooting nodes
and define

ξ :=

 ξ0
...

ξNs

 ∈ Rnξ , ξ j :=

sy
j

sz
j

q̂ j

 , j = 0, . . . ,Ns.

All linear constraints that may arise during parameterization, such as (2.6) or additional
continuity constraints to implement a piecewise linear control, are subsumed in (2.13g) with
a linear function L that we identify with a matrix L ∈ RnL×nξ .

50

2.3. Direct multiple shooting: practical issues

2.3. Direct multiple shooting: practical issues

In this section, we discuss three important issues in the practical application of DMS. First,
how to efficiently evaluate states and derivatives using the principle of internal numerical
differentiation; second, the structure of derivatives that are of importance for the optimization
algorithm; and third, how SQP methods can exploit problem structures that arise in DMS.

2.3.1. Function and derivative evaluation

When we solve problem (2.13) with a Newton type method, the objective (2.13a) and
constraints (2.13b)–(2.13g) as well as their derivatives with respect to sy, sz, and q must be
evaluated at different points in the variable space. The functions Φ, g, cd, and cb

i are explicitly
formulated as analytic functions and their derivatives can be evaluated using algorithmic
differentiation (AD) [112].

The states y and z are given implicitly as solutions of the DAE (2.9). Solution repre-
sentations y(·;sy

j,s
z
j, q̂ j) and z(·;sy

j,s
z
j, q̂ j) that are needed to evaluate the continuity con-

straints (2.13c) as well as path constraints (2.13e) and boundary constraints (2.13f) are
usually obtained by suitable numerical schemes. In the case of chemical reaction systems, for
example, the underlying differential equations are usually stiff and backwards differentiation
formula (BDF) methods are the methods of choice [14]. For non-stiff systems one may use,
e.g., Runge–Kutta methods. Advanced methods usually employ error estimators to choose
stepsizes and orders adaptively. Hence, they are able to generate solutions that approximate
the analytical solution within a given error bound while still maintaining a high degree of
efficiency by avoiding unnecessarily small stepsizes. For a detailed discussion of numerical
methods for ODE and DAE we refer to the literature [8, 9, 115, 116]. Derivatives of the
DAE solutions play an important role in the numerical treatment of OC and OED and are
discussed next.

The principle of internal numerical differentiation
When we evaluate derivatives of the constraints, we need derivatives of the solution repre-
sentations y(·;sy

j,s
z
j, q̂ j) and z(·;sy

j,s
z
j, q̂ j) in the direction of the initial values sy

j and sz
j as

well as the discretized controls q̂ j. We sometimes call these derivatives sensitivities of the
states to distinguish them from derivatives of analytic functions whose evaluation can be
easily handled by applying AD. For the efficient computation of these sensitivities, we follow
the principle of internal numerical differentiation (IND) introduced by Bock [29, 30]. The
idea is to obtain state derivatives by differentiating the numerical scheme for the nominal
DAE system. Because this scheme is usually generated adaptively, we freeze all adaptive
components such as stepsizes, orders, or iteration matrices. Then this numerical scheme
can be interpreted as a sequence of differentiable mappings, each leading from the state
solution at one point of the discretization grid to the next. This approach has the advantage,
among other things, that by construction, it generates the exact numerical derivative of the
approximate solution of the nominal DAE.

An important property of IND is that differentiating the integration scheme following the

51

Chapter 2. Optimization of dynamic processes

principle of IND is equivalent to numerically solving the nominal DAE system augmented
by the corresponding variational differential equations. They are defined as follows:

Definition 2.4 (Variational DAE). For a (nominal) DAE system of the form

ẏ(t) = f (t,y,z,q), y(τ0) = sy,

0 = g(t,y,z,q)−θ(t)g(τ0,sy,sz,q), z(τ0) = sz,

the (forward) variational differential algebraic equations (VDAE) for ys := dy
dsx and zs := dz

dsx ,
are given by:

ẏs(t) =
∂ f
∂y
· ys(t)+

∂ f
∂ z
· zs(t), ys(τ0) =

[
Iny 0

]
, (2.14a)

0 =
∂g
∂y
· ys(t)+

∂g
∂ z
· zs(t)−θ(t)

[
∂g0

∂y
,
∂g0

∂ z

]
, zs(τ0) =

[
0 Inz

]
, (2.14b)

where we omit the arguments of ∂ f
∂ (·) and ∂g

∂ (·) and ∂g0
∂ (·) denotes the evaluation of ∂g

∂ (·) at τ0.
The VDAE for yq and zq are given by:

ẏq(t) =
∂ f
∂y
· yq(t)+

∂ f
∂ z
· zq(t)+

∂ f
∂q

, yq(τ0) = 0, (2.15a)

0 =
∂g
∂y
· yq(t)+

∂g
∂ z
· zq(t)+

∂g
∂q
−θ(t)

∂g0

∂q
, zq(τ0) = 0. (2.15b)

For derivatives of higher order the corresponding VDAEs can be obtained in a similar way
by linearizing the first order VDAEs (2.14) and (2.15), respectively.

While solving the augmented system and differentiating the integration scheme yield the
same solution for the sensitivities, the principle of IND allows to re-use certain internal
information of the integration scheme for the nominal DAE to obtain efficient schemes for
the combined nominal and variational DAE system.

For efficient IND schemes, the computational effort for evaluating sensitivities is mainly
governed by evaluation of the derivatives of the DAE right-hand side [4]. Depending on
the optimization algorithm, forward or adjoint sensitivities of the states may be computed.
In this work, we restrict ourselves to forward sensitivities. In this case, derivatives of the
DAE right-hand side should be evaluated using the forward mode of AD. The theory of AD
gives a worst-case upper bound for the evaluation of ndir directional derivatives of 1+1.5ndir
times the effort of evaluating the function. From this, we immediately obtain a theoretical
upper bound for the evaluation of DAE sensitivities: Computing ndir sensitivities xs costs
no more than 1+1.5ndir times the nominal integration, and ndir sensitivities xq cost no more
than 2+3ndir times the nominal integration. A detailed discussion of IND exceeds the scope
of this thesis and we refer to the comprehensive treatment in [4].

2.3.2. Structured derivatives

The DMS discretization imposes specific structures on the problem derivatives. These
structures need to be taken into account by an SQP method to solve problem (2.13) efficiently.

52

2.3. Direct multiple shooting: practical issues

Banded constraint Jacobian
For a given shooting interval j, each of the constraints (2.13c), (2.13d), and (2.13e) depends
in a nonlinear way on the corresponding variables ξ j only. Furthermore, there is a linear
dependence on sy

j+1 in the continuity constraints for interval j. This leads to a banded
structure in the upper part of the constraint Jacobian. The linearly coupled multi-point
boundary constraints (2.13f) and the linear constraints (2.13g) yield a dense block with nd
and nL rows, respectively. The full constraint Jacobian has the following structure:

−Iny 0 dy0
dq̂0

dg0
dsy

0

dg0
dsz

0

dg0
dq̂0

dcd
0i

dsy
0

dcd
0i

dsz
0

dcd
0i

dq̂0
dy1
dsy

0

dy1
dsz

0

dy1
dq̂0

−Iny

. . .
. . .

dgNs−1
dsy

Ns−1

dgNs−1
dsz

Ns−1

dgNs−1
dq̂Ns−1

dcd
Ns−1i

dsy
Ns−1

dcd
Ns−1i

dsz
Ns−1

dcd
Ns−1i

dq̂Ns−1
dyNs

dsy
Ns−1

dyNs
dsz

Ns−1

dyNs
dq̂Ns−1

−Iny

dg
dsy

Ns

dg
dsz

Ns

dg
dq̂Ns

dcd
Ns

dsy
Ns

dcd
Ns

dsz
Ns

dcd
Ns

dq̂Ns

d∑cb
i

dsy
0

d∑cb
i

dsz
0

d∑cb
i

dq̂0
· · · · · · d∑cb

i
dsy

Ns−1

d∑cb
i

dsz
Ns−1

d∑cb
i

dq̂Ns−1

d∑cb
i

dsy
Ns

d∑cb
i

dsz
Ns

d∑cb
i

dq̂Ns

L

, (2.16)

where we use the following abbreviations:
dg j

d(·) j
:=

dg
d(·) j

(τs
j ,s

x
j, π̂ j(τ

s
j , q̂ j))

dcd
ji

d(·) j
:=

dcd

d(·) j
(τd

ji ,x(τ
d
ji), π̂ j(τ

d
ji , q̂ j)), i = 0, . . . ,Nd

j −1

dy j+1

d(·) j
:=

dy
d(·) j

(τs
j+1;sx

j, q̂ j)

d∑cb
i

d(·) j
:= ∑

i:
τs

j≤ti<τs
j+1

dcb
i

d(·) j
(ti,x(ti), π̂ j(ti, q̂ j)).

Note that we use the total differential d
d(·) here to indicate explicit and implicit dependencies

on the variables, e.g.,

dcd

dq̂ j
(τd

ji ,x(τ
d
ji), π̂ j(τ

d
ji , q̂ j)) =

∂cd

∂x
∂x
∂ q̂ j

(τd
ji ;sx

j, q̂ j)+
∂cd

∂ π̂ j

∂ π̂ j

∂ q̂ j
(τd

ji , q̂ j).

53

Chapter 2. Optimization of dynamic processes

In practice, expressions such as ∂cd

∂x can be easily evaluated using algorithmic differentiation,
while ∂x

∂ q̂ j
usually has to be supplied by the integrator, see the discussion about IND in the

precious section.
The size of each block corresponding to the continuity-, consistency-, and path constraints

on one shooting interval can vary for different shooting intervals depending on the control
parameterization and the evaluation of path constraints: The grid τc determines the number
of control variables q̂ j and the grid τd determines the number of constraints in addition to
the continuity and consistency constraints for the current interval.

Block-diagonal Hessian of the Lagrangian
The Lagrangian of problem (2.13) is a special case of a partially separable function (see [113]
for an exact definition of partial separability). That means it can be written as a sum of
element functions that depend only on a subset of the variables:

L(ξ ,λ) = Φ(vNs)−
Ns

∑
j=0

(
λ

T
j c j(ξ j,ξ j+1)+λ

T
cb ∑

i
cb

i (ξ j)

)
−λ

T
L Lξ , (2.17)

where c j combines continuity, consistency, and path constraints for node j and λ j is the
corresponding subvector of the Lagrange multipliers. The dependency on ξ j+1 for the
constraint set c j is only due to the linear coupling in the continuity constraints and thus
equation (2.17) can be rewritten as

L(ξ ,λ) =
Ns

∑
j=0
L j(ξ j,λ).

Therefore, it holds that

∇
2
ξiξ j
L(ξ ,λ) = 0, i 6= j,

which means that the Hessian of the Lagrangian has diagonal block structure according to
the variable partition ξ j:

∇
2
ξ ξ
L=

∇2
ξ0ξ0
L

∇2
ξ1ξ1
L

. . .

∇2
ξNs ξNs

L

. (2.18)

2.3.3. Solution of the NLP

In principle, problem (2.13) could be solved by any general purpose SQP method. However,
a crucial factor for the efficiency of DMS is the use of tailored NLP solvers that exploit the
problem structure outlined above. Two features that are of special importance are partitioned

54

2.3. Direct multiple shooting: practical issues

Quasi-Newton approximations of the Hessian and an efficient solution of the sparse quadratic
subproblem that is formulated in every iteration of an SQP method.

Partitioned Quasi-Newton updates
In many SQP methods, Quasi-Newton update formulae such as the BFGS formula are
employed instead of the exact Hessian to obtain approximations that are cheap to compute
and that circumvent the difficulty of nonconvex QPs by using appropriate modifications
that guarantee positive definiteness of the approximation. NLPs resulting from shooting
methods particularly benefit from this approach because their Hessian includes second order
derivatives of the states that are usually very time consuming to evaluate.

Starting with an initial approximation B[0], e.g. a positive definite diagonal matrix, a new
approximation B[k+1] is obtained by a low-rank modification to the current approximation
B[k] using the vectors

γ
[k] = L(ξ [k+1],λ [k+1])−L(ξ [k],λ [k+1])

δ
[k] = ξ

[k+1]−ξ
[k].

The two most popular updates, the BFGS and the SR1 update, yield a rank-2 and rank-1
correction, respectively. However, standard use of the updates does not take into account the
block diagonal structure of the Hessian (2.18) that results from the partial separability of the
Lagrangian as laid out in the previous section.

On the one hand, this leads to dense QPs that can be relatively large, depending on the
multiple shooting discretization. On the other hand, the low-rank corrections can result in a
high number of SQP iterations as only little new curvature information can be incorporated
into the quadratic model during each iteration.

Bock and Plitt [163, 34] suggest to use partitioned Quasi-Newton updates that retain the
diagonal block structure and lead to high-rank corrections of the current approximation B[k].
The idea is to maintain Ns +1 independent approximations B j, j = 0, . . . ,Ns for the diagonal
blocks in (2.18). To this end, the update formulae are simply applied to the appropriate
subvectors of γ [k] and δ [k]:

γ
[k]
j = L(ξ [k+1]

j ,λ [k+1])−L(ξ [k]
j ,λ [k+1])

δ
[k]
j = ξ

[k+1]
j −ξ

[k]
j .

In Chapter 7 we will describe in detail different Quasi-Newton updates and their application
to diagonal block structured Hessians.

Solution of sparse subproblems
A crucial step of every SQP algorithm for problem (2.13) is the solution of the large, block-
structured QP subproblems that arise due to the multiple shooting discretization. Figure 2.2
shows the KKT matrix with a Hessian of the form (2.18) and a constraint Jacobian of the
form (2.16) that illustrates the structure of the problem.

A common approach in DMS is to use a condensing algorithm as preprocessing step that
makes use of the structure induced by the continuity constraints (2.13c) to eliminate the

55

Chapter 2. Optimization of dynamic processes

Figure 2.2.: Structured KKT matrix with block diagonal Hessian and banded Jacobian.

shooting variables sy
j, j = 1, . . . ,Ns and the corresponding constraints before the solution

of the QP. The resulting smaller and densely populated QP is then solved by a suitable QP
solver and a solution for sy

j as well as the multipliers for the eliminated continuity constraints
are recovered by a simple recursion. This approach has been described in [31, 34, 163, 159]
and has been extended to the case where many algebraic states are present in [140, 142].

A related method that is especially well-suited for problems involving many control
variables but comparably few states is described by Kirches et al. [131, 133, 132], based
on ideas by Steinbach [186]. This method is not implemented as a preprocessing step but
exploits the block structure of the KKT matrix directly by a tailored factorization that can be
incorporated in a specialized QP solver. The factorization can be updated efficiently as the
QP working set iterations proceed.

An alternative to condensing-based block-QP solvers are reduced SQP methods [174, 181,
189] where the step is partitioned into a null space direction and a range space direction that
are computed by projecting on the constraints. However, this does not allow the efficient
approximation of the Hessian by blockwise quasi-Newton updates. In [91] a modified QP
subproblem is solved where the structure of the continuity constraints is exploited but a
dense quasi-Newton update is maintained for the sparse, block-diagonal Hessian.

Both approaches, condensing and reduced methods, require close integration of problem
evaluation and SQP method, that means the SQP method needs to be aware of the specific
constraint structure. In Chapter 8 we present an alternative approach based on a sparse
symmetric indefinite LDLT factorization of the KKT matrix. It has the advantage that few
assumptions need to be made concerning the problem structure and additional sparsity, that
may arise in more specific problem classes such as optimum experimental design problems
parameterized by multiple shooting, is exploited.

56

Part II.

Optimum experimental design for
parameter estimation

57

Chapter 3.

Formulation of optimum experimental
design problems

In Chapter 2, we introduced dynamic models described by DAEs of the form

ẏ(t) = f (t,y(t),z(t), p,u(t)), t ∈ [t0, tf] (3.1a)

0 = g(t,y(t),z(t), p,u(t)), t ∈ [t0, tf] (3.1b)

0 =
Nb

∑
i=1

cb
i (ti,y(ti),z(ti), p,u0). (3.1c)

Here, we assume that the boundary constraints (3.1c) are formulated such that for a given p
there exist unique solutions y and z that satisfy (3.1c). This is to ensure that all parameters p
are random variables that depend only on the data.

Before we can use a model to optimize a process we need to make sure that the model
describes the process quantitatively. Two types of errors can occur: Systematic or structural
errors mean that the model equations do not describe all aspects of the process. For example,
a major reaction taking place during a chemical process is not represented by the appropriate
terms in the DAE. The second type of error is the statistical error that is due to uncertainty in
the parameters p and thus leads to false predictions of the model.

In this work, we exclude structural errors and always make the assumption that the models
are structurally correct, i.e., the model describes the process correctly if the true parameter
values were known. We focus on the task of significantly identifying the model parameters
p to validate the model. To this end, we perform experiments and take measurements. As
measurements are subject to statistical errors, they result in uncertain estimates p̂ for the
parameters. The relation between measurement error and parameter uncertainty is typically
nonlinear and poorly designed experiments can lead to highly uncertain parameter estimates.

Optimum experimental design (OED) for parameter estimation1 is used to select an exper-
imental setup such that the corresponding measurements allow to estimate the parameters
with minimum uncertainty. In this way, a model can be validated using as little experimental
effort as possible. In this chapter, we formally describe the problem of optimum experimental
design for nonlinear, dynamic models of the form (3.1) as part of the parameter identification
process.

1A related problem not covered in this work is experimental design for model discrimination where the “best”
model among several rival models is to be chosen, see [83, §3] and the references therein for a survey.

59

Chapter 3. Formulation of optimum experimental design problems

OED for statistical models has been studied for several decades and there exist a number
of textbooks on the subject, for example, [10, 36, 67, 167]. Nonlinear OED for parameter
estimation subject to DAE models has received considerable attention over the last years,
see, for example, [11, 15, 66, 134, 83, 146, 177]. The specific problem formulations in the
literature vary, e.g., with regard to the dynamic system, objective function, or measurement
design. We follow the approach presented in [15, 134] to derive the OED problem for
parameter estimation in DAE models in a general form. We also present a novel view on the
relation between covariance matrices of constrained and unconstrained parameter estimation
problems. We conclude the chapter with some problem extensions, namely the design of
multiple experiments, OED for key performance indicators and continuous measurements.

3.1. Parameter estimation

In this section, we describe a maximum likelihood parameter estimation problem constrained
by DAE that forms the underlying problem class for the OED problems in this work.
Parameter estimation problems and numerical methods for their solution are treated in [31,
179].

3.1.1. Problem formulation

Estimation of the model parameters p, sometimes referred to as parameter identification or
model calibration, is the process of determining an estimate p̂ for the model parameters based
on measurement data. In this work, we are interested in the maximum likelihood estimator p̂.
Loosely speaking, p̂ are the parameters with the highest probability of giving rise to a given
set of observations.

Let us assume that observations η1,η2, . . . ,ηM ∈ R are available at sampling times
t1, t2, . . . , tM . We assume that the corresponding measurement errors ε1,ε2, . . . ,εM are random
variables that are independently normally distributed with zero mean and standard deviations
σ1,σ2, . . . ,σM. We denote by

hi(ti,y(ti),z(ti), p,u0) ∈ R, i = 1, . . . ,M

the corresponding model response. If we assume that the model is structurally correct and
errors arise only due to inaccuracies in the measurement process, the following relation
holds:

hi(ti,y(ti),z(ti), p?,u0) = ηi + εi, i = 1, . . . ,M,

where p? are the true—but inaccessible—parameter values and y and z are the corresponding
states. Following the assumptions above, the maximum likelihood parameter estimation

60

3.1. Parameter estimation

problem can be written in the form of the following nonlinear least squares problem [13]:

min
p,y,z

1
2

M

∑
i=1

(
hi(ti,y(ti),z(ti), p,u0)−ηi

σi

)2

(3.2a)

s.t. ẏ(t) = f (t,y(t),z(t), p,u(t)), t ∈ [t0, tf] (3.2b)

0 = g(t,y(t),z(t), p,u(t)), t ∈ [t0, tf] (3.2c)

0 =
Nb

∑
i=1

cb
i (ti,y(ti),z(ti), p,u0). (3.2d)

Note that for this problem the controls u(·) are fixed, representing the experimental conditions
under which the measurement data ηi were obtained.

3.1.2. Transformation to finite-dimensional problem

The DAE constrained nonlinear least squares problem (3.2) can be solved efficiently by
DMS in combination with a generalized Gauss–Newton method, see [31, 179]. Similar to
the case of optimal control problems as introduced in Chapter 2, with DMS for parameter
estimation problems, the states are parameterized to obtain a finite-dimensional, equality-
constrained nonlinear least-squares problem, by introducing additional variables s ∈ Rns and
constraints. Together with the boundary constraints (3.2d), that may also be transformed
by the parameterization, we combine all constraints into a linearly coupled constraint with
element functions cpe

i evaluated at points ti, i = 1, . . . ,Npe. The resulting constraint is also
of dimension ns, given a suitable parameterization. This represents the assumption that
the np model parameters p are random variables that can be estimated from the data alone.
Introducing the notation

F1 : Rnp+ns −→ RM, F1(p,s) :=
(

hi(ti,y(ti; p,s),z(ti; p,s), p,u0)−ηi

σi

)
i=1,...,M

,

F2 : Rnp+ns −→ Rns , F2(p,s) :=
Npe

∑
i=1

cpe
i (ti,y(ti; p,s),z(ti; p,s), p,u0,s),

the resulting finite dimensional problem can be written as

min
p,s

1
2 ‖F1(p,s)‖2

2 (3.3a)

s.t. F2(p,s) = 0. (3.3b)

We denote the Jacobians of F1 and F2 with respect to p and s by

J :=
[

J1
J2

]
, (3.4)

J1 :=
[
J1p, J1s

]
:=
[

∇pFT
1 , ∇sFT

1

]
∈ RM×(np+ns), (3.5)

J2 :=
[
J2p, J2s

]
:=
[

∇pFT
2 , ∇sFT

2

]
∈ Rns×(np+ns). (3.6)

61

Chapter 3. Formulation of optimum experimental design problems

The parameterization must be chosen such that the following regularity assumptions hold
where F1, F2, J1, and J2 are evaluated:

rank J2(p,s) = ns, (CQ)

rank J(p,s) = np +ns. (PD)

Then problem 3.3 can be solved efficiently by the generalized Gauss–Newton method [29],
outlined in Algorithm 5 in Sec. 1.3.3.

Remark 3.1. Assumptions (CQ) and (PD) are special cases of LICQ (cf. Def. 1.4) and
the second order sufficient condition (cf. Thm. 1.8) applied to the linear least squares
problem (1.19) in Algorithm 5. To see this, reformulate (1.19) as a standard QP and use that
condition (PD) implies that the Hessian of this QP, JT

1 J1, is positive definite on the null space
of J2.

3.2. Sensitivity analysis of the estimates

OED aims at improving statistical uncertainty of the parameter estimates. The uncertainty
is described by the covariance matrix. We show how an approximation of the covariance
matrix is obtained by sensitivity analysis of the solution of the parameter estimation problem
and how it can be used to compute confidence intervals. Furthermore, we show that the co-
variance matrix is independent of the parameterization of the infinite-dimensional parameter
estimation problem.

3.2.1. Approximation of the covariance matrix

The solution of the finite dimensional parameter estimation problem (3.3) is a maximum
likelihood estimator for p and s, which we denote by v̂ := (p̂T , ŝT)T ∈ Rnv . It is a random
variable because the measurements ηi are random. To analyze its statistical properties, we
consider the linearized least squares problem at the solution:

min
∆v

1
2 ‖F1(v̂)+ J1(v̂)∆v‖2

2 (3.7a)

s.t. F2(v̂)+ J2(v̂)∆v = 0. (3.7b)

The solution operator of (3.7) is the generalized inverse J+ and is defined as follows [31].

Definition 3.2 (Generalized Inverse). The matrix

J+(v) :=
[
I 0

][J1(v)T J1(v) J2(v)T

J2(v) 0

]−1[J1(v)T 0
0 I

]
is called the generalized inverse of J.

62

3.2. Sensitivity analysis of the estimates

The existence of J+ is ensured by conditions (CQ) and (PD). The solution ∆v̂ of (3.7) can
now be formally written as

∆v̂ =−J+(v̂)
[

F1(v̂)
F2(v̂)

]
.

Using this representation of the solution, we can compute an approximation of the variance-
covariance matrix, which we will later call, for the sake of brevity, a covariance matrix,
by

C : = E(∆v̂∆v̂T)

= E(J+
[

F1FT
1 F1FT

2
F2FT

1 F2FT
2

]
J+T)

= J+
[
E(F1FT

1) E(F1FT
2)

E(F2FT
1) E(F2FT

2)

]
= J+

[
I 0
0 0

]
J+T

=
[
I 0

][JT
1 J1 JT

2
J2 0

]−1[JT
1 J1 0
0 0

][
JT

1 J1 JT
2

J2 0

]−T [I
0

]
, (3.8)

where we have used that

E(F1FT
1) = E(Σ−1

εε
T

Σ
−1) = Σ

−1
Σ

2
Σ
−1 = I

with Σ := diag(σi), i = 1, . . . ,M and ε = (εi, i = 1, . . . ,M). We also used that E(F1FT
2) =

E(F2FT
1) = E(F2FT

2) = 0 because F2 is not random and zero.
A more compact representation of C can be derived as follows. Define[

X Y T

Y T

]
:=
[

JT
1 J1 JT

2
J2 0

]−1

,

with X ∈ Rnv×nv , Y ∈ Rns×nv , T ∈ Rns×ns .

Lemma 3.3. [33] The covariance matrix C (3.8) is equal to the matrix X.

Proof. According to (3.8), we have

C =
[
I 0

][X Y T

Y T

][
JT

1 J1 0
0 0

][
X Y

Y T T

][
I
0

]
=
[
X Y T

][JT
1 J1 0
0 0

][
X
Y

]
= XJT

1 J1X . (3.9)

By definition, the blocks X and Y satisfy the linear system

JT
1 J1X + JT

2 Y = I,
J2X = 0.

63

Chapter 3. Formulation of optimum experimental design problems

Together with relation (3.9) we obtain

C = X(I− JT
2 Y) = X .

3.2.2. The relation between constrained and unconstrained problems

Let us now analyze a covariance matrix C for a given parameterization of the parameter
estimation problem (3.2) by variables p and s. As the parameterization, i.e., the choice
of variables s, is arbitrary and usually motivated by practical considerations, we want
that the part of C corresponding to p is not affected by the choice of s. And indeed, the
relation between covariance matrices for constrained and unconstrained parameter estimation
problems is illustrated by the following diagram that is proven in Theorem 3.4:

Constrained problem
(dim= np +ns)

Unconstrained problem
(dim= np)

C =
[
I 0

][JT
1 J1 JT

2
J2 0

]−1 [I
0

]

C̃ = (J̃1
T J̃1)

−1.

sensitivity analysis

sensitivity analysis

projection on
constraint null space

lifting
projection on

upper left np×np part

Theorem 3.4. Consider a parameterization of Problem (3.2) by variables p and s that yields
the constrained least squares problem (3.3). The covariance matrix for p and s is given by

C =
[
I 0

][JT
1 J1 JT

2
J2 0

]−1[I
0

]

=

[
I 0 0
0 I 0

]JT
1pJ1p JT

1pJ1s JT
2p

JT
1sJ1p JT

1sJ1s JT
2s

J2p J2s 0

−1I 0
0 I
0 0

 . (3.10)

Furthermore, consider a minimum parameterization of Problem (3.2) by variables p ∈ Rnp

that yields the unconstrained least squares problem

min
p

1
2

∥∥F̃1(p)
∥∥2

2 , (3.11)

and covariance matrix

C̃ = (J̃1
T J̃1)

−1 ∈ Rnp×np .

Then

Πnp(C) = C̃,

where Πnp(C) is the projection onto the np×np leading principal submatrix of C.

64

3.2. Sensitivity analysis of the estimates

Proof. We compare the two linear least squares problems from which C and C̃ are derived.
First, the covariance matrix C̃ is derived by linearizing Problem (3.11) at a point solution p̂:

min
∆p

1
2

∥∥F̃1(p̂)+ J̃1(p̂)∆p
∥∥2

2 . (3.12)

On the other hand, consider the linear least squares problem obtained by linearizing
Problem (3.3) at the solution p̂, ŝ:

min
∆p,∆s

1
2 ‖F1(p̂, ŝ)+ J1p(p̂, ŝ)∆p+ J1s(p̂, ŝ)∆s‖2

2 (3.13a)

s.t. F2(p̂, ŝ)+ J2p(p̂, ŝ)∆p+ J2s(p̂, ŝ)∆s = 0. (3.13b)

Because we assume that rankJ2 = ns we may assume that the partition of the variable vector
in p and s is such that J2s is nonsingular. Then for every feasible point, ∆s in Prob. (3.13) is
given by

∆s =−J−1
2s J2p∆p

because F2(p̂, ŝ) = 0. Hence, an equivalent unconstrained problem for the given parameteri-
zation is

min
∆p

1
2

∥∥F1 +(J1p− J1sJ−1
2s J2p)∆p

∥∥2
2 . (3.14)

The parameterization does not change the solution of the original problem. This means
that F1(p̂, ŝ) = F̃1(p̂) and Problems (3.13) and (3.12) must yield the same solution ∆p, i.e.,

(J1p− J1sJ−1
2s J2p)

+F̃1(p̂) = J̃1
+F̃1(p̂). (3.15)

Here, the generalized inverse (·)+ reduces to the Moore–Penrose pseudoinverse. (3.15) holds
for every realization of the measurement data. A perturbation of the measurements yields
a different F1 but leaves F2 and the matrices J(·) unchanged as they are independent of the
measurements. In particular, (3.15) holds for M different realizations of the measurement
data such that the resulting F̃1(p̂) ∈ RM span the whole space. Together with uniqueness of
the Moore–Penrose pseudoinverse, (3.15) implies that J̃1 can be expressed in terms of the
given parameterization as

J̃1 = J1p− J1sJ−1
2s J2p.

We now consider the covariance matrix of the constrained problem (3.13). To simplify
expression (3.10), we choose the following basis Z for the null space of the constraint
Jacobian J2:

Z =

[
Z1
Z2

]
∈ R(np+ns)×np , Z1 = I, Z2 =−J−1

2s J2p. (3.16)

65

Chapter 3. Formulation of optimum experimental design problems

Then C can be computed as (see, e.g., [19]):

C = Z
(

ZT
[

JT
1pJ1p JT

1pJ1s

JT
1sJ1p JT

1sJ1s

]
Z
)−1

ZT

= Z
(([

I ZT
2
][JT

1p
JT

1s

])([
J1p J1s

][I
Z2

]))−1

ZT

= Z
(
[J1p + J1sZ2]

T [J1p + J1sZ2]
)−1

ZT . (3.17)

We note that J1p + J1sZ2 = J̃1. Substituting in Equation (3.17), we obtain

C =

[
I

Z2

](
J̃1

T J̃1

)−1 [
I ZT

2
]

=

(

J̃1
T J̃1

)−1 (
J̃1

T J̃1

)−1
ZT

2

Z2

(
J̃1

T J̃1

)−1
Z2

(
J̃1

T J̃1

)−1
ZT

2

 , (3.18)

and see that the upper np×np part of C is equal to C̃, the covariance matrix of the uncon-
strained problem (3.12).

Note that Eq. (3.18) also reveals that rankC = np, which is consistent with our intuition
that np parameters are given by measurement data, while the remaining ns variables are
completely defined by the constraints and the parameters p.

3.2.3. Confidence intervals

The diagonal elements of the covariance matrix play an important role in the statistical
assessment and can reveal a badly-identified model. In [31] it is shown that an approximation
to the linearized confidence region is given by

GL(α) =

{
v̂+∆v

∣∣∣∣∆v =−J+(v̂)
[

ε

0

]
, ‖ε‖2

2 ≤ γ
2(α)

}
,

where v̂ is a solution of problem (3.3) and γ(α) is the quantile of the χ2 distribution for value
α with np degrees of freedom. It can be shown that the linearized confidence region GL(α)
is contained exactly in a minimal box, which is the cross product of so-called confidence
intervals.

Lemma 3.5. Let v̂ be a solution of problem (3.3). Then

GL(α)⊂ [v̂1−θ1, v̂1 +θ1]×·· ·× [v̂nv−θnv , v̂nv +θnv],

where θi =
√

Ciiγ(α) and Cii are the diagonal elements of C.

Proof. See [31].

66

3.3. The optimum experimental design problem

Thus the diagonal elements of C provide estimates for the confidence intervals of the
parameters, that is, the intervals where the true parameter values lie within probability α .
For a more detailed statistical analysis of the parameters, techniques such as likelihood
profiles [168] or computation of nonlinear confidence regions [152] can be employed.
Another technique to capture nonlinear effects in parameter estimation is the so-called
unscented transformation or σ -point method [127] that has also been applied to OED [176].

3.3. The optimum experimental design problem

The idea of nonlinear optimum experimental design is to use the covariance matrix obtained
at the solution of a parameter estimation problem to predict a covariance matrix for different
experimental conditions u(·) and in this way try to find the experimental setup that yields a
covariance matrix that is “best” in some statistical sense.

Recall the definition of the covariance matrix as given in Eq. (3.10)

C =
[
I 0

][JT
1 J1 JT

2
J2 0

]−1[I
0

]
,

with the Jacobians J1 and J2 defined as:

J1 =
[
J1p, J1s

]
, J2 =

[
J2p, J2s

]
, (3.19)

J1p,i =
1
σi

(
∂hi

∂x
(ti,x(ti; p,u0,s), p,u0) · xp(ti)+

∂hi

∂ p
(ti,x(ti; p,u0,s), p,u0)

)
, (3.20)

J1s,i =
1
σi

(
∂hi

∂x
(ti,x(ti; p,u0,s), p,u0) · xs(ti)

)
, (3.21)

J2p =
Npe

∑
i=1

∂cpe
i

∂x
(ti,x(ti; p,u0,s), p,u0,s) · xp(ti)+

∂cpe
i

∂ p
(ti,x(ti; p,u0,s), p,u0,s), (3.22)

J2s =
Npe

∑
i=1

∂cpe
i

∂x
(ti,x(ti; p,u0,s), p,u0,s) · xs(ti)+

∂cpe
i

∂ s
(ti,x(ti; p,u0,s), p,u0,s), (3.23)

where J1,i =
[
J1p,i, J1s,i

]
, denotes the i-th row of J1. The sensitivities of the states x with

respect to p and s are subject to the following variational differential-algebraic equations
(VDAE) (cf. Eqs. (2.14) and (2.15)):

ẏv(t) =
∂ f
∂x

(t,y(t),z(t), p,u(t)) · xv(t)+
∂ f
∂v

(t,y(t),z(t), p,u(t)) (3.24)

0 =
∂g
∂x

(t,y(t),z(t), p,u(t)) · xv(t)+
∂g
∂v

(t,y(t),z(t), p,u(t)), (3.25)

where we use the notation

xv(t) =
[

yv(t)
zv(t)

]
=

[
yp(t) ys(t)
zp(t) zs(t)

]
=

[
dy
dp(t)

dy
ds (t)

dz
dp(t)

dz
ds(t)

]
and v =

[
p
s

]
.

67

Chapter 3. Formulation of optimum experimental design problems

Initial values for the VDAE are given by

yv(t0) =
dy(t0;v)

dv

for the variational differential states and by (3.25) for the variational algebraic states. The
terms (3.20)–(3.23) reveal the following important properties of C:

1. C does not depend explicitly on the data η

2. C depends on the experimental conditions u(·) and measurement times ti

3. C depends on p and s

Because of observations 1 and 2, we may view C as a function C(u, t1, . . . , tM) for a fixed
estimate p̂ and predict a covariance matrix for different experimental setups. We use this to
formulate the OED problem which is explained in the following. Item 3 will be addressed
below and in Section 3.4.1.

3.3.1. Objective function

The statistical quality of the matrix C is measured by a performance criterion Φ from
statistical experimental design [10, 167]. Popular criteria are:

• A-criterion: ΦA = 1
nv

trC,

• D-criterion: ΦD = (det(PTCP))1/nv ,

• E-criterion: ΦE = max{λi | λi eigenvalue of C}= ‖C‖2,

• M-criterion: ΦM = max{Cii, i ∈ {1,2, . . . ,nv}},

where P ∈ Rnv×np is a projection matrix onto an np-dimensional subspace, as the nv-
dimensional matrix C only has rank np, see Section 3.2. For unconstrained parameter
estimation problems, these criteria have geometrical interpretations for the confidence ellip-
soid defined by the matrix C as can be seen in Figure 3.1.

Criteria based on Fisher Information
Other criteria operate on the Fisher information matrix instead of the covariance matrix,
which is defined here for the unconstrained case, see, e.g., [167].

Definition 3.6 (Fisher information matrix). The matrix H ∈ Rnp×np defined by

H = JT
1 J1 ∈ Rnp×np

is called the (discrete) Fisher information matrix.

68

3.3. The optimum experimental design problem

♣
❧✷

♣
❧✷

♣
❧✶

♣
❧✶q

✶
✷✭❧✶ ✰❧✷✮

♣
❈✶✶

♣
❈✷✷

❡��✐✁✂♦✐❞

❆✲❝r✐t✳

❉✲❝r✐t✳

❊✲❝r✐t✳

▼✲❝r✐t✳

Figure 3.1.: 2-dimensional confidence ellipsoid and geometrical interpretations of the A-, D-,
E-, and M-criteria (taken from [200] in modified form).

This is the inverse of the covariance matrix and thus the objective needs to be maximized
in the OED problem. For example, the T-criterion is defined as

ΦT = 1
nv

trH.

While it is appealing to use it in numerical methods as it does not involve a matrix inversion,
its practical use is limited. A T-optimal design does not guarantee invertibility of H which
means some parameters may not be identifiable by the experiment at all. Instead the T-
criterion tends to favor the best identifiable parameter. An interesting alternative which
mitigates this effect while still avoiding the matrix inverse has been recently proposed
in [120]. Instead of maximizing the sum of the diagonal elements of H, the following
function is minimized:

Φexp =
1
nv

nv

∑
i=1

exp(−Hii). (3.26)

Scaling
The covariance matrix and the Fisher matrix are not invariant with respect to the absolute
values of the parameters. Thus it is usually advisable to scale p and s before optimizing the
covariance matrix. A reasonable choice is to scale everything to 1, corresponding to an equal
weighting of all uncertainties. The covariance matrix with respect to rescaled variables can
then be derived as follows.

Lemma 3.7. We set

v = Sv̄,

69

Chapter 3. Formulation of optimum experimental design problems

with, e.g., v̄i = 1, i = 1, . . . ,nv and a scaling matrix S := diag(vi). Then the covariance
matrix C̄ for the scaled quantities v̄ is

C̄ =
[
S−1 0

][JT
1 J1 JT

2
J2 0

]−1[S−1

0

]
, (3.27)

that means, the i-th row and column of C are multiplied by 1/vi.

Proof. We apply the chain rule to obtain:

C̄ =
[
I 0

][SJT
1 J1S SJT

2
J2S 0

]−1[I
0

]
=
[
I 0

]([S 0
0 I

][
JT

1 J1 JT
2

J2 0

][
S 0
0 I

])−1[I
0

]
=
[
S−1 0

][JT
1 J1 JT

2
J2 0

]−1[S−1

0

]
.

Recall that v = (pT ,sT)T and s is allowed to vary during optimization. This implies that
the part of S = diag(vi) corresponding to s also changes during optimization. This must be
taken into account when differentiating the scaled covariance matrix C̄ with respect to s.
Moreover, it must be guaranteed that si 6= 0 by introducing suitable bounds.

3.3.2. Measurements and constraints

Standard deviation of measurement errors
When we compute J1, the standard deviations of the measurement errors σi are derived
from the measurement data. However, we want to account for the fact that changing the
experimental conditions results in different measurement accuracies. In many cases the
measurement accuracy can be assumed as a function of the model response that is given by
the measurement procedure at hand. We will denote this predicted or estimated measurement
accuracy by functions σi(ti) = σi(ti,x(ti),u0), i = 1, . . . ,M.

Measurement design
Part of an experimental design are decisions when to measure and what to measure. To find
the optimum measurement times for given M measurements, we can simply add τmeas

i := ti
as optimization variables to the problem. Constraints such as prescribed distances between
measurements, may be formulated by a function ∑

M
i=1 ψ(τmeas

i)≤ 0.
The optimal selection of measurement procedures, however, makes the problem mixed-

integer. Suppose there exist nh potential measurement procedures or observables to choose
from. Then we could introduce M · nh binary variables ωi j ∈ {0,1}, i = 1, . . . ,M, j =
1, . . . ,nh to select a measurement procedure for time ti and impose the additional constraint

70

3.3. The optimum experimental design problem

∑
nh
j=1 ωi j = 1, i = 1, . . . ,M. For now, let us assume that we only have one observable. In the

next chapter, the selection of different measurement procedures can be easily included in the
numerical treatment of optimal measurement time selection.

Constraints
We denote all constraints on the states and controls in the form of path constraints, cf.
Eq. (2.2):

0≤ cd(t,x(t), p̂,u(t)) ∈ Rnd , t ∈ [t0, tf].

We also need to include the boundary constraints of the model equations (3.1c). We include
them in a parameterized form because the parameterization defines the covariance matrix to
be optimized:

Npe

∑
i=1

cpe
i (ti,y(ti),z(ti), p̂,u0,spe) = 0.

In the following, we denote possible parameterization variables by spe to stress that they are
optimization variables in both parameter estimation and OED problems.

71

Chapter 3. Formulation of optimum experimental design problems

3.3.3. Problem statement

The complete optimum experimental design problem is

min
x,xv,J1,J2,
u,spe,τmeas

i

Φ

([
I 0

][JT
1 J1 JT

2
J2 0

]−1[I
0

])
(3.28a)

s.t. J1,i =
1

σi(τ
meas
i)

(
∂hi

∂x
xv(τ

meas
i)+

∂hi

∂v

)
, i = 1, . . . ,M (3.28b)

J2 =
Npe

∑
i=1

∂cpe
i

∂x
xv(ti)+

∂cpe
i

∂v
, (3.28c)

ẏ(t) = f (t,y(t),z(t), p̂,u(t)), t ∈ [t0, tf] (3.28d)

0 = g(t,y(t),z(t), p̂,u(t)), t ∈ [t0, tf] (3.28e)

0 =
Npe

∑
i=1

cpe
i (ti,y(ti),z(ti), p̂,u0,spe) (3.28f)

ẏv(t) =
∂ f
∂x

xv(t)+
∂ f
∂v

, t ∈ [t0, tf] (3.28g)

0 =
∂g
∂x

xv(t)+
∂g
∂v

, t ∈ [t0, tf] (3.28h)

yv(t0) =
∂y0

∂v
(3.28i)

0≤ cd(t,x(t), p̂,u(t)), t ∈ [t0, tf] (3.28j)

0≤
M

∑
i=1

ψ(τmeas
i) (3.28k)

where we have omitted argument lists for the partial derivatives of model and measurement
functions. A functional Φ is optimized on the covariance matrix (3.28a) that is defined
in terms of the Jacobians of the parameter estimation residuals (3.28b) and (3.28c). Here
we have used the unscaled covariance matrix but it is also possible to use the scaled ver-
sion (3.27). The Jacobians depend on the nominal DAE system (3.28d)–(3.28e) and the
variational DAE system (3.28g)–(3.28h). Boundary conditions for the dynamic states are
given by (3.28f) and for the variational dynamic states by (3.28i). Further constraints are
process constraints (3.28j) and measurement constraints (3.28k). Apart from the states and
Jacobians, the optimization variables are the controls u(·), the measurement times τi and the
parameterization variables from the parameter estimation problem spe, whereas the current
parameter estimate, p̂, is not optimized here.

3.4. Discussion and problem variants

We conclude the chapter with a discussion of the fact that the covariance matrix depends
on the parameters we want to estimate. Furthermore, we present some extensions to Prob-

72

3.4. Discussion and problem variants

lem (3.28), namely the design of multiple experiments, OED for key performance indicators
and continuous measurements. We also give some prototypical examples how to choose a
parameterization to set up the covariance matrix C.

3.4.1. Parameter dependency of the covariance matrix

As we have noted above, the covariance matrix C not only depends on the experimental
conditions u(·) and the measurement times τi, but also on the parameter estimate p̂, that is,
the linearization point where the sensitivity analysis is done. We now present two possibilities
to reduce the detrimental effect of bad parameter guesses.

A sequential approach to model validation
In practice, one should alternate the tasks of parameter estimation and optimum experimental
design several times to refine the estimate for p and to arrive at a validated model. The OED
approach described above can be seen as one step of an outer iteration to identify the correct
parameters as depicted in Figure 3.2.

Optimum experimental design
Given p̂, determine u? and τ?

i
such that C(u?,τ?

i , p̂)→ min

Experiment
Given u? and τ?

i , take
measurements η

Parameter estimation
Given measurements η , deter-
mine a maximum-likelihood p̂

Is p̂
identified

well?

Model
validated

no

yes

Figure 3.2.: Model validation flowchart. The first step can be either experimental design,
experiment, or parameter estimation, depending on the data available. Also,
adjustments to the model formulation can occur at all stages.

Robust OED
Another possibility to mitigate the effect that bad parameter values can lead to suboptimally
designed experiments is to consider robust OED. In [135] a worst-case problem is formulated
where the maximum value of Φ(C) over the confidence region of the parameters is minimized.
This leads to a min-max optimization problem:

min
u,τmeas

i

max
‖p−p̂‖2,Σ−1≤γ

Φ

(
C(p,u,τmeas

i)
)
.

73

Chapter 3. Formulation of optimum experimental design problems

A first-order Taylor expansion of the min-max objective function with respect to p yields:

min
u,τmeas

i

max
‖p−p̂‖2,Σ−1≤γ

(
Φ

(
C(p̂,u,τmeas

i)
)
+

d
dp

Φ

(
C(p̂,u,τmeas

i)
)
(p− p̂)

)
The linear maximization problem can be solved explicitly:

min
u,τmeas

i

Φ

(
C(p̂,u,τmeas

i)
)
+ γ

∥∥∥∥ d
dp

Φ

(
C(p̂,u,τmeas

i)
)∥∥∥∥

2,Σ
.

Note that second-order derivatives of p appear in the objective which makes the numerical
treatment of robust OED problems challenging.

3.4.2. Design of multiple experiments

Problem (3.28) can be easily extended to allow for simultaneous design of multiple experi-
ments. An experiment is characterized by the nominal and variational dynamic system, the
design variables u and τi, the additional parameterization variables spe, as well as process,
boundary, and measurement constraints. Hence, in a multi-experiment setting with Nexp

experiments, we have Nexp instances of constraints (3.28d)–(3.28k) each characterizing one
experiment. The Jacobians J1 and J2 have the following structure:

Ji =

J1

ip J1
is1

J2
ip J2

is2

...
. . .

JNexp

ip · · · JNexp

isNexp

 , i ∈ {1,2},

with dimensions
(

∑
Nexp

k=1 M j
)
×
(
np +∑

Nexp

k=1 nk
s
)

and
(

∑
Nexp

k=1 nk
s
)
×
(
np +∑

Nexp

k=1 nk
s
)
, respectively.

Similarly, a priori information about the parameters p, e.g. by previously performed experi-
ments, can be incorporated by augmenting J1 with additional, fixed rows representing these
information, see [134]. The design of multiple experiments can be easily incorporated within
our numerical framework, see Sec. 4.4.1.

3.4.3. Optimum experimental design for key performance indicators

In practice, one is sometimes not interested in minimizing the uncertainty of the model
parameters, but of a specific output of the model, a so-called key performance indicator
(KPI). This could be, e.g., the yield of a product in a chemical reaction after a given time. In
the context of OED the concept has first been introduced in [137].

The KPI depends not only on the parameters but also on the states and controls. Thus we
define the ns-dimensional KPI skpi under fixed process conditions xproc and uproc as

skpi = r(tk,xproc(tk; p,uproc), p,uproc
0) ∈ Rns . (3.29)

74

3.4. Discussion and problem variants

In our framework, we regard the process characterized by xproc and uproc as a fixed experiment
without measurements and (3.29) as boundary constraint. Now additional experiments are
designed to minimize the uncertainty of the KPI. For simplicity, we assume that there is one
experiment to be designed without any additional variables spe.

Lemma 3.8. The covariance matrix of the KPI is given by

Ckpi := rp
(
JT

1pJ1p
)−1rT

p ∈ Rns .

Proof. We compute the multi-experiment covariance matrix for the variables skpi and p. J1 is
vacuous for the fixed experiment and J2 is vacuous for the second experiment. The Jacobians
J1 and J2 for the combined experiments then have the form (cf. Sec. 3.4.2):

J1 =
[
J1p 0

]
, J2 =

[
dr(tk)

dp −I
]

Note that the term rp := dr(tk)
dp is fixed here because we consider fixed process conditions. As

in Eq. (3.16), a nullspace Z of J2 is given by

Z =
[
Inp , −rT

p

]T
∈ R(ns+np)×np .

Using Eq. (3.18), the covariance matrix for p and skpi simplifies to

C =

[
I 0 0
0 I 0

]JT
1pJ1p 0 −rT

p
0 0 I
−rp I 0

−1I 0
0 I
0 0

=

[(
JT

1pJ1p
)−1 −

(
JT

1pJ1p
)−1rT

p

−rp
(
JT

1pJ1p
)−1 rp

(
JT

1pJ1p
)−1rT

p

]
,

and the lower right principal submatrix is the covariance of the KPI.

The objective for the KPI OED problem is

Φ
(
Ckpi) ,

with Φ being one of the functionals introduced in Sec. 3.3.1.

3.4.4. Continuous measurements

Current measurement technology sometimes allows measurements to be taken at very high
frequencies up to a point where measurements may be assumed to be obtained in a continuous
way modeled by a continuous model response h(t). For a continuous measurement design
we define a binary function w(t) ∈ {0,1} that defines the intervals where measurements are
taken. To formulate the OED problem we need to define a continuous version of the Fisher
information matrix.

75

Chapter 3. Formulation of optimum experimental design problems

Definition 3.9 (Continuous Fisher information matrix). The matrix H(t) ∈ Rnp×np defined
by

H(tf) =
∫ tf

t0
w(t)J1(t)T J1(t)dt

is called the continuous Fisher information matrix.

We can then define an OED problem for continuous measurements as follows:

min
x,xp,J1,H,

u,w

Φ
(
H(tf)−1) (3.30a)

s.t. J1(t) =
1

σ(t)

(
∂h
∂x

xp(t)+
∂h
∂ p

(t)
)
, t ∈ [t0, tf] (3.30b)

Ḣ(t) = w(t) · J1(t)T J1(t), t ∈ [t0, tf] (3.30c)

ṁ(t) = w(t), t ∈ [t0, tf] (3.30d)

ẏ(t) = f (t,y(t),z(t), p̂,u(t)), t ∈ [t0, tf] (3.30e)

0 = g(t,y(t),z(t), p̂,u(t)), t ∈ [t0, tf] (3.30f)

ẏp(t) =
∂ f
∂x

xp(t)+
∂ f
∂ p

, t ∈ [t0, tf] (3.30g)

0 =
∂g
∂x

xp(t)+
∂g
∂ p

, t ∈ [t0, tf] (3.30h)

H(t0) = 0 (3.30i)

m(t0) = 0 (3.30j)

y(t0) = y0(p) (3.30k)

yp(t0) =
∂y0

∂ p
(3.30l)

0≤ cd(t,x(t), p̂,u(t)), t ∈ [t0, tf] (3.30m)

0≤M−m(tf) (3.30n)

w(t) ∈ {0,1} (3.30o)

Note that we introduced additional ODE states for the Fisher matrix and a continuous
“measurement counter” m(t) given by (3.30d) and the constraint (3.30d) to model restrictions
in the measurement design. We revisit problem (3.30) in Sec. 4.4.2 and show how to treat it
numerically using the methods for the discrete case.

3.4.5. Example parameterizations: Initial and boundary value problems

We conclude the discussion with some practical advice on how to choose a parameterization
that defines the covariance matrix C. The discussion in Section 3.2.2 suggests different
approaches to obtain a covariance matrix from a constrained or an unconstrained parameter

76

3.4. Discussion and problem variants

estimation problem. Note that the parameterizations given below do not constitute the best
way to numerically solve the parameter estimation problem but only suggest how to set up
the OED problem afterwards. In a common situation, the underlying system is a system of
ODEs that are given as initial or boundary value problems and the statistical quantities of
interest are only the model parameters p.

Initial value problem
If the underlying system is an initial value problem with, say, fixed initial values y(t0) = y0
and no further boundary conditions, we may eliminate these boundary conditions from the
problem by incorporating the initial values in an ODE solution operator. Consequently, no
variables spe are needed and J2 is vacuous. Hence the covariance matrix is C = (JT

1 J1)
−1.

The same applies if y0 is a model parameter or a control.

Boundary value problem
If an ODE system is given in the form of a boundary value problem (BVP) with, e.g., terminal
constraints of the form r(tf,y(tf), p) = 0, we would introduce a variable spe and set

y(t0) = spe,

J2p =
∂ r
∂y

yp(tf)+
∂ r
∂ p

,

J2s =
∂ r
∂y

ys(tf),

to facilitate numerical solution of the BVP. In particular, we are usually not interested in the
statistical properties of spe and consider only the projection of C to the upper left np×np-part
in the objective of the OED problem.

77

Chapter 4.

Direct shooting parameterizations for
optimum experimental design problems

In this chapter we show how to transform the OED problem (3.28) to a finite-dimensional
problem that can be solved by nonlinear programming algorithms such as SQP methods. OED
problems are special kinds of optimal control problems, but they have several characteristics
that make their numerical treatment challenging. In particular, the problem itself is defined on
first-order sensitivities of the dynamic system. This means that derivative-based optimization
methods require at least second order derivative information. Furthermore, the objective
function operates on the covariance matrix, whose formation via a matrix inversion constitutes
a nonlinear coupling in time. This is contrary to the usual assumption of a Mayer-type
objective as in the standard OC problem (2.4).

Some numerical methods for OED simply augment the nominal system by the variational
system and treat this as a large, unstructured system [66, 177]. The problem of the coupled
objective is sometimes avoided by using the trace of the Fisher information matrix as
objective criterion [84], which only exhibits linear coupling in time. These approaches are
often unsatisfactory in practice because on the one hand, ignoring the structure allows only
the treatment of small systems due to the resulting computational load: A dynamic system of
size nx must be augmented by a system of size nx ·np. On the other hand, using the trace
of the information matrix instead of the covariance matrix can lead to non-identifiability of
parameters.

In [15, 134] a single shooting approach is developed that use specialized DAE solvers
for the efficient generation of first- and second-order derivatives of the states by means
of IND. A variant of this approach that uses adjoint information to evaluate the required
sensitivity is presented in [201]. A DMS formulation has been first applied in [136] and is
further investigated in [124]. Finally, a collocation approach with a full discretization of
the nominal and variational system is presented in [122]. In this chapter we first review the
existing single shooting approach from [134] and then describe a DMS formulation. The
DMS parameterization is accompanied by a detailed discussion of the derivative structure,
that must be taken into account in an efficient method for the solution of OED problems. In
modified form, parts of this chapter have been published in the paper [126].

79

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

4.1. General approach

We first describe the main features of a direct method for OED problems. The following can
be applied for both direct single shooting and direct multiple shooting.

Controls, path constraints and boundary constraints
As described in Sec. 2.2.1 for standard OC problems, we introduce a grid τc to parameterize
the controls u(·) by a finite-dimensional vector q ∈ Rnq and local basis functions π j. In this
chapter, we omit dependencies on the functions π j to simplify notation. A second grid τd is
introduced for the evaluation of path constraints. Furthermore, the parameterized boundary
constraints (3.28f) and variables spe from the underlying parameter estimation problem enter
the resulting NLP.

Measurement design
In principle, one could directly optimize the M measurement times τmeas

i . However, this in-
troduces additional nonconvexity to the resulting NLP. Also, constraints on the measurement
design and modeling the optimum selection of a measurement function may be complicated.
A well-established alternative is to introduce a grid of potential measurement times:

t0 = τ
m
0 ≤ τ

m
1 ≤ ·· · ≤ τ

m
Nm = tf. (4.1)

The choice of the grid may be guided by the process and the measurement procedures
available. Note that τ j = τi, i 6= j is allowed to represent the selection between multiple
measurement functions that are available at the same time. Then we introduce a binary vector
of measurement weights w = (w0, . . . ,wNm)T ∈ {0,1}Nm

, where wi represents the decision if
a measurement at time τm

i should be carried out or not. The corresponding Jacobian J1 has
Nm rows of which M are to be selected. Recall the definition of a row J1,i:

J1,i =
1

σi(τm
i)

(
∂hi

∂x
xv(τ

m
i ;q,spe)+

∂hi

∂v

)
, i = 1, . . . ,Nm.

With W := diag(wi), the complete information matrix can be written as JT
1 WJ1. The con-

straint
Nm

∑
i=0

wi ≤M (4.2)

ensures that only M measurements are performed. Further constraints on the measurement
design may also be formulated easily in terms of linear functions of wi. We combine all
constraints on the measurement design together with (4.2) into a linear function LM with

LM(w)≥ 0. (4.3)

Instead of requiring integrality of the measurement weights we employ a continuous
relaxation:

0≤ wi ≤ 1, i = 0, . . . ,Nm.

80

4.1. General approach

In practice, this often yields satisfactory results, as a bang-bang structure is often observed for
the measurements weights and so integrality is satisfied automatically. Analysis of sampling
decisions and a regularization technique that promotes integrality is proposed in [171] and
reviewed in Sec. 4.5.

4.1.1. Direct single shooting parameterization

The simplest direct method is a direct single shooting approach. Therein, the dynamic states
are eliminated from the problem and numerical integrators are employed to provide a solution
for given values of controls and parameters.

Dynamic System
We assume that for every q, and spe we can compute representations of the DAE and VDAE
solutions which can be evaluated at given times t. Note that the states do not depend on
the measurement weights w. We denote this representations by x(·;q,spe) and xv(·;q,spe),
respectively. In practice, these representations can be obtained by a numerical integrator
equipped with IND. In our implementation, we use the BDF code DAESOL [17].

Objective
The Jacobians J1 and J2 can be computed by evaluating the solution representation of the
nominal and variational states at every τm

i . We denote this by

J1,i(q,spe) =
1

σi(τm
i)

(
∂hi

∂x
xv(τ

m
i ;q,spe)+

∂hi

∂v

)
, i = 1, . . . ,Nm,

J2(q,spe) =
Npe

∑
i=1

∂cpe
i

∂x
xv(ti;q,spe)+

∂cpe
i

∂v
.

Note that for solution of the resulting NLP, derivative information of J1(·) and J2(·) and hence
of the VDAE solution representation must be available as well. For example, the gradient of
the objective can be evaluated efficiently by using adjoint information as described in [201].

NLP resulting from single shooting parameterization
In summary, the NLP resulting from a direct single shooting parameterization reads as

min
q,spe,w

Φ

([
I 0

][J1(q,spe)TWJ1(q,spe) J2(q,spe)T

J2(q,spe) 0

]−1[I
0

])
(4.4a)

s.t. 0 =
Npe

∑
i=1

cpe
i (ti,x(ti;q,spe),q,spe), (4.4b)

0≤ cd(τd
i ,x(τ

d
i ;q,spe),q), i = 0, . . . ,Nd (4.4c)

0≤ wi ≤ 1, i = 0, . . . ,Nm (4.4d)

0≤ LM(w). (4.4e)

The number of variables is nq +Nm +1, depending on the selection of grids τc and τm. The
number of nonlinear constraints is nd ·(Nd+1), depending on the grid τd. The computational

81

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

bulk when solving this problem with an SQP algorithm is usually the evaluation of derivatives
of the objective (4.4a) as this involves evaluation of derivatives of J1 and J2 which themselves
are defined in terms of first-order derivatives of the model equations.

4.2. Direct multiple shooting parameterization

We now show how to apply a DMS discretization as described in Chapter 2 to the optimum
experimental design problem (3.28). In particular we need to modify the problem formula-
tion (2.13) to cope with the coupled objective that is characteristic for OED. We now describe
how to parameterize the dynamic system and decouple the objective by means of additional
variables and constraints.

Dynamic System
We combine nominal and variational states into one system, writing

ȳ(t) =
{

y(t)
vec(yv(t))

∈ Rny+ny·np

for the differential states and

z̄(t) =
{

z(t)
vec(zv(t))

∈ Rnz+nz·np

for the algebraic states, where vec(·) denotes the linear transformation that maps an m×
n matrix to an m · n column vector by stacking the columns on top of each other. The
corresponding DAE system reads as

˙̄y(t) = f̄ (t, ȳ, z̄, p,q) =

[
f (t,y(t),z(t), p,q)

vec
(

∂ f
∂x (t,y(t),z(t), p,q)xv(t)+

∂ f
∂v (t,y(t),z(t), p,q)

)] (4.5)

0 = ḡ(t, ȳ, z̄, p,q) =

[
g(t,y(t),z(t), p,q)

vec
(

∂g
∂x (t,y(t),z(t), p,q)xv(t)+

∂g
∂v (t,y(t),z(t), p,q)

)] . (4.6)

This large, structured system is discretized on a multiple shooting grid, introducing additional
variables and continuity and consistency constraints as described in Sec. 2.2.1. We denote
these variables by s̄y

j for the differential and s̄z
j for the algebraic states consisting of subvectors

that correspond to the different parts of the VDAE as follows:

s̄y
j =

sy
j

sy,1
j
...

sy,np
j

sy,np+1
j

...
sy,np+ns

j

∈ Rny+ny·np+ny·ns , s̄z

j =

sz
j

sz,1
j
...

sz,np
j

sz,np+1
j

...
sz,np+ns

j

∈ Rnz+nz·np+nz·ns , j = 0, . . . ,Ns.

82

4.2. Direct multiple shooting parameterization

Additionally, we define s̄x
j as in (2.10):

s̄x =

 s̄x
0
...

s̄x
Ns

 :=

s̄y

0
s̄z

0
...

s̄y
Ns

s̄z
Ns

 .

This system has a special structure that can and should be exploited in an efficient implemen-
tation. We will give details on this in Section 4.3.

Additional constraints
To maintain partial separability of the problem we also need to introduce a variable spe

j for
every shooting interval with spe

0 = spe and trivial linear continuity constraints

spe
j − spe

0 = 0, j = 1, . . . ,Ns.

Together with additional linear constraints that may be necessary for the control parame-
terization (cf. Remark 2.3) and the linear constraints on the measurement weights LM we
subsume all linear constraints on the design variables q, w, and spe in a linear function

L(q,spe,w)≥ 0.

Objective Function
An important difference between the problem of optimum experimental design (3.28) and
the general OC problem (2.4) is the nonlinear coupling in time in the objective that is due
to the inversion when computing the covariance matrix, as it has been noted in [136]. In
particular this violates the property of partial separation of the Lagrange function that is
responsible for its sparse, block-diagonal Hessian. Recall the definition of the covariance
matrix:

C =
[
I 0

][JT
1 WJ1 JT

2
J2 0

]−1[I
0

]
While the expression for C is nonlinearly coupled, we can rewrite JT

1 WJ1 and J2 as

JT
1 WJ1 =

Nm

∑
i=0

wiJT
1,iJ1,i (4.7)

J2 =
Npe

∑
i=0

J2,i, (4.8)

which means the matrices JT
1 WJ1 and J2 only exhibit a linear coupling in time. The term

JT
1,iJ1,i can be seen as the amount of information about p and spe that is contributed by the

measurement at τm
i .

83

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

In a multiple shooting context, we assign the measurement points τm
i to their respec-

tive shooting intervals and plug in the representation of the solution x(τm
i ;sx

j, q̂ j,s
pe
j) and

xv(τ
m
i ; s̄x

j, q̂ j,s
pe
j) for a suitable j. Again, q̂ j denotes the part of the control vector q corre-

sponding to shooting interval j, see Eq. (2.8). We write this as

JT
1 WJ1 =

Ns

∑
j=0

∑
i:

τs
j≤τm

i <τs
j+1

wiJ1,i(s̄x
j, q̂ j,s

pe
j)

T J1,i(s̄x
j, q̂ j,s

pe
j),

J2 =
Ns

∑
j=0

∑
i:

τs
j≤ti<τs

j+1

J2,i(ti, s̄x
j, q̂ j),

where we again set by convention τs
Nm+1 = ∞ to avoid additional notation. The terms J1,i and

J2,i are defined similar as in the single shooting case:

J1,i(s̄x
j, q̂ j,s

pe
j) =

1
σi(τm

i)

(
∂hi

∂x
xv(τ

m
i ; s̄x

j, q̂ j,s
pe
j)+

∂hi

∂v
(ti; s̄x

j, q̂ j,s
pe
j)

)
, i = 1, . . . ,Nm,

J2,i(s̄x
j, q̂ j,s

pe
j) =

∂cpe
i

∂x
xv(ti; s̄x

j, q̂ j,s
pe
j)+

∂cpe
i

∂v
(ti; s̄x

j, q̂ j,s
pe
j).

We introduce additional variables H1 ∈ R(np+ns)×(np+ns) and H2 ∈ Rns×(np+ns) for the
symmetric matrix JT

1 WJ1 and J2 along with linearly coupled constraints that fit into the
framework of (2.13). The objective then only depends on the newly introduced variables H1
and H2.

84

4.3. Derivatives of the structured NLPs

NLP resulting from DMS parameterization
With the formulations introduced above, we obtain an NLP similar to the DMS-parameterized
optimal control problem (2.13):

min
q,w,spe,

s̄x,H1,H2

Φ

([
I 0

][H1 HT
2

H2 0

]−1[I
0

])
(4.9a)

s.t. 0 =
Ns

∑
j=0

∑
i:

τs
j≤τm

i <τs
j+1

wiJ1,i(s̄x
j, q̂ j,s

pe
j)

T J1,i(s̄x
j, q̂ j,s

pe
j)−H1, (4.9b)

0 =
Ns

∑
j=0

∑
i:

τs
j≤ti<τs

j+1

J2,i(ti, s̄x
j, q̂ j)−H2, (4.9c)

0 = ȳ(τs
0; q̂0,s

pe
0)− s̄y

0 (4.9d)

0 = ȳ(τs
j+1; s̄x

j, q̂ j,s
pe
j)− s̄y

j+1, j = 0, . . . ,Ns−1 (4.9e)

0 = ḡ(τs
j , s̄

x
j, q̂ j,s

pe
j), j = 0, . . . ,Ns (4.9f)

0≤ cd(τd
ji ,x(τ

d
ji ;sx

j, q̂ j,s
pe
j), q̂ j), (4.9g)

j = 0, . . . ,Ns i = 0, . . . ,Nd
j −1

0 =
Ns

∑
j=0

∑
i:

τs
j≤ti<τs

j+1

cb
i (ti,x(ti;sx

j, q̂ j,s
pe
j), q̂ j,s

pe
j) (4.9h)

0≤ wi ≤ 1, i = 0, . . . ,Nm (4.9i)

0≤ L(q,w,spe). (4.9j)

For every shooting interval, nx +nx ·nv additional variables and constraints are introduced.
Note that the dimensions of the constraints (4.9b) and (4.9c) and of the corresponding
variables H1 and H2 are independent of the number of shooting intervals.

4.3. Derivatives of the structured NLPs

The runtime of an SQP method for a problem parameterized by DMS is often dominated by
the evaluation of the constraint Jacobian because continuity constraints and their derivatives
include possibly expensive calls to numerical integrators. Although the DMS-parameterized
OED problem (4.9) could in principle be regarded as an OC problem and solved with
the strategies outlined in Sections 2.3.1–2.3.3, much can be gained by analyzing in detail
the structures that are due to the characteristics of OED. In particular, the two following
aspects are important: First, the dynamic system consists of a nominal and a corresponding
variational system, i.e. first-order derivatives are already part of the problem formulation.

85

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Figure 4.1.: Sparsity pattern of constraint Jacobian for a Lotka-Volterra OED problem with
dimensions ny = 2, np = 4, nd = 2, nq = 50, Nm = 100. The shooting grid is of
size Ns = 12 which yields 280 variables and 154 constraints in the NLP. Note
the sparsity within the blocks for the continuity conditions and path constraints,
see the discussion around (4.10). The lowermost rows correspond to the linearly
coupled constraint (4.9b).

This means whenever the constraints need to be evaluated, derivatives with respect to p and
spe must also be provided. Ideally, this is handled by integrators that efficiently generate this
sensitivity information, e.g., [4, 17, 183]. In Sec. 4.3.1, we analyze the consequences for the
constraint Jacobian which can be evaluated at greatly reduced costs. The second important
aspect is that due to decoupling, the objective only depends on the additionally introduced
variables H1 and H2. This allows us to efficiently evaluate first and second-order derivatives
of the objective which we will outline in Sec. 4.3.2.

We want to point out that all derivatives are to be understood as directional derivatives in
the sense of the forward mode of algorithmic differentiation [112]. Derivatives for the single
shooting case (4.4) are analyzed in detail in [15, 134].

4.3.1. Constraint Jacobian

We now describe the structures in the constraint Jacobian of Problem (4.9). An example of
a banded Jacobian illustrating the structure induced by OED is shown in Figure 4.1 for a
Lotka-Volterra model comprising two nominal states and four parameters. We first described
how to efficiently compute the blocks in the banded part of the Jacobian. Then we compute
the derivatives of the coupled constraints (4.9b) and (4.9c) that form the lowermost block in
the Jacobian.

86

4.3. Derivatives of the structured NLPs

Derivatives of continuity and consistency constraints
The structure discussed in the following concerns one block in the banded part of the Jacobian.
In the following we denote by [

yv(τ
s
j+1)

]
i

the i-th column of the ny×nv sensitivity matrix yv(τ
s
j+1).

Lemma 4.1 (Derivatives of continuity constraints). The part of the constraint Jacobian
of Problem (4.9) that corresponds to the derivative of the continuity constraints (4.9e)
evaluated at τs

j+1 with respect to variables for shooting node j, where j = 0, . . . ,Ns−1, has
the following structure:

dȳ(τs
j+1)

dξ j
=

dy
dsy

j

dy
dsz

j

dy
dq̂ j

dy
dspe

j
0

d[yv]1
dsy

j

dy
dsy

j

d[yv]1
dsz

j

dy
dsz

j

d[yv]1
dq̂ j

d[yv]1
dspe

j
0

...
. . .

...
. . .

...
...

...
d[yv]nv

dsy
j

dy
dsy

j

d[yv]nv
dsz

j

dy
dsz

j

d[yv]nv
dq̂ j

d[yv]nv
dspe

j
0

 , (4.10)

where we omitted the evaluation argument τs
j+1 and the variable vector ξ j is ordered as

follows:

sy
j, sy,1

j , · · · , sy,nv
j , sz

j, sz,1
j , · · · , sz,nv

j , q̂ j, spe
j ŵ j.

Proof. The zero entries in the first row of the matrix (4.10) are due to

Observation 1. The nominal states are independent of the shooting variables for the varia-
tional states:

dy(τs
j+1)

dsx,i
j

= 0, i = 1, . . . ,nv.

The sparsity in the rows of (4.10) that correspond to continuity conditions for variational
states is due to

Observation 2. Variational states for different parameters vi and vk are independent. In
particular, this means

d
[
yv(τ

s
j+1)

]
i

dsx,k
j

= 0, i 6= k.

Finally, the derivatives of the continuity conditions for variational states with respect to
variational shooting variables can be computed by regarding

87

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

Observation 3. By differentiating the right-hand side of the VDAEs (3.24) and (3.25), we
see that the derivative of the variational state for a (scalar) variable vi,

[
xv(t)

]
i, with respect

to its initial values sx,i satisfies the following nx×nx-dimensional variational DAE system:
˙(

d [yv(t)]i
dsx,i

)
=

∂

∂ [xv]i

(
∂ f
∂x

[xv(t)]i +
∂ f
∂v

)
· d [xv(t)]i

dsx,i =
∂ f
∂x
· d [xv(t)]i

dsx,i
j

0 =
∂

∂ [xv]i

(
∂g
∂x

[xv(t)]i +
∂g
∂v

)
· d [xv(t)]i

dsx,i =
∂g
∂x
· d [xv(t)]i

dsx,i .

This is the same DAE system that describes the sensitivity of the nominal states x with
respect to their initial values sx (cf. Eq. (2.14)) and hence we have that

d
[
yv(τ

s
j+1)

]
i

dsx,i
j

=
dy(τs

j+1)

dsx
j

, i = 1, . . . ,nv. (4.11)

Furthermore, the rightmost column of the matrix (4.10) is zero because nominal and
variational states are independent of the measurement weights wi. Combining this with
observations 1–3 yields the desired structure.

In particular, Observation 3 implies that we do not need to evaluate any additional state
sensitivities when we explicitly discretize the variational equations by multiple shooting.
Instead, dy(t)

dsx needs to be computed only once for every shooting interval and then can be
used multiple times in the constraint Jacobian. In summary, we see that the columns of
matrix (4.10) corresponding to variables sx,i and w can be evaluated without any additional
cost! Note that the derivatives dy

d(·) and d[yv]i
d(·) = d2y

dvid(·) are sensitivities of first and second order,
respectively, and should be supplied by the integrator via IND as outlined in Sec. 2.3.1.

The remaining constraints in one block of the Jacobian are consistency constraints (4.9f)
for the nominal and variational algebraic states and the discretized path constraints (4.9g).
For the consistency constraints, the same structure as in (4.10) can be observed. To see this,
we denote the derivative of g with respect to v by

gv := gv(τ
s
j , s̄

x
j, q̂ j,s

pe
j) :=

dg
dv

(τs
j , s̄

x
j, q̂ j,s

pe
j) ∈ Rnz×nv ,

and by [gv]i the i-th column of gv.

Lemma 4.2 (Derivatives of consistency constraints). The part of the constraint Jacobian
of Problem (4.9) that corresponds to the derivative of the consistency constraints (4.9f)
evaluated at τs

j with respect to variables for shooting node j, where j = 0, . . . ,Ns−1, has
the following structure:

dḡ(τs
j)

dξ j
=

∂g
∂ sy

j

∂g
∂ sz

j

∂g
∂ q̂ j

∂g
∂ spe

j
0

∂ [gv]1
∂ sy

j

∂g
∂ sy

j

∂ [gv]1
∂ sz

j

∂g
∂ sz

j

∂ [gv]1
∂ q̂ j

∂ [gv]1
∂ spe

j
0

...
. . .

...
. . .

...
...

...
∂ [gv]nv

∂ sy
j

∂y
∂ sy

j

∂ [gv]nv
∂ sz

j

∂y
∂ sz

j

∂ [gv]nv
∂ q̂ j

∂ [gv]nv
∂ spe

j
0

 . (4.12)

88

4.3. Derivatives of the structured NLPs

For the path constraints, we note that they are independent of the shooting variables for
the variational states, sx,i, i = 1, . . . ,nv and the measurement weights w.

Lemma 4.3 (Derivatives of discretized path constraints). The part of the constraint Jacobian
of Problem (4.9) that corresponds to the derivative of a discretized path constraint (4.9g)
evaluated at τd

ji with respect to variables for shooting node j, where j = 0, . . . ,Ns−1, has
the following structure:

dcd(τd
ji)

dξ j
=
[

∂cd

∂x
dx
dsy

j
, 0, · · · , 0, ∂cd

∂x
dx
dsz

j
, 0, · · · , 0, ∂cd

∂x
dx
dq̂ j

+ ∂cd

∂ q̂ j
, ∂cd

∂x
dx

dspe
j
, 0

]
,

where we omitted the evaluation argument τd
ji and the variable vector ξ j is ordered as

follows:

sy
j, sy,1

j , · · · , sy,nv
j , sz

j, sz,1
j , · · · , sz,nv

j , q̂ j, spe
j ŵ j.

In summary, we can obtain a block in the banded Jacobian at greatly reduced cost compared
to a naive approach where each block in the Jacobian is assumed to be dense.

Derivative of constraint for decoupling the objective
The coupled constraints (4.9b) and (4.9c) are written in the form of matrix equations within
problem (4.9). For the standard form of an NLP, however, the equations need to be vectorized.
To this end, we introduce the following notation for symmetric matrices.

Definition 4.4 (Half-vectorization). For a symmetric matrix H = (Hi j) ∈ Rn×n we define
the half-vectorization as the n(n+1)/2 dimensional column vector obtained by vectorizing
the lower triangular part of H:

vech(H) = (H1,1,H2,1, . . . ,Hn,1,H2,2, . . . ,Hn,2, . . . ,Hn−1,n−1,Hn,n−1,Hn,n) ∈ Rn(n+1)/2.

Using the operators vec and vech, the constraints (4.9b) and (4.9c) read as

0 =
Ns

∑
j=0

∑
i:

τs
j≤τm

i <τs
j+1

vech
(

wiJ1,i(s̄x
j, q̂ j,s

pe
j)

T J1,i(s̄x
j, q̂ j,s

pe
j)
)
−vech(H1) , (4.13)

0 =
Ns

∑
j=0

∑
i:

τs
j≤ti<τs

j+1

vec
(
J2,i(ti, s̄x

j, q̂ j)
)
−vec(H2) , (4.14)

We see that the derivative of (4.13) with respect to the half-vectorized variables vech(H1)
yields −Inv(nv+1)/2 in the constraint Jacobian and the derivative of (4.14) with respect to the
vectorized variables vec(H2) yields −Insnv . This implies that both H1 and H2 appear only as
linear terms within the constraints.

89

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

For the derivative of (4.13) and (4.14) with respect to the remaining optimization variables
it suffices to analyze the derivatives of the vectors vech

(
wiJT

1,iJ1,i
)

and vec
(
J2,i
)

element-
wise. Omitting the arguments, one element of vech

(
wiJT

1,iJ1,i
)

is given by

wi

σ2
i
· dhi

dvk
· dhi

dvl
, k ≥ l.

The derivative of this term is nonzero only for variables assigned to the shooting interval j
containing τm

i . Keeping that in mind, we drop the index j in the following. Applying the
chain-rule, we obtain the following result.

Lemma 4.5 (Derivatives of vech(wiJT
1,iJ1,i)). The derivative of one element of the nv · (nv +

1)/2 vector vech
(
wiJT

1,iJ1,i
)

with respect to the optimization variables of Problem (4.9) is
given by:

d
dξ

(
wi

σ2
i
· dhi

dvk
· dhi

dvl

)
= wi

(
d

dξ

(
1
σi

dhi

dvk

)
· 1

σi

dhi

dvl
+

1
σi

dhi

dvk
· d

dξ

(
1
σi

dhi

dvl

))
, (4.15)

where k ≥ l and ξ denotes sx, q, or spe. The derivative with respect to a measurement weight
is

d
dwi

(
wi

σ2
i
· dhi

dvk
· dhi

dvl

)
=

1
σ2

i
· dhi

dvk
· dhi

dvl
. (4.16)

Note in particular that the weights wi enter the constraints only linearly, which means that
the second derivative ∇2

wwL(ξ ,λ) vanishes. This corresponds to a small zero diagonal block
within each diagonal block of the Hessian.

In the following lemmas, we further analyze the second-order part of Eq. (4.15) for
different optimization variables. For better readability, we drop the measurement index i
in the following. We also note that ∂h/∂v =

(
∂h/∂ p,0

)
, as ∂h/∂ spe = 0 but we will stick

with the notation ∂h/∂v to avoid complicated notation. The following lemma summarizes
formulae for the derivatives with respect to controls, shooting variables for nominal states,
and parameterization variables spe.

Lemma 4.6. The the second-order derivatives in Eq. (4.15) with respect to q can be evaluated
as

d
dq

(
1
σ

dh
dvk

)
=

∂

∂x

(
1
σ

∂h
∂x

)
dx
dq

[xv]k +
∂

∂q

(
1
σ

∂h
∂x

)
[xv]k .

+

(
1
σ

∂h
∂x

)
d [xv]k

dq
+

∂

∂x

(
1
σ

∂h
∂vk

)
dx
dq

+
∂

∂q

(
1
σ

∂h
∂vk

)
(4.17)

With respect to ξ ∈ {sx,spe}, the formula simplifies to:

d
dξ

(
1
σ

dh
dvk

)
=

∂

∂x

(
1
σ

∂h
∂x

)
dx
dξ

[xv]k +

(
1
σ

∂h
∂x

)
d [xv]k

dξ
+

∂

∂x

(
1
σ

∂h
∂vk

)
dx
dξ

(4.18)

90

4.3. Derivatives of the structured NLPs

Proof. We obtain Eq. (4.17) by recalling that

dh
dvk

=
∂h
∂x

[xv]k +
∂h
∂vk

and repeatedly applying the chain rule. Eq. (4.18) is obtained from Eq. (4.17) by noting
that the dependency on spe and sx is only implicit through dependency on x, i.e. ∂h/∂ sx =
∂h/∂ spe = 0.

Again, the derivatives dx
dq and d[xv]k

dq = d2x
dvkdq are sensitivities of the states that need to be

supplied by the integrator, see Sec. 2.3.1. Next, we consider the derivative with respect to
shooting variables corresponding to the r-th variational state sx,r, r = 1, . . . ,nv.

Lemma 4.7. The second-order derivatives in Eq. (4.15) with respect to sx,r, r = 1, . . . ,nv
can be evaluated as:

d
dsx,r

(
1
σ

dhi

dvk

)
= wi ·δrk ·

1
σ

∂hi

∂x
dx
dsx

where δrk is the Kronecker delta defined by

δi j =

{
0 if r 6= k
1 if r = k

.

Proof. Following Observation 2 from the proof of Lemma 4.1, we note that

d
dsx,r

(
1
σ

dhi

dvk

)
= 0, k 6= r,

which accounts for some additional sparsity in the Jacobian as can be seen in Fig. 4.1 in the
lowermost rows. Eq. (4.11) implies that

d
dsx,r

(
1
σ

dhi

dvr

)
=

d
dsx,r

(
1
σ

∂hi

∂x
[xv]r +

1
σ

∂hi

∂vr

)
=

1
σ

∂hi

∂x
dx
dsx .

Similar considerations reveal the derivatives of the coupled constraint (4.9c) for J2. Again,
we consider the derivatives of one summand of the coupled constraint element-wise and
summarize them in the following Lemma.

Lemma 4.8 (Derivatives of vec(J2,i)). The derivatives of one element of the ns ·nv vector
vec(J2,i) in Eq. (4.14),

d(cb
i (ti))l

dvk
=:

dcb
l

dvk
=

∂cb
l

∂x
[xv]k +

∂cb
l

∂vk
, l = 1, . . . ,ns, k = 1, . . . ,nv,

91

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

with respect to the optimization variables of Problem (4.9) are given by:

d
dsx

(
∂cb

l
∂x

[xv]k +
∂cb

l
∂vk

)
=

∂ 2cb
l

∂x∂x
dx
dsx · [xv]k +

∂cb
l

∂x
· d [xv]k

dsx +
∂ 2cb

l
∂x∂vk

dx
dsx ,

d
dsx,r

(
∂cb

l
∂x

[xv]k +
∂cb

l
∂vk

)
= δrk ·

∂cb
l

∂x
dx
dsx ,

d
dq

(
∂cb

l
∂x

[xv]k +
∂cb

l
∂vk

)
=

∂ 2cb
l

∂x∂x
dx
dq
· [xv]k +

∂ 2cb
l

∂q∂x
· [xv]k +

∂cb
l

∂x
· d [xv]k

dq

+
∂ 2cb

l
∂x∂vk

dx
dq

+
∂ 2cb

l
∂q∂vk

,

d
dspe

(
∂cb

l
∂x

[xv]k +
∂cb

l
∂vk

)
=

∂ 2cb
l

∂x∂x
dx

dspe · [xv]k +
∂ 2cb

l
∂ spe∂x

· [xv]k +
∂cb

l
∂x
· d [xv]k

dspe

+
∂ 2cb

l
∂x∂vk

dx
dspe +

∂ 2cb
l

∂ spe∂vk
,

d
dwi

(
∂cb

l
∂x

[xv]k +
∂cb

l
∂vk

)
= 0.

4.3.2. Objective Derivatives

Because we decoupled the objective (4.9a) by introducing additional variables and constraints,
it depends only on H1 and H2 (and spe

Ns in case of the scaled version (3.27)). In particular,
no dynamic states are involved in its evaluation. This allows us to derive explicit formulae
for the first and second derivative of the objective. Moreover, the second derivative of the
objective contains the entire second order information of the problem with respect to H1 and
H2 because they appear only linearly in the constraints. That means the part of the Hessian of
the Lagrangian corresponding to Hi is identical with the part of the Hessian of the objective
corresponding to Hi:

∇
2
HHL(ξ ,λ) = ∇

2
HHΦ(H).

Thus, in an SQP method using block diagonal Hessian approximations, the exact Hessian
with respect to H1 and H2 can be incorporated without evaluating higher order sensitivities
of the states. In the following, we only discuss the case of the A-criterion. Derivatives of the
other criteria can be obtained in a similar way using derivative formulae given in [134, Ch.6]
and [64]. However, this involves more complicated notation and the use of techniques from
algorithmic differentiation is recommended [90].

We will now derive the gradient and Hessian of the objective Φ = 1
nv

tr using directional
derivatives of matrix valued functions. Note that we omit the constant factor 1/nv throughout
this section.

Definition 4.9 (Matrix-valued directional derivatives). Let a differentiable map F : Rn×n 7→

92

4.3. Derivatives of the structured NLPs

Rn×n be given and let A, ∆A ∈ Rn×n. Then the directional derivative is denoted by(
∂F(A)

∂A
·∆A

)
k,l

:=
n

∑
i, j=1

∂F(A)k,l

∂Ai, j
∆Ai, j = lim

h→0

F(A+h∆A)k,l−F(A)k,l

h

for 1≤ k, l ≤ n, hence F(A)
A ·∆A ∈ Rn×n.

Let a differentiable map Φ :Rn×n 7→R be given and let A, ∆A∈Rn×n. Then the directional
derivative is denoted by

∂Φ(A)
∂A

·∆A :=
n

∑
i, j=1

∂Φ(A)
∂Ai, j

∆Ai, j = lim
h→0

Φ(A+h∆A)−Φ(A)
h

,

hence Φ(A)
A ·∆A ∈ R.

Derivatives of the objective with respect to variables H1 and H2 can be formulated as
directional derivatives with unit directions in the space of symmetric matrices. We define
directions ∆i j ∈ R(nv+ns)×(nv+ns) by

(∆i j)k,l =

{
1 if (k, l) = (i, j) or (k, l) = (j, i)
0 else

, 1≤ k, l ≤ nv +ns.

Then derivatives with respect to H1 correspond to directions ∆i j, 1≤ j ≤ i≤ nv and deriva-
tives with respect to H2 to directions ∆i j, nv ≤ i ≤ nv + ns, 1 ≤ j ≤ nv. Instead of distin-
guishing between H1 and H2, we will simply refer to elements of the matrix H defined as the
Fisher information matrix augmented by the constraint part, and its inverse Caug:

H :=
[

H1 HT
2

H2 0

]
, Caug := H−1 ∈ R(nv+ns)×(nv+ns).

Note that in the case of an unconstrained parameter estimation problem ns = 0, hence nv = np
and Caug =C ∈ Rnp×np .

We summarize some useful derivative formulae in the following Lemma.

Lemma 4.10. Let A,∆A ∈ Rn×n and U ∈ Rn×m be matrices. Then directional derivatives in
direction ∆A of some functions of A are given by:

∂ tr(A)
∂A

∆A = tr(∆A), (4.19)

∂A−1

∂A
∆A =−A−1

∆AA−1, (4.20)

∂UT AU
∂A

∆A =UT
∆AU. (4.21)

Proof. See [134, Lemma 6.2.1 and 6.2.3].

93

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

Objective gradient
We are interested in the derivative of the objective with respect to the newly introduced
variables H1 and H2. We denote Caug = (Ci j) with i, j = 1, . . . ,n := nv + ns. Then we can
express the gradient in terms of the elements of Caug as follows.

Lemma 4.11 (Gradient of the objective). The gradient of the objective Φ(C) = tr(C) of
Problem (4.9) with respect to H1 and H2 is given by

dtr(C)

dHi, j
=

{
−2∑

nv
k=1 ckic jk if i > j

− ∑
nv
k=1 c2

ki if i = j,
, 1≤ i≤ nv +ns, 1≤ j ≤ nv, j ≤ i.

Proof. Applying the chain rule and using directional derivative calculus, the gradient is
equivalent to

d tr(C)

dHi, j
=

∂ tr(C)

∂C
∂C

∂Caug
∂Caug

∂H
∆i j.

Using (4.20) we obtain

∂ tr(C)

∂C
∂C

∂Caug
∂Caug

∂H
∆i j =−

∂ tr(C)

∂C
∂C

∂CaugCaug
∆i jCaug

Evaluating the matrix Caug∆i jCaug for i > j yields:

Caug
∆i jCaug =

C11 · · · C1n
...

...
Cn1 · · · Cnn

∆i j

C11 · · · C1n
...

...
Cn1 · · · Cnn

=

0 C1i 0 C1 j 0

0
... 0

... 0
0 Cni 0 Cn j 0

C11 · · · C1n

...
...

Cn1 · · · Cnn

 (4.22)

=

C1iC j1 +C1 jCi1 C1iC j2 +C1 jCi2 · · · C1iC jn +C1 jCin

C2iC j1 +C2 jCi1 C2iC j2 +C2 jCi2 · · · C2iC jn +C2 jCin
...

...
...

CniC j1 +Cn jCi1 CniC j2 +Cn jCi2 · · · CniC jn +Cn jCin

 ∈ Rn×n

For i = j this directional matrix is multiplied with 1
2 . Differentiating the projection to the

upper left nv×nv part gives (cf. Eq. (4.21)):

∂C
∂CaugCaug

∆i jCaug =
∂

∂Caug

([
I 0

]
Caug

[
I
0

])
·Caug

∆i jCaug =
[
I 0

]
Caug

∆i jCaug
[
I
0

]

=

 C1iC j1 +C1 jCi1 · · · C1iC jnv +C1 jCinv
...

...
CnviC j1 +Cnv jCi1 · · · CnviC jnv +Cnv jCinv

=: Di j ∈ Rnv×nv

94

4.3. Derivatives of the structured NLPs

Finally, noting symmetry of Di j, we obtain

d tr(C)

dHi, j
=−∂ tr(C)

∂C
·Di j =− tr(Di j) =

{
−2∑

nv
k=1 ckic jk if i > j

− ∑
nv
k=1 c2

ki if i = j.
(4.23)

Objective Hessian
We now derive explicit expressions for the objective Hessian that can be readily evaluated
once Caug is known.

Lemma 4.12 (Hessian of the objective). The Hessian of the objective Φ(C) = tr(C) of
Problem (4.9) with respect to H1 and H2 is given by

d2 tr(C)

dHi, jdHk,l
=

2∑

nv
r=1

(
C jkClr +C jlCkr

)
Cri +(CikClr +CilCkr)Cr j if i > j,k > l

2∑
nv
r=1 (CikClr +CilCkr)Cri if i = j,k > l

2∑
nv
r=1CikCkrCri if i = j,k = l

,

1≤ i,k ≤ nv +ns, 1≤ j, l ≤ nv, j ≤ i, l ≤ k.

Proof. We differentiate the objective gradient (4.23) with respect to Hk,l . Again, we employ
the chain rule and (4.20) to obtain

−dtr(Di j)

dHk,l
=−∂ tr(Di j)

∂Di j

∂Di j

∂Caug
∂Caug

∂H
∆kl =

∂ tr(Di j)

∂Di j

∂Di j

∂Caug (C
aug

∆klCaug)︸ ︷︷ ︸
=:D̄kl

.

Analyzing the middle and right-hand side terms using (4.21) reveals

∂Di j

∂Caug D̄kl =

∂

([
I 0

]
Caug∆i jCaug

[
I
0

])
∂Caug∆i jCaug

(
∂Caug∆i jCaug

∂Caug · D̄kl

)
=
[
I 0

](∂Caug∆i jCaug

∂Caug · D̄kl

)[
I
0

]
=
[
I 0

]
(D̄kl∆i jCaug +Caug

∆i jD̄kl)

[
I
0

]
Note that D̄kl∆i jCaug = (Caug∆i jD̄kl)

T , thus we have

∂ tr(Di j)

∂Di j

([
I 0

]
(D̄kl∆i jCaug +Caug

∆i jD̄kl)

[
I
0

])
= 2

nv

∑
r=1

[Caug
∆i jD̄kl]rr .

It remains to compute the diagonal elements [Caug∆i jD̄kl]rr where we need to distinguish
between three cases:

95

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

1. Hi, j and Hk,l off-diagonal elements

2. Hi, j diagonal element and Hk,l off-diagonal element

3. Hi, j and Hk,l diagonal elements

Using Eq. (4.22) we recall the definition of Caug∆i jD̄kl for case 1:

Caug
∆i jD̄kl =

0 C1i 0 C1 j 0

0
... 0

... 0
0 Cni 0 Cn j 0

C1kCl1 +C1lCk1 · · · C1kCln +C1lCkn

...
...

CnkCl1 +CnlCk1 · · · CnkCln +CnlCkn

 ,

which gives

[Caug
∆i jD̄kl]rr =

(
C jkClr +C jlCkr

)
Cri +(CikClr +CilCkr)Cr j.

In summary, the objective Hessian is given by

d2 tr(C)

dHi, jdHk,l
=

2∑

nv
r=1

(
C jkClr +C jlCkr

)
Cri +(CikClr +CilCkr)Cr j if i > j,k > l

2∑
nv
r=1 (CikClr +CilCkr)Cri if i = j,k > l

2∑
nv
r=1CikCkrCri if i = j,k = l

.

(4.24)

Remark 4.13. If the objective is defined on the scaled covariance matrix (3.27) the entries Ci j,
1≤ j ≤ i≤ nv, are replaced by v−1

i v−1
j Ci j. First and second derivatives with respect to spe

Ns

are then easily obtained by differentiating the trace and the terms in Eq. (4.23) elementwise.

We conclude this section with a result for the Hessian of the A-criterion that is of particular
interest for optimization algorithms.

Lemma 4.14 (Convexity of the trace). The function Φ(X) that maps a positive definite
matrix X to the trace of its inverse,

Φ(X) = tr(X−1),

is convex.

Proof. We show that every restriction of Φ to an arbitrary line is a convex scalar function.
Let X be a positive definite symmetric matrix and V a symmetric matrix. To show convexity
of Φ, we need to show that

d2

dt2 Φ(X + tV)

∣∣∣∣
t=0
≥ 0.

96

4.4. Application to related problems

Repeatedly using the identity [182]

(I+ tX−1V)−1 = I− tX−1 (I+ tV X−1)−1
V (4.25)

we can write

(X + tV)−1 =
(
I+ tX−1V

)−1
X−1

=
(
I− tX−1 (I+ tV X−1)−1

V
)

X−1

=
(
I− tX−1

(
I−V

(
I+ tX−1V

)−1
tX−1

)
V
)

X−1

= X−1− tX−1V X−1 + t2X−1V
(
I+ tX−1V

)−1
X−1V X−1

= X−1− tX−1V X−1 + t2X−1V
(
I− tX−1 (I+ tV X−1)V

)−1
X−1V X−1

= X−1− tX−1V X−1 + t2X−1V X−1V X−1 + t3 · · · ,

so

d2

dt2 Φ(X + tV)

∣∣∣∣
t=0

=
d2

dt2 tr((X + tV)−1)

∣∣∣∣
t=0

= 2tr(X−1V X−1V X−1).

Defining U = X−1V we can write X−1V X−1V X−1 =UX−1UT and because X−1 is positive
definite, UX−1UT is positive semidefinite, therefore

tr(UX−1UT)≥ 0.

4.4. Application to related problems

Here we briefly describe how to efficiently apply the DMS parameterization framework to
the multi-experiment setting and the presence of continuous measurements.

4.4.1. Multiple experiments

For the design of multiple experiments in parallel as described in Sec. 3.4.2 we propose the
following strategy: We think of the experiments as executed consecutively and parameterize
the dynamics for each experiment as in the single-experiment case. This yields Nexp sets of
constraints (4.9d)–(4.9j) and preserves the general derivative structure as described in the
previous section.

The linearly coupled constraints for the Fisher matrix (4.9b) and J2 (4.9c) now span
Nexp experiments and deserve a closer analysis. Let us denote by spe,k the variables that
parameterize the boundary constraints of the k-th experiment, by hk

i the i-th measurement

97

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

of the k-th experiment and by cpe,k
i the i-th summand of the boundary conditions of the k-th

experiment. We further define the parts of J1 and J2 corresponding to experiment k by

Jk
1p,i =

dhk
i

dp
, i = 1, . . . ,Nm,k

Jk
1s,i =

dhk
i

dspe,k
, i = 1, . . . ,Nm,k

Jk
2p =

Nc,k

∑
i=1

dcpe,k
i

dp

Jk
2s =

Nc,k

∑
i=1

dcpe,k
i

dspe,k

While the parameters p generally yield contributions Jk
1p and Jk

2p for every experiment k,
the variables spe,k yield a nonzero contribution only for the experiment k for which they are
defined. The Fisher matrix has the following arrow-structure:

∑
Nexp

k=1 (J
k
1p)

T (Jk
1p) (J1

1p)
T (J1

1s) (J2
1p)

T (J2
1s) · · · (JNexp

1p)T (JNexp

1s)

(J1
1p)

T (J1
1s) (J1

1s)
T (J1

1s)

(J2
1p)

T (J2
1s) (J2

1s)
T (J2

1s)

...
. . .

(JNexp

1p)T (JNexp

1s) (JNexp

1s)T (JNexp

1s)

.

The matrix J2 reads as

J2 =

J1

2p J1
2s

J2
2p J2

2s
...

. . .
JNexp

2p · · · JNexp

2s

 .
In an efficient implementation, these sparsity structures must be exploited when evaluating
the linearly coupled constraints (4.9b) and (4.9c). In particular, variables H1 and H2 are only
required for the nonzero entries, which reduces the overall dimension of the NLP.

4.4.2. Continuous measurements

When continuous measurements are present as described in Sec. 3.4.4, the Fisher matrix is
given by the integral

H(tf) =
∫ tf

t0
w(t)J1(t)T J1(t)dt

98

4.5. Problem modifications

giving rise to the continuous OED problem (3.30). We approximate the integral by the rect-
angle method on a sufficiently fine measurement grid τm. On the same grid, we approximate
the control function 0≤ w(t)≤ 1 by a piecewise constant function with w(τm

i) = wi which
results in

H(tf)≈
Nm−1

∑
i=1

(τm
i+1− τ

m
i)wiJT

1,iJ1,i.

The measurement counting state (3.30d), m, is approximated by

m(tf) =
∫ tf

t0
w(t)dt ≈

Nm−1

∑
i=1

(τm
i+1− τ

m
i)wi.

We define new measurement weights w̃i, i = 1, . . . ,Nm−1, as

w̃i = (τm
i+1− τ

m
i)wi, 0≤ w̃i ≤ τ

m
i+1− τ

m
i .

This enables us to use the shooting methods introduced in this chapter without further
modification for problems that involve continuous measurements.

4.5. Problem modifications

In this section, we briefly present several modifications of problem (4.9) that change the
properties of the resulting NLP and possibly the behavior of the optimization algorithm.

4.5.1. Regularization of design variables

Badly chosen grids for discretization of the controls and potential measurements, τc and
τm, may lead to ill-conditioned optimization problems. In this case, the following two
regularization procedures for w and q can be helpful. Note that both regularization schemes
preserve the DMS induced block diagonal structure in the Hessian.

Regularization to promote integer measurement weights
In [171] the use of an L1 regularization term to promote sparsity in the measurement weights
wi is suggested. Thus, the objective becomes

Φ(C)+ εw

Nm

∑
i=1

wi.

The penalty parameter εw has a practical interpretation: An optimal sampling design never
performs measurements when the information gain is below the penalization parameter
εw. The information gain is defined as F(tf)−1F(t)F(tf)−1, where F(t) denotes the Fisher
information matrix incorporating all measurements until time t, see Sec. 3.3.1. In other
words, a measurement is not selected if it does not sufficiently reduce the objective although
the measurement constraint would permit it.

99

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

Control regularization
Some optimal control problems have singular regions, where the optimal value of the control
cannot be determined uniquely. This can lead to numerical instabilities. A remedy is to
penalize excessive switching by a quadratic term in the objective. The regularized objective
reads as

Φ(C)+
εq
2

∥∥q−qref∥∥2
2 ,

where qref is a reference value for q and εq is a small regularization parameter.

4.5.2. Nonlinear transformation of the objective

In [150], Mommer et al. propose a nonlinear transformation to address the problem of slow
convergence of SQP methods for OED problems. Their so-called left preconditioner is
defined as

ψ : (0,∞)→ (−∞,0), ψ(x) =−x−2.

This means, the objective (3.28a), Φ(C), is substituted by

ψ(Φ(C)) =− 1
Φ(C)2 .

The objective derivative can easily be evaluated by using the derivative of Φ and applying
the chain rule:

d
dξ

ψ(Φ(C)) =
2

Φ(C)3 ·
d

dξ
Φ(C).

Using this transformation, we indeed observed accelerated local convergence for a Lotka–
Volterra example, see Ch. 12.

4.5.3. Objective decoupling with pseudo states

Alternative formulations of problem (4.9) have been considered in [124, 136]. To simplify
notation, we write down problem (4.9) for the case of an unconstrained parameter estimation
problem and an ODE system. Let us also assume that some prior information on the
parameters is available at t0 in the form of a symmetric positive definite matrix H0. Then the
problem reads as

min
q,w,s̄y,H

Φ
(
H−1) (4.26a)

s.t. 0 = H0 +
Ns

∑
j=0

∑
i:

τs
j<τm

i ≤τs
j+1

wiJT
1,iJ1,i−H, (4.26b)

0 = ȳ(τs
0; q̂0)− s̄y

0 (4.26c)

0 = ȳ(τs
j+1; s̄y

j, q̂ j)− s̄y
j+1, j = 0, . . . ,Ns−1 (4.26d)

+further constraints as in (4.9)

100

4.5. Problem modifications

Two possibilities to replace the linearly coupled constraint (4.26b) are given as follows:

1. We introduce Ns matrix-valued variables H j ∈Rnp×np , j = 1, . . . ,Ns and corresponding
constraints to describe the evolution of the information matrix on the shooting intervals:

0 = H j +∑
i:

τs
j<τm

i ≤τs
j+1

wiJT
1,iJ1,i−H j+1, j = 0, . . . ,Ns−1. (4.27)

2. At every grid point τs
j the covariance matrix taking into account all measurements up

to time τs
j is the inverse of H j. From (4.27) we can thus obtain a recursion formula to

describe the evolution of the covariance matrix:

0 =
(

C−1
j +∑

i:
τs

j<τm
i ≤τs

j+1

wiJT
1,iJ1,i

)−1
−C j+1, j = 0, . . . ,Ns−1, (4.28)

where C0 = H−1
0 exists by assumption.

The corresponding objectives read Φ
(
H−1

Ns

)
and Φ(CNs), respectively. These formulations

resemble the treatment of dynamic states in DMS, only C and H are given by difference
equations rather than differential equations. This motivates the name pseudo states for H j

and C j and pseudo continuity conditions for (4.27) and (4.28).
Note that the constraints (4.27) are purely linear in H j and will always be satisfied in an

SQP method if feasible initial values for H j are provided. Hence, Newton’s method in exact
arithmetics for this formulation will deliver the same iterates as for problem (4.26).

Remark 4.15. It is interesting to note that Eq. (4.27) and (4.28) can also be derived from the
continuous measurement formulation for H. We have the following ODE for H:

d
dt

H(t) = w(t)J1(t)T J1(t) (4.29)

From this we can derive the following ODE for C(t) = H(t)−1:

d
dt

C(t) =
d
dt

H(t)−1 =−H−1
(

d
dt

H(t)
)

H−1 =−C(t)w(t)J1(t)T J1(t)C(t). (4.30)

If we let w(τm
i) in (4.29) and (4.30) be the Dirac delta function, we obtain the difference

equations (4.27) and (4.28) as solutions.

Remark 4.16. Numerical experience with the two pseudo state formulations is reported
in [124]. Pseudo states for the Fisher matrix are competitive with our standard formula-
tion (4.9), however, they incur additional overhead for the linear algebra as more variables
and constraints are present in the NLP. The formulation with pseudo states for the covari-
ance matrix (4.28) has been found to be unsuitable for practical use because it gives rise to
ill-conditioned linear systems.

101

Chapter 4. Direct shooting parameterizations for optimum experimental design problems

4.5.4. Telescoping sum objective

A way to transform a Mayer-type objective in optimal control problems parameterized by
DMS is to expand the objective by means of a telescoping sum. This was implemented
within the multiple shooting software MUSCOD [34, 163] but has not been documented.
Consider first the finite-dimensional NLP resulting from a general OC problem:

min
q,sy

Φ
(
sy

Ns

)
(4.31a)

s.t. 0 = y(τs
0; q̂0)− sy

0, (4.31b)

0 = y(τs
j+1;sy

j, q̂ j)− sy
j+1, j = 0, . . . ,Ns−1 (4.31c)

+further constraints as in (2.13)

At a solution, it holds in particular that sy
j+1 = y(τs

j+1;sy
j, q̂ j). Thus the objective can be

equivalently formulated as

Φ
(
sy

Ns

)
=

Ns

∑
j=1

Φ
(
y(τs

j)
)
−

Ns−1

∑
j=1

Φ(sy
j). (4.32)

For this formulation, the variable sy
Ns can be omitted. Eq. (4.32) is a telescoping sum; all

terms cancel out except one. The objective function value and the primal variables at the
solution do not change, but the objective gradient as well as the Lagrange multipliers do, so
an SQP method will in general take different intermediate steps.

Application to OED
The telescoping sum formulation (4.32) can be applied to the pseudo state formulations of
OED involving pseudo continuity conditions (4.27) or (4.28). The transformed objective
functions read as

Φ
(
H−1

Ns

)
=

Ns−1

∑
j=0

Φ

(H j +∑
i:

τs
j<τm

i ≤τs
j+1

wiJT
1,iJ1,i

)−1

−Ns−1

∑
j=1

Φ(H−1
j),

for the formulation with pseudo states of the form (4.27), and

Φ(CNs) =
Ns−1

∑
j=0

Φ

(C−1
j +∑

i:
τs

j<τm
i ≤τs

j+1

wiJT
1,iJ1,i

)−1

−Ns−1

∑
j=1

Φ(C j),

if pseudo states of the form (4.28) are used.

Remark 4.17. Numerical experience with the telescoping sum for the pseudo state formula-
tions (4.27) and (4.28) has been disappointing. We conjecture that this is due to the fact that
evaluation of the objective takes place where not enough information is accumulated through
measurements. Then, the results highly depend on the regularization term H0.

102

Part III.

Sequential quadratic programming

103

Chapter 5.

Preliminary considerations: SQP and
multiple shooting

In the previous chapters, we have shown how to transform OED and OC problems to NLPs
using DMS. The following chapters deal with the design and implementation of an efficient
sequential quadratic programming (SQP) method for their solution. In this introductory
chapter, we recapitulate the special class of NLPs that we want to solve and motivate the
development of our method with indefinite Hessian approximations by means of two model
examples.

5.1. Requirements for an SQP method for direct multiple
shooting

Recall the NLP (4.9) resulting from a DMS approach for OED. It has the following properties,
which mostly apply to the case of OC problems as well:

• Sparse and structured Jacobian. The Jacobian has a banded (sub-)structure that
is induced by the continuity conditions and the discretized path- and consistency
constraints. There is additional sparsity within each block due to the special structure
of OED.

• Expensive derivatives. The evaluation of constraint derivatives is usually computa-
tionally expensive because for OED it requires evaluation of second-order sensitivities
of the nonlinear dynamics, cf. Sec. 2.3.1. The evaluation of the Hessian would require
third-order sensitivities and sophisticated IND schemes for their efficient evaluation.

• Sparse, block-diagonal Hessian. The Hessian is sparse with a block-diagonal struc-
ture because of the partial separability of the Lagrangian. The lower right block can be
computed cheaply compared to all other blocks because no sensitivities are involved.

• Nonconvexity. The problems have a relatively small constraint nullspace because of
the large number of equality constraints and potentially active control bounds. Only
on the constraint nullspace is the Hessian required to be positive semidefinite at the
solution. The full Hessian depends, e.g., on the curvature of the states and is usually
indefinite, which implies that the problems are nonconvex.

105

Chapter 5. Preliminary considerations: SQP and multiple shooting

From these properties, we derive the following requirements for an efficient SQP method:

1. Sparsity needs to be exploited to reduce the cost for the linear algebra. This issue is
addressed in Chapter 8 where sparsity is exploited by means of a Schur complement
approach for quadratic programming.

2. Exact Hessians are too costly, instead they need to be approximated by suitable
quasi-Newton updates.

3. The quasi-Newton updates need to maintain the block-diagonal structure to preserve
sparsity. Tailored quasi-Newton updates are discussed in Chapter 7.

The aspect of nonconvexity has received little attention in the context of DMS. In the
following sections, we analyze two model problems to show that using only positive definite
Hessians can result in poor convergence. Hence, an additional requirement is:

4. The globalization strategy and the QP solver must accept indefinite Hessian approxi-
mations.

Note that this requirement is substantial for both the globalization strategy and the QP
solver: Most line search methods rely on the positive definiteness of the Hessian to guarantee
descent in a merit function [154]. We present a filter line search globalization that can
handle indefinite Hessians in Chapter 6. Furthermore, while convex QPs can be solved in
polynomial time [138], allowing indefinite Hessians makes the resulting QP nonconvex and
solving it is an NP-hard problem [49, 162].

5.2. Multiple shooting and the lifted Newton method

Multiple shooting can be seen as an application of the lifted Newton method introduced
in [5]. The idea is the following: We consider the problem of solving a nonlinear system of
equations:

F(y) = 0, (5.1)

where the evaluation of the function F ∈ C1(Rnu ,Rnu) is given in the form of a possibly
complex algorithm with several intermediate variables. Denoting these intermediate variables
by xi ∈ Rni for i = 1,2, . . .m and disregarding further internal structure, we summarize the
algorithm in the generic form

xi := fi(y,x1,x2, . . . ,xi−1) for i = 1,2, . . . ,m.

The final output F(y) is given by

fF(y,x1,x2, . . . ,xm). (5.2)

106

5.2. Multiple shooting and the lifted Newton method

It is straightforward to see that the original system (5.1) is equivalent to the “lifted” system
of nonlinear equations

G(y,x) = 0 (5.3)

with nx = ∑
m
i=1 ni, x = (x1,x2, . . . ,xm) and where G ∈ C1(Rnu×Rnx ,Rnu×Rnx) is given by

G(u,x) =

f1(y)− x1
f2(y,x1)− x2

...
fm(y,x1,x2, . . . ,xm−1)− xm

fF(y,x1,x2, . . . ,xm)

 . (5.4)

The lifted Newton method now solves the original nu-dimensional problem (5.1) by applying
Newton’s method to the lifted (nu +nx)-dimensional problem (5.3). If structure-exploiting
methods like those proposed in [5] are used, the costs of one iteration in the original and in
the lifted space are similar. On the other hand, Newton’s method in the lifted space often
exhibits a significantly improved local convergence rate compared to the original, smaller
space.

Going from direct single shooting to DMS can be seen as a lifting of the evaluation of the
objective function. We introduce shooting variables and corresponding constraints that ensure
equivalence of the solutions. The same structure as in (5.4) is then found in the constraints
of the optimization problem. Note, however, that a Newton-type method in optimization is
applied to the KKT conditions. There, for every shooting variable we introduce a Lagrange
multiplier for the corresponding continuity condition. So for every additional shooting
variable the iteration space for Newton’s method grows by two. Therefore, in the iteration
space of the optimization problem, (5.4) appears only as substructure but the idea is the
same: We iterate in a higher-dimensional space to obtain better convergence properties while
using structure-exploiting linear algebra that make the additional computational cost for one
iteration in the higher-dimensional system negligible.

In this work, we explicitly allow the shooting grid τs and the control grid τc to be different.
If we translate this in terms of the lifted Newton method it means that for a given control
grid τc different liftings can be constructed, each represented by a different shooting grid τs.
This yields a family of NLPs that all have the same solutions but that will cause different
behavior of the same quasi-Newton method. This is a special case of a more general concept
that is given by the following definition.

Definition 5.1 (Equivalent NLPs). Consider two nonlinear programming problems

min
x∈Rn1

ϕ1(x) min
y∈Rn2

ϕ2(y)

s.t. c1(x) = 0, s.t. c2(y) = 0,

with constraint functions c1 : Rn1 → Rm1 and c2 : Rn2 → Rm2 for which LICQ holds. We
denote the feasible sets by Ω1 and Ω2. Assume further, that n1 ≤ n2 and m1 ≤ m2. We call
the two NLPs equivalent, if the following is true:

107

Chapter 5. Preliminary considerations: SQP and multiple shooting

1. For local solutions x∗ and y∗, the dimensions of the constraint nullspaces are identical,
i.e., n1−m1 = n2−m2.

2. There exists a bijection h : Ω2→Ω1 such that

ϕ1(h(y)) = ϕ2(y), for all x ∈Ω2.

Setting up an OED or OC problem with a fixed control grid but different multiple shooting
grids yields a family of equivalent NLPs in the sense of Def. 5.1. However, it is not clear
how the selection of a shooting grid or lifting influences the convergence behavior of the
solution method. In [5] it is shown for a model root finding problem that Newton’s method
with exact derivatives yields a faster local convergence rate for the lifted problem than for
the original one.

In the following, we consider NLPs and investigate how a quasi-Newton method with
positive definite Hessians is affected by lifting. We start with a theoretical analysis of an
academic example that shows the typical behavior we often see in DMS for OED problems.
Then an OED model problem is constructed and analyzed. Numerical experiments confirm
the theoretical findings in a more realistic setting.

5.3. Nonconvexity in block-structured problems

In this section we investigate the local convergence behavior of quasi-Newton methods on two
model problems with block-diagonal Hessians which were first discussed in a paper [125] that
was prepared within the PhD project. Quasi-Newton methods approximate the exact Hessians
by simple low-rank updates. For block-diagonal Hessians these updates can be applied to
every block independently. Thus the sparse block structure is maintained which would be
destroyed by a full-space update. A detailed discussion of quasi-Newton approximations and
modifications follows in Chapter 7.

For the following examples we use the positive definite block-BFGS update with the
standard damping strategy due to Powell [165] and the block-SR1 update, that may become
indefinite, to illustrate how positive definite Hessian approximations can prevent fast local
convergence when the Hessian contains negative eigenvalues. We use the standard full-
memory forms of these updates that can be found in many textbooks, e.g., [154, Ch. 18.3].

5.3.1. Academic example

We consider the simple unconstrained, convex minimization problem

min
x1∈R

1
2 x2

1.

108

5.3. Nonconvexity in block-structured problems

After adding a second variable x2 along with the constraint x1 = x2, we obtain the equivalent
problem

min
x1,x2∈R

x2
1− 1

2 x2
2 (5.5a)

s.t. x1− x2 = 0. (5.5b)

Because the Lagrangian function of the NLP (5.5) is partially separable, its Hessian,

∇
2
xxL(x,λ) =

(
2 0
0 −1

)
,

is block diagonal. Furthermore, it has a negative eigenvalue in the range space of (5.5b). We
now study the convergence behavior of different quasi-Newton methods.

Lemma 5.2. Consider a full-step quasi-Newton SQP method for the solution of (5.5) with
iterates (x[k],λ [k]), and corresponding Hessian approximations B[k] for k = 0,1,2, Let
B[0] = I and x[0] and λ [0] be arbitrary. Then the following holds:

1. After one iteration, the linear constraint (5.5b) is satisfied, i.e. x[k]1 = x[k]2 , k ≥ 1.

2. If B[k] = ∇2
xxL(x[k],λ [k]), the NLP (5.5) is solved after one iteration with solution

x∗1 = x∗2 = λ ∗ = 0.

3. If block-SR1 updates are used, the two Hessians blocks are recovered after one
iteration, leading to convergence in two iterations.

4. If block-BFGS updates are used, we obtain for k ≥ 1:

B[k] =

(
2 0
0 a[k]

)
, a[k] > 0,

with {a[k]}→ 0.

Proof. 1 and 2 are easily verified by computing one Newton step. 3 follows from the secant
equation B[k+1]δ [k] = γ [k] that motivates the update formulae (cf. Eq. (7.1)). 4 follows
from the BFGS damping strategy: The first block is exactly recovered after one iteration.
For the second block, the undamped update would yield −1, that means the damping
strategy becomes active. It interpolates between the current, positive approximation and
the unmodified updates to guarantee a positive definite matrix, see Sec. 7.2. This yields a
sequence a[k] > 0, with {a[k]}→ 0.

Let us now further analyze the convergence behavior of the block-BFGS method.

Theorem 5.3. A full-step quasi-Newton method with block-BFGS updates applied to prob-
lem (5.5) converges Q-linearly with convergence rate R = 1

2 .

109

Chapter 5. Preliminary considerations: SQP and multiple shooting

Proof. Let us assume k ≥ 1. Then by Lemma 5.2 we know that x[k]1 = x[k]2 and

B[k] =

(
2 0
0 a[k]

)
, a[k] > 0.

The iterate x[k+1] = x[k]+∆x[k] and λ [k+1] can be computed by solving the KKT system of
the corresponding QP. Suppressing the index k, this reads as 2 1

a −1
1 −1

∆x1
∆x2
λ

=

−2x1
x1
0

 . (5.6)

This yields

∆x1 = ∆x2 =−
x1

2+a
, λ =−2x1

1+a
2+a

.

The rate of convergence for the components of x, x1 and x2, is given by∣∣∣x[k+1]
i − x∗i

∣∣∣∣∣∣x[k]i − x∗i
∣∣∣ =

∣∣∣∣∣x[k]i −
x[k]i

2+a[k]

∣∣∣∣∣ ·
∣∣∣∣∣ 1

x[k]i

∣∣∣∣∣= 1− 1
2+a[k]

=: R

Because a[k] > 0, this implies that the block-BFGS method converges linearly for prob-
lem (5.5) with convergence rate R = 1

2 .

This result means that if, e.g., x[0] = 1 we need 40 iterations to achieve an accuracy of
10−12 because x[40] ≥ 2−40 ≈ 9.1 ·10−13; a substantial difference compared to the block-SR1
method that only needs 2 iterations. Although problem (5.5) is technically not a lifted
problem in the sense of lifted Newton, we may conclude that approximating negative definite
blocks by positive definite Hessians can impair local convergence even for simple problems.

Note that for this example, damping is necessary because the individual blocks are
approximated independently. The full-space BFGS could proceed without damping. Its
behavior for Example (5.5) can be summarized as follows:

Lemma 5.4. Consider a full-step quasi-Newton SQP method applied to Problem (5.5) with
initial Hessian approximation B[0] = I and feasible starting values x[0]1 = x[0]2 6= 0. Then
the Hessian approximation after the first step obtained by a full-space BFGS update is the
positive definite matrix

B[1] =

(
4.5 −2.5
−2.5 1.5

)
,

and the solution of (5.5) is recovered after one additional iteration.

110

5.3. Nonconvexity in block-structured problems

Proof. We compute the first step by solving the KKT system (5.6) with I in the upper left
block. This yields the step

∆x[0] =−1
2

(
x[0]1 , x[0]1

)T
.

and the new iterate

x[1] =
1
2

(
x[0]1 , x[0]1

)T
.

For the BFGS update, we need the difference of the gradient of the Lagrangian, γ [0]. Because
the constraint is linear, we can ignore the current iterate of λ and obtain

γ
[0] = ∇L(x[1],λ [1])−∇L(x[0],λ [1]) =

(
−x[0]1 , 1

2 x[0]1

)T
.

We now apply the BFGS formula to compute B[1]. Omitting the index [0], it reads as

B[1] = B− B∆x∆xT B
∆xT B∆x

+
γγT

γT ∆x

With ∆x = ∆x[0], γ = γ [0] as given above and B = I we obtain the matrix B[1] as desired.
We now compute the next iterate of the quasi-Newton method by solving the KKT system 4.5 −2.5 1

−2.5 1.5 −1
1 −1

∆x[1]1

∆x[1]2
λ [2]

=
1
2

−2x[0]1

x[0]1
0

 .

This yields

∆x[1]1 = ∆x[1]2 =−1
2

x[0]1 , λ
[2] = 0,

and thus the solution x[2]1 = x[2]2 = 0 of problem (5.5).

Note that for the full-space BFGS update, damping is not necessary because the curvature
condition

γ
[0]T

∆x[0] = 1
4 x[0]1 > 0

is satisfied which implies that the BFGS update produces a positive definite matrix. This is
not the case when applying the update independently to the diagonal blocks.

This simple example shows that the full space BFGS can be very efficient although the
matrices it produces may be very different from the true Hessian. However, on larger
problems with a block-diagonal Hessian it is often unable to accumulate enough curvature
information and it does not represent a suitable way to solve problems parameterized by
DMS, see the results in Sec. 10.4.

111

Chapter 5. Preliminary considerations: SQP and multiple shooting

5.3.2. An OED model problem

We now discuss a minimal, but prototypical OED example that allows an analytical investiga-
tion. We consider a simple form of the NLP (4.9) that results from a DMS parameterization
of an OED problem. Assume that τs = τm = τc, the controls are discretized piecewise
constant, and that the ODE states can observed directly with all wi = 1. Furthermore, assume
that no additional nonlinear constraints are present. The NLP then reads as

min
q j,s j,S j,H

tr(H−1) (5.7a)

s.t. 0 = y(τ j+1;s j,q j)− s j+1 0≤ j ≤ Ns−1, (5.7b)

0 = y0− s0, (5.7c)

0 = yp(τ j+1;s j,S j,q j)−S j+1 0≤ j ≤ Ns−1, (5.7d)

0 = S0, (5.7e)

b` ≤ q j ≤ bu 0≤ j ≤ Ns, (5.7f)

0 = ∑
Ns

j=0 ST
j S j−H. (5.7g)

We now consider the ODE system

ẏ(t) = p ·u(t), y(t0) = 0, (5.8)

with a scalar parameter p and given estimate p̂ = 10 on the time horizon [t0, tf] = [0,1].
Let the control u be constrained by 0 ≤ u(t) ≤ 2. The variational differential equation
corresponding to (5.8) is

ẏp(t) = u(t), yp(t0) = 0.

The ODE solutions on the shooting intervals [τs
j ,τ

s
j+1], 0≤ j < Ns have the representations

y(τs
j+1; τ

s
j ,s j,q j) = s j + pq j(τ

s
j+1− τ

s
j), (5.9a)

yp(τ
s
j+1; τ

s
j ,s j,S j,q j) = S j +q j(τ

s
j+1− τ

s
j). (5.9b)

The global minimum of this problem is tr((H∗)−1) = 6.49 · 10−2. It is attained at q j = 2,
0≤ j < Nc. This can be seen by applying a maximum principle [171]. This means that the
system reveals the most information about the parameter p if we excite it by the maximum
amount possible.

If we insert Equations (5.9) into the NLP (5.7), we note that the only nonlinear constraint
is (5.7g); its Lagrange multiplier is denoted by λH ∈ Rnp . We define the variables

ξ =
[
ξ T

1 ξ T
2 · · · ξ T

Ns H
]T

, ξ j =
(
s j S j q j

)T
, j = 0, . . . ,Ns.

The Hessian of the Lagrangian of (5.7) has the following diagonal block structure:

∇
2
ξ ,ξL(ξ ,λ) = diag

(
∇

2
ξ0,ξ0
L(ξ ,λ), . . . ,∇2

ξNs ,ξNsL(ξ ,λ),∇2
H,HL(ξ ,λ)

)
,

∇
2
ξ j,ξ j
L(ξ ,λ) =

0 0 0
0 2λH 0
0 0 0

 , ∇
2
H,HL(ξ ,λ) = 2H−3. (5.10)

112

5.3. Nonconvexity in block-structured problems

Ns τs BFGS SR1

2 (0,1) 32 25
3 (0,0.5,1) 38 19
6 (0,0.2,0.4,0.6,0.8,1) 31 15

11 (0,0.1,0.2, . . . ,1) 41 12

Table 5.1.: Number of SQP iterations taken to solve example (5.7) to a KKT tolerance of
10−9. Ns is the number of multiple shooting nodes. Iteration counts are reported
for a fullstep SQP method with block-BFGS and block-SR1 updates. Identity is
taken as initial approximation.

While 2H−3 is positive close to the optimal solution, 2λH is not. In our example, we have
λ ∗H =−4.22 ·10−3. Consequently, the performance of the SQP algorithm can be impaired
significantly when the approximation of the Hessian is forced to be positive definite on every
block.

To illustrate this, we choose a grid of 11 equidistant points on [0,1], τ j = 0.1 j, with
0 ≤ j ≤ 10. As initial guess, we set q j = 0.6 and we initialize s j and S j such that all
continuity conditions (5.9) are satisfied. The initial Hessian approximation is identity. With
this setup, our full-step SQP implementation finds the solution in 41 iterations with damped
block-BFGS updates. In all iterations, 10 of the block-BFGS updates are damped to preserve
positive definiteness of the approximation, or they are skipped entirely due to ill-conditioning
as described in Section 7.2. In comparison, a full-step SR1-SQP algorithm needs only 12
iterations to converge.

We now keep the control discretization fixed and choose coarser multiple grids. This
results in a family of equivalent NLPs as discussed in the previous section. Because of
the coarser discretization, the Hessian has fewer diagonal blocks. Table 5.1 shows the
number of SQP iterations taken for these NLPs. We see that the negative impact of block-
BFGS damping is most severe for the finest multiple shooting grid. At the same time, the
number of SQP iterations decreases with finer grids for the block-SR1 updates. Here, more
diagonal blocks allow the high-rank block updates to introduce more curvature information
per iteration which provides rapid local convergence.

113

Chapter 6.

A filter line search SQP method with
indefinite Hessians

In this chapter, we present a new line search SQP method that can work with indefinite
Hessian matrices. It is based on the filter line-search globalization proposed by Wächter and
Biegler in [198]. Our algorithm has an inner loop in which several, possibly nonconvex, QPs
are solved until a positive definiteness condition motivated by the proof of global convergence
is satisfied. We first give a general description of the algorithm. Then we recapitulate the
backtracking line search procedure from [198] and include two heuristics that have proven
efficient in practice. Finally, we give details about our feasibility restoration phase including
a new, efficient heuristic for problems arising in DMS. A paper describing the SQP algorithm
is submitted for publication [125].

6.1. The algorithm

In this and the following chapters we are interested in solving nonlinear programs of the
form

min
x∈Rn

ϕ(x) (6.1a)

s.t. c(x) = 0, (6.1b)

b` ≤ x≤ bu. (6.1c)

where ϕ : Rn → R, c : Rn → Rm, and b`,bu ∈ Rn ∪ {−∞,∞}n. NLPs involving general
inequality constraints ci(x) ≥ 0 can always be transformed into this form by introducing
slack variables si ≤ 0 and setting ci(x)+ si = 0.

As outlined in Section 1.2, we start with an initial guess x[0] and compute iterates x[k+1] =
x[k]+α [k]d[k] in SQP iteration k ≥ 0. The step size α [k] is determined by a filter line search
described in Sec. 6.2 below. The search direction d[k] is given as the solution of the quadratic
program QP(B[k]):

min
d∈Rn

1
2 dT B[k]d +g[k]

T
d (6.2a)

s.t. A[k]d + c[k] = 0, (6.2b)

b` ≤ x[k]+d ≤ bu. (6.2c)

115

Chapter 6. A filter line search SQP method with indefinite Hessians

In the QP (6.2), g[k] is the objective gradient ∇ϕ(x[k]), c[k] is the evaluation of the constraints
c(x[k]), the matrix A[k] is the constraint Jacobian ∇c(x[k])T , and the matrix B[k] is an approxi-
mation of the Hessian of the Lagrangian function. We define λ [k] as the current iterate of the
Lagrange multipliers and λ̄ [k] ∈ Rm+n as the Lagrange multipliers of (6.2). The algorithm is
stopped with solution (x[k],λ [k]) if the following convergence criterion is satisfied∥∥∇L(x[k],λ [k])

∥∥
∞

1+
∥∥λ [k]

∥∥
∞

< εopt and

∥∥c(x[k])
∥∥

∞

1+
∥∥x[k]

∥∥
∞

< εfeas (6.3)

with prescribed tolerances εopt,εfeas > 0.
A key question is under which conditions a solution to QP(B[k]) exists and when we can

expect the line search to find an acceptable step size along this solution. An answer is given
in the global convergence proof for the filter line search [198]:

Under the assumption that the approximations B[k] are uniformly positive definite on a
certain subspace, it is guaranteed that a solution of (6.2) exists and that the resulting search
direction has descent properties that are required for the filter line search. Uniform positive
definiteness means that the smallest eigenvalue is bounded away from zero for the entire
sequence of reduced Hessians. In order to formulate the positive-definiteness condition, let
us define S [k] as the set of bounds that are active at both x[k] and x[k]+d[k]:

S [k] :=
{

1≤ i≤ n | (x[k]i = b`,i or x[k]i = bu,i) and d[k]
i = 0

}
. (6.4)

We denote by IS [k] ∈R|S [k]|×n the identity matrix with the rows deleted whose indices are not
in S [k]. We define

A[k]
S :=

[
A[k]

IS [k]

]
.

With these definitions in place, we can formally state the assumption.

Assumption 6.1. The Hessian approximations B[k] are uniformly positive definite on the
null space of A[k]

S .

In other words, there exists a constant MB > 0 so that for all k we have

λmin

(
Z[k]T B[k]Z[k]

)
≥MB,

where Z[k] is a basis of the null space of A[k]
S and λmin denotes the smallest eigenvalue. This

assumption is necessary to ensure sufficient decrease of the objective at points with small
infeasibility. If the method converges to a solution that satisfies the strong second-order
conditions (see Thm. 1.8), the active set finally becomes unchanged and Z[k] is a basis for the
active constraints. Global convergence can be shown if, among further assumptions such as
boundedness of the functions and well-definedness of the restoration phase, Assumption 6.1
(named (G3*) in [198]) holds.

116

6.2. Filter line search procedure

Similar to the practical approaches taken in [194, 199], we do not guarantee uniform
positive definiteness for the entire sequence {B[k]}, because this would require an excessively
large amount of time for the computation of eigenvalues. Instead, our SQP method guarantees
positive definiteness of B[k] on the null space of A[k]

S in every individual iteration k separately.
We start with a possibly indefinite approximation of the Hessian and attempt to solve (6.2).
If (6.2) is infeasible, the method switches to the restoration phase. Otherwise, we obtain a
solution d[k] and check whether B[k] is positive definite on the null space of A[k]

S . In this case,
the filter line search is continued with d[k]. If B[k] is not positive definite on the null space of
A[k]
S , a different Hessian approximation is chosen and a new direction d[k] is computed. In

Section 7.1, possible sequences of approximations are discussed.
Algorithm 6 gives the full description of this SQP method. The backtracking line search

in Step 3 and the feasibility restoration phase in Step 5 are described in Sec. 6.2 and Sec. 6.3,
respectively. The algorithm is similar to Algorithm I in [198], with an additional inner loop
in Step 2. Within this loop, indexed by l ≥ 0, different Hessian approximations are tried.

6.2. Filter line search procedure

The step size α [k] is determined by the filter line search described in [198]. It is also
implemented in the interior point code IPOPT that is described in [199]. Its global and local
convergence properties are analyzed in [198] and [197], respectively.

Broadly speaking, a step is accepted if it sufficiently reduces either the objective value
ϕ(x) or the constraint violation η(x) := ‖c(x)‖

∞
, see Sec. 1.2.5. In a series of trial step

sizes 1 = α [k,0] > α [k,1] > · · ·> α [k,lmax], a new iterate x[k+1,l] = x[k]+α [k,l]d[k] is accepted if
it leads to sufficient progress towards either goal compared to the current iterate, i.e., if

η(x[k+1,l])≤ (1−β
F
η)η(x[k]), or (6.5a)

ϕ(x[k+1,l])≤ ϕ(x[k])−β
F
ϕ η(x[k]) (6.5b)

with fixed constants βFϕ ,βFη ∈ (0,1). Figure 6.1 illustrates condition (6.5) and the concept
of a filter. The above criterion is replaced by requiring sufficient progress in the objective
function, whenever the current iterate is sufficiently feasible, i.e., we have η(x[k])≤ ηmin,
with ηmin ∈ (0,∞], and the following switching condition

∇ϕ(x[k])T d[k] < 0 and α
[k,l]
[
−∇ϕ(x[k])T d[k]

]sϕ

> δη

[
η(x[k])

]sη

(6.6)

with constants δη > 0, sη > 1, sϕ ≥ 1 holds. If η(x[k])≤ ηmin and (6.6) is true for the current
step size α [k,l], the trial point has to satisfy the Armijo condition

ϕ(x[k+1,l])≤ ϕ(x[k])+ηϕα
[k,l]

∇ϕ(x[k])T d[k] (6.7)

instead of (6.5), in order to be acceptable. Here, ηϕ ∈ (0, 1
2) is a constant.

The algorithm maintains a filter F [k] ⊂ {(η ,ϕ) ∈ R2 | η ≥ 0} for each iteration k. The
filter contains those combinations of constraint violation values η and objective function

117

Chapter 6. A filter line search SQP method with indefinite Hessians

Algorithm 6: Filter Line Search SQP Algorithm with Indefinite Hessian Matrices

Given: Termination tolerances εopt,εfeas > 0, starting point (x[0],λ [0]), initial Hessian
B[0]. Evaluate ϕ(x[0]),c[0],g[0],A[0]. Set k = 0.

1. Check convergence. Stop if (x[k],λ [k]) satisfies the KKT-tolerance given by (6.3).

2. Compute search direction. Define a sequence of trial Hessian matrices
B[k,0], . . . ,B[k,lmax] where B[k,lmax] is positive definite.
For l = 0,1, . . . , lmax

a) Solve QP(B[k,l]) to obtain a primal-dual critical point (d[k,l], λ̄ [k,l]).
b) If QP(B[k,l]) is infeasible, go to 5.

c) If a critical point of QP(B[k,l]) is found and if B[k,l] is positive definite on A[k]
S ,

set (d[k], λ̄ [k]) = (d[k,l], λ̄ [k,l]), set B[k] = B[k,l], and go to 3.

End for.

3. Backtracking line search. Try to find a step size α [k] by the filter line search
described in Algorithm 7. If the trial step size becomes too small, go to 5.

4. Next iteration.
Set

x[k+1] = x[k]+α
[k]d[k], λ

[k+1] = (1−α
[k])λ [k]+α

[k]
λ̄
[k].

Evaluate

ϕ(x[k+1]), g[k+1], c[k+1], A[k+1].

For the computation of quasi-Newton updates, store

γ
[k] = ∇L(x[k+1],λ [k+1])−∇L(x[k],λ [k+1]), δ

[k] = x[k+1]− x[k].

Set k← k+1, and go to 1.

5. Feasibility restoration phase. If possible, compute x[k+1] that is accepted by the
filter and go to 1. Otherwise, stop and declare the problem as first-order locally
infeasible.

118

6.2. Filter line search procedure

✵ ✶ ✷ ✸ ✹ ✺

✶

✷

✸

✹

✺

❤

❢

Figure 6.1.: A filter defined by a set of iterates (dots) in the (ϕ,η) plane. The dotted line is
a slanting envelope defined by βFη = βFϕ = 0.1, that represents condition (6.5).
The dark gray area corresponds to the set of dominated points that, together with
the light gray area, corresponds to the prohibited region defined by the filter.

values ϕ that are prohibited for a successful trial point in iteration k. That means, a trial
point x[k+1,l] is rejected during the line search, if (η(x[k+1,l]),ϕ(x[k+1,l])) ∈ F [k]. We then say
that the trial point is not acceptable to the current filter. We initialize the filter to

F [0] = {(η ,ϕ) ∈ R2 | η ≥ η
max}

for some ηmax. This means that the algorithm will never allow trial points that have a
constraint violation larger than ηmax. Later, the filter is augmented in some iterations, using
the update formula

F [k+1] := F [k]∪
{
(η ,ϕ) ∈ R2 | η ≥ (1−β

F
η)η(x[k]) and ϕ ≥ ϕ(x[k])−β

F
ϕ η(x[k])

}
,

(6.8)

i.e., pairs are added which do not decrease neither the constraint violation nor the objective
function sufficiently.

A feasibility restoration phase may be necessary to generate iterates that reduce the
constraint violation and are acceptable to the filter when the step size α [k] in direction d[k]

falls below a certain threshold. Details on the implemented restoration phase are given in
Sec. 6.3 below.

6.2.1. Second-order correction steps

A well-known difficulty in many methods for constrained nonlinear programming is the
so-called Maratos effect. It was first observed by Maratos [149] and describes the behavior

119

Chapter 6. A filter line search SQP method with indefinite Hessians

of a globalization strategy that can interfere with the full step arbitrarily close to a solution
thus impeding fast local convergence. One way to overcome this difficulty are second-order
correction steps (SOCS). A second-order correction step aims to reduce infeasibility by
re-solving the QP (6.2) with a quadratic approximation of the constraints instead of a linear
one. Following [154, Ch. 18.3], the QP to be solved is

min
d∈Rn

1
2 dT B[k]d +g[k]

T
d (6.9a)

s.t. A[k]d + c(x[k]+d[k, j])−A[k]d[k, j] = 0, (6.9b)

b` ≤ x[k]+d ≤ bu. (6.9c)

for j = 0,1, . . . , jmax, where d[k,0] := d[k]. Note that this requires no additional evaluation
of constraint derivatives, only of the constraint function which has to be done anyway in
the line search. Furthermore, a QP solver can re-use factorizations of the first QP solved
to obtain d[k], which allows efficient computation of SOCS. We denote by d[k]

soc := d[k, j+1] a
solution of the QP (6.9).

In the filter line search, we compute a SOCS d[k]
soc if the first trial step size α [k,0] has been

rejected and if η(x[k+1,0]) ≥ η(x[k]). Then we check if the resulting trial point x[k+1]
soc :=

x[k]+d[k]
soc is acceptable to the filter and satisfies the filter acceptance criteria. If this trial point

passes the tests, it is accepted as the new iterate. Otherwise, we apply additional second-
order corrections j = 1,2, . . ., unless the correction step has not decreased the constraint
violation by a fraction κsoc ∈ (0,1) or a maximum number jmax of second-order corrections
has been performed. In that case, the original search direction d[k] is restored and the regular
backtracking line search is resumed with a shorter step size α [k,1] = 1

2 α [k,0].
Algorithm 7 gives a full description of the filter line search procedure.

6.2.2. Practical modifications

In practice, two modifications of Algorithm 6 have proven to be efficient. First, whenever a
QP(B[k,l]) is infeasible in Step 2b, we reset the Hessian to a scaled identity and attempt to
resolve QP(B[k,l]). Although in theory this does not change the feasible set, we found that in
practice a QP is often reported infeasible due to rounding errors caused by ill-conditioned
Hessians. The same is done if the step length of the line search becomes too short (Step 3).
Here, an ill-conditioned Hessian can produce an inaccurate QP solution and the line search
is not guaranteed to find an acceptable step in this direction.

The second modification addresses the fact that the line search is sometimes unable to find
a step when the algorithm is very close to a solution and the current value of the convergence
criterion (6.3) is already close to the prescribed tolerances εopt and εfeas. Then the step will
be very small and the progress is sometimes deemed not sufficient by the line search. In this
case, we allow the algorithm to take the full step if it reduces the optimality tolerance

‖∇L(x,λ)‖
∞

1+‖λ∞‖
by at least a factor κkkt ∈ (0,1].

120

6.2. Filter line search procedure

Algorithm 7: Backtracking filter line search.

Constant line search parameters: αmin > 0 , jmax ∈ N, βFη ,βFϕ ∈ (0,1), δη > 0, sη > 1,
sϕ ≥ 1, ηϕ ∈ (0, 1

2), ηmin > 0, ηmax ∈ (η(x[0]),∞], and κsoc ∈ (0,1).
Given: Direction d[k] obtained from QP(B[k]) (6.2) at SQP Iteration k. Set α [k,0] = 1 and
l = 0.

1. Compute the new trial point. Set x[k+1,l] := x[k]+α [k,l]d[k].
2. Check acceptability to the filter. If (η(x[k+1,l]),ϕ(x[k+1,l])) ∈ F [k], reject the trial

step and go to 4.
3. Check sufficient decrease with respect to the current iterate.

• Case I: η(x[k])≤ ηmin and (6.6) holds: If (6.7) holds, accept the trial step
x[k+1,l] and go to 10. Otherwise continue at 4.
• Case II: η(x[k]) > ηmin or (6.6) is not satisfied: If (6.5) holds, accept the

trial step x[k+1,l] and go to 10. Otherwise continue at 4.

4. Initialize the second-order correction. If l > 0 or η(x[k+1,l])< η(x[k]), skip the
second-order correction (SOC) and continue at 9. Otherwise, set d[k,0] := d[k],
initialize the SOC counter j = 0, and initialize ηold

soc = η(x[k]).
5. Compute the second-order correction. Compute d[k]

soc = d[k, j+1] by solving (6.9)
and set x[k+1]

soc = x[k]+d[k]
soc.

6. Check acceptability to the filter (in SOC). If (η(x[k+1]
soc),ϕ(x[k+1]

soc)) ∈ F [k], reject
the trial step and go to 9.

7. Check sufficient decrease with respect ot the current iterate (in SOC).

• Case I: η(x[k]) ≤ ηmin and (6.6) holds (for α [k,0]): If (6.7) holds with
“x[k+1,l]” replaced by “x[k+1]

soc ”, accept the trial step x[k+1]
soc and go to 10. Other-

wise continue at 8.
• Case II: η(x[k]) > ηmin or (6.6) is not satisfied (for α [k,0]): If (6.5) holds

with “x[k+1,l]” replaced by “x[k+1]
soc ”, accept the trial step x[k+1]

soc and go to 10.
Otherwise continue at 8.

8. Next second-order correction. If j = jmax or η(x[k+1]
soc)> κsocηold

soc , abort SOC and
continue at 9. Otherwise, increase the SOC counter j = j+1, set ηold

soc = η(x[k+1]
soc)

and go back to 5.
9. Choose new trial step size. Set α[k,l+1] =

1
2 α [k,l] and l = l + 1. If the trial step

size becomes too small, i.e. α [k,l] < αmin try to find an acceptable iterate using a
feasibility restoration phase.

10. Accept the trial point and augment the filter if necessary. Terminate with step size
α [k] := α [k,l] and set d[k] := d[k]

soc if SOC was accepted. If (6.6) or (6.7) do not hold
for α [k], augment the filter using (6.8). Otherwise leave the filter unchanged, i.e.,
set F [k+1] := F [k].

121

Chapter 6. A filter line search SQP method with indefinite Hessians

6.3. Feasibility restoration phase

Whenever a QP is infeasible or the step size in the line search becomes too small, the
algorithm resorts to a feasibility restoration phase (Step 5 of Algorithm 6) to find an iterate
that is closer to the feasible region and acceptable for the filter. The feasibility restoration
phase also has the purpose to detect local infeasibility. In most algorithms, this is done by
minimizing some measure of the constraint violation η(x) and we have also included such a
procedure in our method. However, minimizing the constraint violation is computationally
expensive, as discussed in Sec 6.3.2. In the following section we present a simple and
efficient restoration heuristic for problems arising in lifted methods such as DMS that is
always invoked before resorting to the standard restoration phase.

6.3.1. A feasibility restoration heuristic for problems arising in direct
multiple shooting

The main purpose of the feasibility restoration phase is to deliver a new iterate x[k+1]

that provides sufficient reduction, i.e. satisfies (6.5), and is acceptable to the filter, i.e.
(ϕ(x[k+1]),η(x[k+1])) /∈ F [k+1]. The global convergence proof [198] makes no assumptions
on the particular procedure. Thus for OED and OC problems parameterized by multiple
shooting we can try to reduce the overall constraint violation simply by choosing the shooting
variables such that they satisfy the continuity conditions. Algorithm 8 describes the procedure
for a simple optimal control problem that has the following form:

min
s,q

ϕ(sNs) (6.10a)

s.t. y(t j;q j−1,s j−1)− s j = 0, j = 1, . . . ,Ns (6.10b)

c(q,s)≤ 0 (6.10c)

For OED problems, the variables H1 and H2 in the coupled constraints (4.9b) and (4.9c)
are also included in the loop. We note that Algorithm 8 does not require evaluation of
constraint derivatives, which makes it very efficient. In the algorithm, acceptability to the
filter is checked after integrating the states on one shooting interval. This is to ensure that the
algorithm terminates with an iterate x[k+1] that is in some sense close to the current iterate x[k].
Another possibility is to try to fulfill all continuity constraints and then check acceptability
to the filter.

This restoration heuristic may fail to produce an acceptable iterate for two reasons: First,
numerical integration of the states may not be possible over the whole interval for the
given controls q[k], that means some continuity constraints cannot be satisfied. Second, by
satisfying continuity conditions, other constraints (6.10c) may be violated such that the
overall infeasibility of the new iterate is not sufficiently reduced. In both cases, we resort to
the feasibility restoration phase described in the next section.

122

6.3. Feasibility restoration phase

Algorithm 8: Feasibility restoration heuristic for problems arising in DMS.

Given: Iterate x[k] := (q[k]0 , . . . ,q[k]Ns−1,s
[k]
0 , . . . ,s[k]Ns), current filter F [k+1].

Set q[k+1] = q[k], s[k+1]
0 = s[k]0 .

For l = 1, . . . ,Ns

1. Try to set s[k+1]
l = y(tl;q[k+1]

l−1 ,s[k+1]
l−1) by integration.

Set x[k+1,l] = (q[k+1],s[k+1]
0 , . . . ,s[k+1]

l ,s[k]l+1, . . . ,s
[k]
Ns).

2. If integration fails, set s[k+1]
l = s[k]l , l = l +1 and go to 1.

3. If (ϕ(x[k+1,l]),η(x[k+1,l])) /∈ F [k+1], stop with new iterate x[k+1] := x[k+1,l].
Otherwise, set l = l +1 and go to 1.

End for.

6.3.2. Minimizing constraint violation

If the restoration heuristic described by Algorithm 8 fails, we attempt to minimize the
constraint violation by applying the SQP method to the following NLP:

min
x∈Rn,s∈Rm

1
2‖s‖2

2 +
ζ

2 ‖D[k](x− x[k])‖2
2 (6.11a)

s.t. c(x)− s = 0, (6.11b)

b` ≤ x≤ bu. (6.11c)

Here, an m-dimensional vector of slack variables s is introduced that represents the violation
of the m nonlinear constraints. A term is included in the objective function that penalizes
the deviation from the current iterate x[k], where ζ > 0 is the weighting parameter, and the
scaling matrix D[k] is defined by

D[k] = diag(min(1,1/|x[k]1 |), . . . ,min(1,1/|x[k]n |)).

The required derivatives of (6.11) can be computed straightforward using the derivatives of
c: The constraint Jacobian and objective gradient with respect to x and s are given by

[
∇c(x)T , −I

]
and

[[
(D[k])2(x− x[k])

]T
, sT
]T

,

respectively.
Problem (6.11) is of the form (6.1), therefore we apply Algorithm 6. In practice, the

problem is not solved until a prescribed accuracy is achieved but after every iteration we
check if the current iterate in the restoration problem is acceptable for the filter F [k+1] of the
original problem. We start the restoration phase with x initialized by the current iterate of
the original problem x[k] and s initialized by s = c(x[k]). Therefore, the initial point in the
restoration phase is feasible and we can expect the first iterate to reduce 1

2‖s‖2
2.

123

Chapter 6. A filter line search SQP method with indefinite Hessians

The restoration phase terminates succesfully, if a point acceptable for the filter F [k+1]

is found. If Algorithm 6 for problem (6.11) itself tries to revert to a restoration phase, the
SQP method is terminated. If the restoration problem is solved to optimality using the
tolerances of the original problem before the regular method can be resumed, the SQP
method terminates with the message that the problem seems locally infeasible.

124

Chapter 7.

Hessian approximations

The Hessian matrix in an SQP method has major influence on the speed of convergence.
In Chapter 5 it is shown how positive definite Hessian approximations can prevent fast
local convergence in case of nonconvexity of the underlying problem. This motivates the
development of Algorithm 6 that allows indefinite Hessians. This chapter deals with specific
Hessian approximations to be used with Algorithm 6 for NLPs arising in DMS. We first
discuss possibilities how to choose a sequence of Hessians in every SQP iteration. An
indefinite SR1 approximation is used whenever this is possible and a positive definite BFGS
approximation is provided as fallback. We then give details on how to compute the SR1
and BFGS quasi-Newton approximations for block-diagonal Hessians. Finally, we show
how to apply a sizing strategy to the block-BFGS approximations, addressing some of their
shortcomings. Here, the approximate Hessian is multiplied by an appropriate scalar before
updating that shifts its spectrum such that it overlaps with the spectrum of the exact Hessian.

7.1. Choice of the Hessian sequence

The loop in Step 2 of Algorithm 6 requires a sequence of Hessian approximations B[k,l],
l = 0,1, . . . , lmax during SQP iteration k. On the one hand, we want to use indefinite matrices
that permit the approximation of negative curvature in the constraint range space so that the
issues pointed out in Section 5.3 can be prevented. On the other hand, we prefer an early
termination of the loop to keep the number of QP iterations small.

In general, we consider a sequence of convex combinations of a “desired” Hessian B[k]
des

and a positive definite approximation B[k]
pd:

B[k,l] = (1−µ
[l])B[k]

des +µ
[l]B[k]

pd with 0 = µ
[0] < µ

[1] < .. . < µ
[lmax] = 1.

This guarantees termination of the inner loop because a positive definite matrix certainly
satisfies Assumption 6.1. Possible choices for Bdes are the exact Hessian, ∇2

xxL(x[k],λ [k]),
or an approximation by SR1 updates B[k]

SR1. For the positive definite approximation B[k]
pd

possibilities are a damped BFGS approximation, B[k]
BFGS, or a scaled identity matrix σ [k]I.

Another strategy is to start with a possibly indefinite B[k]
des and add multiples of the identity:

B[k,l] = B[k]
des +µ

[l]I with 0 = µ
[0] < µ

[1] < µ
[2] <

125

Chapter 7. Hessian approximations

The interior point code IPOPT [199] and LOQO [195] use this scheme to correct the inertia
of indefinite Hessians. A number of related convexification schemes have recently been
presented by [96].

Parallelization of the inner loop
We note that these strategies permit a parallel implementation of the loop, that is, the
problems QP(B[k,l]) can be solved simultaneously. To detail this process, let us drop the
index k and simply write QP(l):=QP(B[k,l]). Furthermore, we define a function Ξ with
Ξ(l) ∈ {−1,0,1}, where Ξ(l) = −1 means QP(l) has not yet terminated, Ξ(l) = 0 means
QP(l) has terminated and Assumption (6.1) is violated, and Ξ(l) = 1 means that QP(l) has
terminated and Assumption (6.1) is satisfied, i.e., a direction admissible for the line search
has been found.

Suppose now that for some index l̄ problem QP(l̄) has terminated. Then all running QP
instances can be terminated immediately if one of the following conditions is met:

• Case 1, Ξ(l̄) = 0: Let l∗ be the smallest index with Ξ(l∗) = 1. If Ξ(l) = 0 for all
l < l∗, start the line search with the solution produced by QP(l∗). If no index l∗ with
Ξ(l∗) = 1 exists, or if some QP(l) with l < l∗ has not yet terminated, continue.

• Case 2, Ξ(l̄) = 1: If Ξ(l) = 0 for all l < l̄, set l∗ = l̄ and start the line search with the
solution produced by QP(l̄). If Ξ(l) 6= 0 for some l < l̄, i.e., one of the QPs has not yet
terminated, or there exists a successfully terminated QP that is closer to the desired
Hessian Bdes, continue.

All other solutions are then discarded, in particular solutions with Ξ(l) = 1, but l > l∗.

Hessian approximations for OED problems
Our main interest lies in approximating the Hessian of OED problems that are block-
structured due to DMS. Because full exact Hessians for OED problems are usually not
available, we strive to make use of a blockwise SR1 approximation B[k]

SR1 whenever this is
possible, and resort to a blockwise BFGS approximation B[k]

BFGS otherwise. As we discussed
in Sec. 4.3.2, we can also incorporate partial information of the exact Hessian of the OED
objective. Instead of approximating the diagonal block that corresponds to the variables
for the Fisher matrix, ∇2

HHL(x[k],λ [k]), we can compute the exact Hessian for this block
efficiently using the entries of the current covariance matrix C. As the OED objective is
convex, this block is positive definite and thus compatible with Assumption 6.1.

7.2. Partitioned quasi-Newton updates

Quasi-Newton updates incorporate recently observed curvature information of the Lagrangian
into the existing Hessian by a simple rank-one or rank-two correction. This is done by
requiring that the approximation for the next iteration satisfies the secant equation

B[k+1]
δ
[k] = γ

[k], (7.1)

126

7.2. Partitioned quasi-Newton updates

where δ [k] is the current step and γ [k] is the difference of the gradients of the Lagrangian:

δ
[k] := x[k+1]− x[k]

γ
[k] := ∇xL(x[k+1],λ [k+1])−∇xL(x[k],λ [k+1]).

Many rank-two update formulae can be derived from the secant equation (7.1), see, e.g.,
[190] for an overview. However, it is generally agreed that the BFGS update is the most
effective one in practice [154, 190] which is why we restrict our discussion of rank-two
updates to the BFGS update. Note that there is only a single symmetric rank-one update
satisfying the secant equation.

The block-diagonal structure of the true Hessian of the Lagrangian is maintained by means
of a partitioned quasi-Newton update. Following the approach suggested in [34, 163], we
approximate each block separately by a suitable update formula. This can be seen as a special
case of partitioned quasi-Newton updates proposed in [110, 111] and leads to a high-rank
update in each SQP iteration. The updates apply the full-space formulae to the appropriate
subvectors of δ [k] and γ [k]. Likewise, the scaling and damping procedures described below
are carried out for each block independently.

In the following, we refrain from introducing an additional index to indicate a block.
Rather, the quantities δ [k], γ [k], B[k]

(·), θ [k], and σ
[k]
(·) refer to any one of the diagonal blocks

in the Hessian for the remainder of this section. Formulae should hence be read as being
applied to each block individually, and to all blocks at the same time.

7.2.1. SR1 Update

Our method tries to use the SR1 update whenever possible. It has appealing theoretical
properties and has been reported to be very efficient in practice, see below. In particular,
it generates very good approximations to the exact Hessian and is thus able to adequately
reflect negative curvature in the Lagrangian which leads to rapid local convergence. The SR1
update is defined by the formula

B[k+1]
SR1 = B[k]

SR1 +
(γ [k]−B[k]

SR1δ [k])(γ [k]−B[k]
SR1δ [k])T

(γ [k]−B[k]
SR1δ [k])T δ [k]

, k = 0,1,2, (7.2)

The choice of the initial matrix B[0]
SR1 is described Section 7.2.4. Note that the update can break

down if the denominator γ [k]−B[k]
SR1δ [k] vanishes. In this case, there exists no symmetric

rank-one correction to the current approximation that satisfies the secant equation. Following
the rule in [154], we guard against denominators that are close to zero and skip the update
whenever ∣∣∣(γ [k]−B[k]

SR1δ
[k])T

δ
[k]
∣∣∣< εSR1 · ‖γ [k]−B[k]

SR1δ
[k]‖2 · ‖δ [k]‖2.

In our implementation, we choose εSR1 = 10−8.

127

Chapter 7. Hessian approximations

Theoretical properties
The SR1 update was first derived in the first paper on quasi-Newton methods [54] by
Davidon in 1959 but has later been re-discovered several times. The fact that the denominator
in (7.2) can vanish and that positive definiteness is not preserved has often been cited as a
disadvantage and rank-two updates such as BFGS are often used instead. However, with the
advent of trust-region methods, the SR1 update gained popularity, see [40, 46, 129, 147]. In
particular, strong theoretical properties indicate that it can outperform the BFGS update in
some situations. In the following, we state two important results that motivate the choice of
the SR1 update to approximate nonconvex Hessians. The first well-known result has first
been proven by [71].

Theorem 7.1 (Quadratic termination of SR1). Consider n SR1 updates using difference
vectors δ [k] and γ [k] for k = 0,1,2, . . . ,n−1, where γ [k] = Hδ [k] and H is symmetric. If B[0]

SR1
is symmetric, and if for k = 0,1, . . . ,n−1 the denominators in (7.2) are non-zero, and the
vectors δ [k] are linearly independent, then B[n]

SR1 = H.

Proof. We show by induction that

B[k]
SR1δ

[j] = γ
[j], j = 0, . . . ,k−1, (7.3)

where 0≤ k ≤ n. For k = 0, the condition is vacuous and hence true. Assume now that (7.3)
is true for some k, such that 0≤ k ≤ n−1. The definition of B[k+1]

SR1 gives

B[k+1]
SR1 δ

[j] = B[k]
SR1δ

[j]+
r[k]r[k]

T
δ [j]

r[k]T δ [k]
, (7.4)

where r[k] := γ [k]−B[k]
SR1δ [k]. For j = k the right-hand side is B[k]

SR1δ [k]+ r[k] which is equal
to γ [k] by definition of r[k]. For j < k it follows from (7.3) that B[k]

SR1δ [j] = γ [j], and, using
symmetry of B[k]

SR1, that

r[k]
T

δ
[j] = (γ [k]−B[k]

SR1δ
[k])T

δ
[j] = γ

[k]T
δ
[j]−δ

[k]T B[k]
SR1δ

[j] = γ
[k]T

δ
[j]−δ

[k]T
γ
[j]

Because γ [j] = Hδ [j] for all j = 0,1, . . . ,n−1, it follows for j < k that r[k]
T

δ [j] = 0. Thus
for both j = k and j < k it has been shown that B[k]

SR1δ [j] = γ [j] and hence (7.3) has been
established for k+1 replacing k. Hence by induction, (7.3) is true for all k = 0, . . . ,n. For
k = n, and using γ [j] = Hδ [j], (7.3) can be written as

B[n]
SR1δ

[j] = Hδ
[j], j = 0, . . . ,n−1

or as

B[n]
SR1∆ = H∆

where ∆ is an n×n matrix with columns δ [j] , j = 0,1, . . . ,n−1. But ∆ is nonsingular by
the linear independence assumption, so it follows that B[n]

SR1 = H.

128

7.2. Partitioned quasi-Newton updates

A consequence of this theorem is that if SR1 updates are used to minimize a convex
quadratic function, then, in exact arithmetics, iteration n is a Newton iteration which will
locate the minimizer exactly. A key feature of the proof is the establishment of the so-called
hereditary property (7.3), in which secant conditions from previous iterations remain satisfied
by subsequent B[k]

SR1 matrices.
A number of results concerning convergence of matrices generated by the SR1 update is

established in [46]. In particular, the following theorem is of interest.

Theorem 7.2 (Convergence of SR1 approximations). Consider a quasi-Newton method using
SR1 updates that generates a sequence of iterates {x[k]} for the unconstrained minimization
problem

min
x∈Rn

ϕ(x).

Assume that ϕ ∈ C2, its Hessian ∇2ϕ is Lipschitz continuous, and that {xk} converges to a
finite limit point x∗. Assume further that the sequence of steps {δ [k]} is uniformly linearly
independent, that is, there exist k0 and m≥ n such that, for every k ≥ k0 one can choose n
distinct indices k ≤ k1 < · · ·< kn ≤ k+m such that the minimum singular value of the n×n
matrix [

δ [k1]

‖δ [k1]‖ · · · δ [kn]

‖δ [kn]‖
]

is bounded away from zero. Finally, assume that the denominators in (7.2) are all nonzero.
Then there exists a constant C > 0 such that, for k ≥ k0,∥∥∥B[k+m+1]

SR1 −∇
2
ϕ(x∗)

∥∥∥≤Cε
[k] (7.5)

where

ε
[k] = max{

∥∥∥x[l]− x∗
∥∥∥ | k ≤ l ≤ k+m+1} (7.6)

and

lim
k→∞

∥∥∥B[k]
SR1−∇

2
ϕ(x∗)

∥∥∥= 0. (7.7)

This theorem implies that the sequence of matrices {B[k]
SR1} converges to the true Hes-

sian ∇2ϕ(x∗). Furthermore, the estimate (7.5) provides some indication of the speed of
convergence. Through further analysis, one can show that (7.5) can be replaced by∥∥∥B[k+m+1]

SR1 −∇
2
ϕ(x∗)

∥∥∥≤C2

∥∥∥x[k]− x∗
∥∥∥ (7.8)

under some assumptions. This means that fast convergence of {x[k]} to x∗ implies fast
convergence of {B[k]

SR1} to ∇2ϕ(x∗).

129

Chapter 7. Hessian approximations

7.2.2. Damped BFGS Update

Starting from an initial approximation B[0]
BFGS, the BFGS update is given by the formula

B[k+1]
BFGS = B[k]

BFGS−
B[k]

BFGSδ [k]δ [k]T B[k]
BFGS

δ [k]T B[k]
BFGSδ [k]

+
γ [k]γ [k]

T

γ [k]
T

δ [k]
, k = 0,1, (7.9)

Possible choices for B[0] are discussed below in Sec. 7.2.4.
The BFGS update maintains positive definiteness whenever the curvature condition,

δ [k]T γ [k] > 0 is satisfied. While in unconstrained optimization this is the case in a neigh-
borhood of a solution, it is not true for constrained problems as pointed out in Section 5.3.
Therefore, we use Powell’s damping strategy [165] that makes it possible to perform the
BFGS update even in a direction of negative curvature. We compute damping parameters
θ [k] from

θ
[k] =

0.8δ [k]T B[k]

BFGSδ [k]

δ [k]T B[k]
BFGSδ [k]−δ [k]T γ [k]

, if δ [k]T γ [k] < 0.2δ [k]T B[k]
BFGSδ [k],

1, else.

With this, we define γ
[k] by

γ
[k] = θ

[k]
γ
[k]+(1−θ

[k])B[k]
BFGSδ

[k],

and use γ
[k] in place of γ [k] to compute the damped update from Equation (7.9). Note that

θ [k] = 1 gives the unmodified BFGS update. We also note that the secant condition (7.1)
does not hold anymore when the damping strategy is applied. It does hold for the modified
vector γ

[k] instead.
An additional safeguard is required because the update described above is applied block-

wise, i.e., δ [k] is in fact only a subvector of the full-space step. This implies that δ [k] and hence
the denominators δ [k]T H [k]δ [k] and γ [k]

T
δ [k] can be zero even though the full-space step is not.

We skip the update for the current block whenever δ [k]T H [k]δ [k] < εQN or γ [k]
T

δ [k] < εQN. In
our implementation, we set εQN = 10−14.

Theoretical properties
Although the BFGS update is universally considered to be the best quasi-Newton update
in practice [154, 190], it lacks the strong theoretical background of the SR1 update, and
convergence results for the BFGS update typically require much stronger assumptions. In
particular, most existing results are stated under the assumption that exact line searches are
used. An analogon to Thm 7.1 is given in the following theorem, see [55].

Theorem 7.3 (Quadratic termination of BFGS). Consider a quasi-Newton method using
BFGS updates with symmetric positive definite initial matrix B[0]

BFGS that generates a sequence
of iterates {x[k]} for the unconstrained quadratic minimization problem

min
x∈Rn

ϕ(x) := 1
2 xT Hx+gT x,

130

7.2. Partitioned quasi-Newton updates

where H is assumed to be positive definite. Furthermore, assume that an exact line search
is used to produce the iterates {x[k]}, that is, step lengths α [k] are chosen such that they

minimize the function along the search directions −B[k]
BFGS

−1
∇ϕ(x[k]). Then there is an

integer 0≤ l ≤ n such that x[l] = x∗ =−H−1g and if l = n, B[k]
BFGS = H.

Compare this to the result of Thm 7.1, where the steps δ [k] can be defined in an almost
arbitrary manner. If step lengths α = 1 are used, it can be shown that the BFGS matrices
need not converge to the exact Hessian, and examples for this undesirable behavior can be
found even in the strictly convex quadratic case [86].

7.2.3. Limited-memory storage and build-up

In practice, a limited-memory update is often used instead of a full memory update. That
means old curvature information is consistently discarded and only the M most recent
updates are taken into account, where M is relatively small, say, M ≤ 20. We noticed in
our experiments that the full-memory BFGS updates often lead to more SQP iterations than
their limited-memory counterparts, although theoretically the rate of convergence is only
linear [145] in the limited memory case. We attribute this to the fact that “old” curvature
information can result in poor Hessian approximations and prevent fast progress of the
algorithm. On the other hand, the constant M should not be chosen too low for SR1 updating
because then the available secant information may not be enough for the SR1 accuracy
properties to manifest, see [147].

Usually, limited-memory methods avoid the explicit construction of the Hessian by making
use of compact representation schemes, that allow efficient computation of matrix–vector
products [41]. However, the qpOASES QP solver that is used in our implementation requires
that the elements of the Hessian matrix are provided explicitly. As a consequence, we
compute the dense quasi-Newton matrices for each block. More specifically, we store the M
most recent vectors

{δ [k−1], . . . ,δ [k−M]}, {γ [k−1], . . . ,γ [k−M]},

where M = min(M̃,k) and M̃ is a fixed number. Starting with an initial approximation Bk−M ,
we explicitly construct the blocks of the matrix B[k] by forming the sum of the M most
recent updates. This approach is efficient because the blocks are relatively small, and the
computational cost for constructing the dense matrices is negligible compared to evaluation
of sensitivities and solution of the QP.

7.2.4. Initial approximation

For the limited-memory updates, we choose the initial matrix B[k−M] as the identity matrix
multiplied by a scaling factor σ [k]. In the first SQP iteration, we set σ [0] = 1. After this, σ [k]

131

Chapter 7. Hessian approximations

is one of the following quantities:

σ
[k]
SP =

γ [k]
T

γ [k]

γ [k]
T

δ [k]
, σ

[k]
Mean =

√
γ [k]

T
γ [k]

δ [k]T δ [k]
, σ

[k]
OL =

γ [k]
T

δ [k]

δ [k]T δ [k]
. (7.10)

Note that the initial matrix B[0] for the full-memory update is multiplied by one of the above
after the first step. The factor σSP is due to Shanno and Phua [185], the factor σOL is due
to Oren and Luenberger [157], and σMean is the geometric mean of σSP and σOL. Note that
σSP ≥ σMean ≥ σOL. To avoid numerical instabilities we enforce σ(·) > εσ whenever the
denominator becomes too small. We set εσ = 10−14 in our implementation.

7.3. Sizing of quasi-Newton updates

Aside from scaling the initial approximation B[0], self-scaling variable metric (SSVM) meth-
ods, first developed in [156, 157, 158], try to compensate for poor scaling by multiplying
the approximation B[k] with a scalar σ [k] before performing the update. For example, a
self-scaling BFGS update is computed by the formula

B[k+1]
BFGS = σ

[k]

[
B[k]

BFGS−
B[k]

BFGSδ [k]δ [k]T B[k]
BFGS

δ [k]T B[k]
BFGSδ [k]

]
+

γ [k]γ [k]
T

γ [k]
T

δ [k]
,

where σ [k] is given by, e.g.,

σ
[k] =

γ [k]
T

δ [k]

δ [k]T B[k]δ [k]
,

cf. Eq. (7.10).
Although theoretical and numerical evidence suggest that the SSVM philosophy of scaling

in every iteration is inferior to scaling only at the first iteration, see [155, 185], the concept
has been refined and successfully applied by various authors [2, 3, 50, 206]. We note that the
literature on the topic is almost exclusively concerned with unconstrained optimization.

Our motivation for using scaling techniques for quasi-Newton approximations is that nu-
merical experiments with BFGS updates indicate that the approximations tend to accumulate
many large eigenvalues. This causes the algorithm to take unnecessarily small steps and
prevents progress towards a solution. A remedy is provided by the concept of selective sizing
as proposed by Contreras and Tapia [50] that in turn was inspired by the SSVM methods. In
this section, we will first provide some theoretical motivation for the selective sizing strategy.
The notation using Rayleigh quotients has been first developed in a Bachelor’s thesis [144]
that was supervised within this project. Afterwards we describe the selective sizing strategy
that we implement in our method.

132

7.3. Sizing of quasi-Newton updates

7.3.1. Theoretical motivation

By sizing we mean multiplying the approximate Hessian by an appropriate scalar before it
is updated. The term sizing, as opposed to scaling, was used in [56] to emphasize the fact
that multiplying by a scalar shifts the spectrum of the matrix. The goal of sizing is to shift
the eigenvalues of the Hessian approximation such that they better approximate those of the
exact Hessian. We now define precisely what we mean by this.

Definition 7.4 (Convex spectrum). By the convex spectrum of a collection of n×n matrices
H1, . . . ,Hm, denoted conspec(H1, . . . ,Hm), we mean the convex hull of the eigenvalues of
H1, . . . ,Hm.

When H is symmetric, all eigenvalues are real and the convex spectrum is an interval. A
representation of the convex spectrum of a matrix H is given by the Rayleigh quotient.

Definition 7.5 (Rayleigh quotient). For a symmetric matrix H ∈Rn×n, the Rayleigh quotient
is defined as

RH(x) :=
xT Ax
xT x

, x 6= 0.

A well-known property of the Rayleigh quotient is

λmin ≤ RH ≤ λmax,

where λmin and λmax are the smallest and largest eigenvalue of H, respectively. Let us now
define the notion of sizing for Hessian matrices.

Definition 7.6 (Sizing). Consider a C2 function φ : Rn→ R. We say that the scalar σ sizes
B ∈ Rn×n relative to the Hessian of φ if there exists x1,x2, . . . ,xm ∈ Rm such that

conspec(σB)∩ conspec(∇2
φ(x1),∇

2
φ(x2), . . . ,∇

2
φ(xm)) 6= /0.

We call the integer m the degree of the sizing factor σ .

We are interested in a sizing factor σ that sizes a BFGS approximation relative to the
exact Hessian of the Lagrangian. Note that σ is defined in terms of evaluation of the exact
Hessian—which is not accessible—at several points. Our only information about the exact
Hessian comes from the vector γ [k] that satisfies the secant equation

B[k+1]
δ
[k] = γ

[k].

The idea is to use available information δ [k−i] and γ [k−i] from previous iterations i = 1, . . . ,m
to construct sizing factors of degree m.

133

Chapter 7. Hessian approximations

Theorem 7.7. Consider a C2 function φ : Rn→ R and a sequence of matrices {B[k]} con-
structed by the BFGS update to approximate its Hessian. Then σ defined by

σ ·β [k] =
m

∑
i=1

αi ·
δ [k−i+1]T γ [k−i+1]

δ [k−i+1]T δ [k−i+1]
, (7.11)

where

αi > 0,
m

∑
i=1

αi = 1 and β
[k] ∈ conspec(B[k]).

constitutes a sizing factor of degree m, that sizes the current Hessian approximation B[k]

relative to the exact Hessian.

Proof. Consider the function ψ : Rn→ R defined by:

ψ(x) := δ
[k]T

∇L(x,λ [k+1]).

By definition of γ [k] we know that

δ
[k]T

γ
[k] = ψ(x[k+1])−ψ(x[k])

We apply the mean-value theorem to obtain

ψ(x[k+1])−ψ(x[k]) = ∇ψ(x[k]+θ(x[k+1]− x[k]))T
δ
[k]

= δ
[k]T

∇
2L(x[k]+θδ

[k],λ [k+1])δ [k], θ ∈ [0,1].

This means that the Rayleigh quotient

R
∇2L(x[k]+θδ [k],λ [k+1])(δ

[k]) =
δ [k]T γ [k]

δ [k]T δ [k]

is a point in the convex spectrum of the exact Hessian of L at a point x[k]+θδ [k].

The scalar β [k] can be obtained by evaluating the Rayleigh quotient of B[k] at a suitable
point. For example, σOL is a sizing factor of degree 1:

σ
[k]
OL =

δ [k]T γ [k]

δ [k]T B[k]δ [k]
.

Centered Oren–Luenberger sizing factor
A sizing factor of degree 2 is the centered Oren–Luenberger sizing factor σCOL due to [50].
It uses two pieces of approximate Hessian information and can be derived as follows. Using
formula (7.11), we require that

σ
[k]
COL(α) ·

[
(1−α)RB[k](δ [k−1])+αRB[k](δ [k])

]
= (1−α)R∇2L(δ

[k−1])+αR∇2L(δ
[k]),

where we use the compact notation R∇2L(δ
[k]) = R

∇2L(x[k]+θδ [k],λ [k+1])(δ
[k]). Here, we use a

convex combination of RB[k](δ [k−1]) and RB[k](δ [k]) to obtain β [k] in formula (7.11). Observing
that B[k]δ [k−1] = γ [k−1], this yields

134

7.3. Sizing of quasi-Newton updates

Definition 7.8 (COL sizing factor). The centered Oren–Luenberger (COL) sizing factor at
iteration k for a parameter α ∈ (0,1) is defined as

σ
[k]
COL(α) =

(1−α)γ [k−1]T δ [k−1]/δ [k−1]T δ [k−1]+αγ [k]
T

δ [k]/δ [k]T δ [k]

(1−α)γ [k−1]T δ [k−1]/δ [k−1]T δ [k−1]+αδ [k]T B[k]δ [k]/δ [k]T δ [k]
. (7.12)

Note that α = 1 yields the Oren-Luenberger factor σ
[k]
OL. Similarly, sizing factors of higher

degree can be conceived, see [144].

7.3.2. Selective sizing strategy

Recall that our initial goal was to prevent the accumulation of large eigenvalues in quasi-
Newton approximations that may lead to unnecessarily small steps. This is accomplished by
the selective sizing strategy, that has been first described in [50] for unconstrained problems.
It uses the COL sizing factor (7.12) whenever it is smaller than 1, thus effectively reducing
the eigenvalues of B[k].

More precisely, we choose α [k] = min(1
2 ,τCOL‖δ [k]‖∞) and size B[k] before updating by

σ
[k]
COL(α

[k]) whenever 0 < εCOL < σ
[k]
COL(α

[k]) < 1. Here, εCOL is a safeguard to prevent
near-singular approximations. Moreover the constant τCOL > 0 guarantees that α [k]→ 0 and
thus σ

[k]
COL→ 1 as the solution is approached. In our implementation, we choose τCOL = 104

and εCOL = 0.1. Note that we replace γ [k] by γ
[k] in (7.12) whenever BFGS damping is active.

The computational overhead introduced by this strategy is very small: For each block
of the Hessian, we only have to store the scalars δ [k−1]T δ [k−1] and γ [k−1]T δ [k−1] from the
previous iteration and perform one additional multiplication.

The selective sizing strategy performed very well in our numerical tests and was consis-
tently better than the traditional strategy of sizing in only the first iteration and the SSVM
philosophy of sizing in every iteration with a sizing factor of degree 1, see Chapter 10. Thus
the question arises if more can be gained by using sizing factors of higher degree. Strategies
based on factors of degree 3 are examined in [144]. However, they offer no significant
improvement over the selective sizing strategy based on the COL sizing factor which is why
we do not discuss them here. We attribute this to the fact that “too old” information δ [k−i],
γ [k−i] are less useful for approximating the current Hessian.

135

Chapter 8.

Solution of sparse and nonconvex quadratic
programs

This chapter deals with the efficient solution of the sparse and nonconvex quadratic sub-
problems arising in Algorithm 6. The method we use is based on the parametric active set
method [21, 68] implemented in qpOASES [69, 70]. We first outline the parametric quadratic
programming algorithm before describing new developments that enable the solution of
sparse and nonconvex quadratic programs, including a Schur complement approach, a mech-
anism for monitoring the inertia to deal with nonconvexity, and some practical issues. In
particular, we show how the method can be used to efficiently check positive definiteness on
AS , which is required by Algorithm 6 in every SQP iteration. These new developments for
sparse and nonconvex problems were first described in the paper [125].

8.1. A parametric active set method

In this section we first establish some basic notation for (parametric) quadratic programming
and review the optimality conditions for quadratic programs. Then we state the parametric
quadratic programming algorithm, the basis for the new developments that enable us to
efficiently solve the sparse nonconvex subproblems in our SQP method. Most of the content
is taken from [70], but the notation has been adjusted to our SQP framework.

8.1.1. Optimality conditions

We are interested in solving quadratic programs of the following form:

min
d∈Rn

1
2 dT Bd +gT d (8.1a)

s.t. Ad + c = 0, (8.1b)

b` ≤ d ≤ bu. (8.1c)

The first-order necessary optimality conditions for (8.1) are a special case of the KKT
conditions (1.2) and state that if d∗ is a solution of (8.1), there exists a vector of Lagrange

137

Chapter 8. Solution of sparse and nonconvex quadratic programs

multipliers or dual variables λ ∗ ∈ Rm+n such that

Bd∗+g−
[
AT In

]
λ
∗ = 0, (8.2a)

Ad∗+ c = 0, (8.2b)

b` ≤ d∗ ≤ bu, (8.2c)

λ
∗
m+i ≥ 0, if d∗i = b`,i, (8.2d)

λ
∗
m+i ≤ 0, if d∗i = bu,i, (8.2e)

λ
∗
m+i = 0, if b`,i < d∗i < bu,i. (8.2f)

A pair (d∗,λ ∗) that satisfies (8.2) is called a KKT point. In the convex case this is a global
solution of (8.1). Let us further define the set of active variable bounds as a subset of
n̄ := {1, . . . ,n}, A := {i ∈ n̄ | d∗i = b`,i or d∗i = bu,i} and let IA be the matrix whose columns
are the unit vectors ei ∈ Rn with i ∈ A. We define the matrix of active constraints as

AA :=
[
AT IA

]T
. (8.3)

Second-order necessary optimality conditions in active set form can then be stated as
follows:

Theorem 8.1 (QP second-order necessary conditions). Suppose (d∗,λ ∗)∈Rn+m+n is a KKT
point and a local minimizer of the QP (6.2). Let AA have full row rank and let the columns
of the matrix ZA form a basis of the null space of AA. Then the reduced Hessian ZT

ABZA is
positive semidefinite.

The following second order sufficient condition can be used to verify local optimality
for (d∗,λ ∗): If strict complementarity is satisfied (see Def. 1.6) and the reduced Hessian is
positive definite, then (d∗,λ ∗) is a local minimizer of (8.1).

8.1.2. The parametric quadratic programming paradigm

The idea behind parametric active set methods is to trace optimal solutions on an affine-
linear homotopy path between two QP instances, parameterized by τ ∈ [0,1]. This yields a
one-parametric family of QPs with affine-linear functions g(τ), c(τ), b`(τ), and bu(τ):

min
d∈Rn

1
2 dT Bd +g(τ)T d (8.4a)

s.t. Ad + c(τ) = 0, (8.4b)

b`(τ)≤ d ≤ bu(τ). (8.4c)

For fixed τ , denote an optimal primal-dual solution by (d(τ),λ (τ)). It can be shown that
optimal solutions depend piecewise affine-linearly but not necessarily continuously on τ ,
see [21]. The active set is constant on each linear segment. Parametric active set algorithms
follow (d(τ),λ (τ)) by moving from the beginning of one segment to the next. A working
setW(τ) of active variables is maintained and is updated accordingly.

138

8.1. A parametric active set method

In our case, every iteration l of the loop in Step 2 of the SQP Algorithm 6 requires the
solution of QP(B[k,l]). The parametric QP we want to solve reads as

min
d

1
2 dT B[k,l]d +g(τ)T d (8.5a)

s.t. A[k]d + c(τ) = 0, (8.5b)

b`(τ)≤ d ≤ bu(τ). (8.5c)

The lower and upper bounds b`(τ) and bu(τ), the gradient vector g(τ) and the constraint
vector c(τ) are the following affine-linear functions parameterized by τ ∈ [0,1]:

b`(τ) = b`− x[k−1](1− τ)− x[k]τ, bu(τ) = bu− x[k−1](1− τ)− x[k]τ,

g(τ) = g̃[k−1](1− τ)+g[k]τ, c(τ) = c̃[k−1](1− τ)+ c[k]τ.

The parametric data in τ = 0 is initialized with

g̃[k−1] = g[k−1]+(B[k−1]−B[k,l])d[k−1]− (A[k−1]−A[k])T
λ̄
[k−1],

c̃[k−1] = c[k−1]+(A[k−1]−A[k])d[k−1].

This makes is possible to warm-start the solver in τ = 0 from the known optimal solution
(d[k−1], λ̄ [k−1]) of the previous SQP iteration. The solution of (8.4) in τ = 1 is the solution of
QP(B[k,l]) sought for.

8.1.3. The algorithm

For the parametric quadratic programming algorithm we compute iterates w[ν] = (d[ν],λ [ν]),
and τ [ν], ν = 0,1,2, . . ., with 0 = τ [0] < τ [1] < · · ·< τ [N] = 1 until a solution of (8.4) is found.
In particular, conditions 8.1 are satisfied at a solution. We maintain a working set of variables
that are active at one of their bounds:

W [ν] ⊆ {i ∈ n̄ | d[ν]
i = b`,i(τ [ν]) or d[ν]

i = bu,i(τ
[ν])}.

We denote the complement of W [ν] in n̄ by (W [ν]){. The number of elements in W [ν] is
denoted by

∣∣W [ν]
∣∣≤ n. For the remainder of this section, we assume that the Hessian B is

positive semidefinite. The nonconvex case is discussed in Sec. 8.3 below. Algorithm 9 shows
the main steps of the parametric quadratic programming algorithm. We now explain several
steps in more detail.

Computing the step direction (Step 2)
We denote by IW [ν] ∈ R|W [ν]|×n the identity matrix with the rows deleted whose indices are
not inW [ν]. We define

AW [ν] :=
[

A
IW [ν]

]
,

139

Chapter 8. Solution of sparse and nonconvex quadratic programs

Algorithm 9: Parametric quadratic programming algorithm for positive semi-definite
Hessians.

1. Start with an optimal primal–dual solution w[0] = (d[0],λ [0]) and associated work-
ing setW [0] of the previously solved QP. Set τ [0] = 0, ν = 0.

2. Determine the step direction ∆w[ν] = (∆d[ν],∆λ [ν]) using the current working set
W [ν].

3. Determine the maximum homotopy step length ∆τ [ν] and possibly the index of a
blocking bound, p, or a blocking multiplier sign change, q, with the ratio tests

∆τp = min
i∈W{

α
p
i , where α

p
i =

−di−b`,i(τ)

∆di
, if ∆di < 0

bu,i(τ)−di
∆di

, if ∆di > 0
∞, otherwise.

∆τd = min
i∈W

α
d
i , where α

d
i =

{
− λm+i

∆λm+i
, if sgn(λm+i) 6= sgn(∆λm+i)

∞, otherwise.
.

Set ∆τ = min{∆τp,∆τd} and p = arg min
i∈W{

α
p
i or q = arg min

i∈W{
α

d
i .

4. If ∆τ [ν] ≥ 1− τ [ν], then stop with w[ν+1] = w[ν]+(1− τ [ν])∆w[ν] as the solution
of (8.4).

5. Set τ [ν+1] = τ [ν]+∆τ [ν], w[ν+1] = w[ν]+∆τ [ν]∆w[ν], andW [ν+1] =W [ν].

6. If bound of primal variable d[ν+1]
p is blocking:

(a) SetW [ν+1] =W [ν+1]∪{p}.
(b) If the new working set W [ν+1] is linearly dependent, find an exchange

constraint index q or stop due to infeasibility of (8.4) for all τ > τ [ν+1].
Adjust dual variables λ [ν+1] and setW [ν+1] =W [ν+1] \{q}.

7. If sign change of dual variable λ
[ν+1]
m+q is blocking:

(a) SetW [ν+1] =W [ν+1] \{q}
(b) If B has nonpositive curvature on the null space ofW [ν+1], find an exchange

bound index p or stop due to unboundedness of (8.4) for all τ > τ [ν+1].
Adjust primal variables d[ν+1] and setW [ν+1] =W [ν+1]∪{p}.

8. Set ν = ν +1 and continue with Step 2.

140

8.1. A parametric active set method

and denote by λ
[ν]
W the corresponding multipliers. Furthermore, we define the right-hand side

vector bW(τ [ν]) as

bW(τ [ν]) =

[
−c(τ [ν])

IW [ν]b(τ [ν])

]
,

where the vector b(τ [ν]) consists of the entries

(b(τ [ν]))i =

(b`(τ [ν]))i, if d[ν]

i = (b`(τ [ν]))i

(bu(τ
[ν]))i, if d[ν]

i = (bu(τ
[ν]))i

0 , otherwise.

We can then determine the step direction (∆d[ν],∆λ
[ν]
W) by solving[

B AT
W [ν]

AW [ν]

][
∆d[ν]

−∆λ
[ν]
W

]
=

[
−(g(1)−g(τ [ν])

bW(1)−bW(τ [ν])

]
. (8.7)

For i 6=W [ν], we set ∆λ
[ν]
i = 0.

Determining linear dependence (Step 6)
The new working setW [ν+1] is formed by addition of a new bound p to the working setW ,
which can lead to rank deficiency of AW [ν+1] and thus loss of invertibility in Eq. (8.7). We
can check for linear dependency of ep ∈ Rn on AW [ν] by solving[

B AT
W [ν]

AW [ν]

][
s
ζ

]
=

[
ep

0

]
. (8.8)

ep is linearly dependent on AW [ν] if and only if s = 0. In this case, an exchange bound must
leave the working set to resolve linear dependency. To determine the bound, see that Eq. (8.8)
yields

0 =−ep +AT
W [ν]ζ . (8.9)

Multiplying Eq. (8.9) by µ—where µ ≥ 0 if the new bound p is active at its upper bound,
and µ ≤ 0 if it is active at its lower bound—and adding this as a special form of zero to the
stationarity conditions (8.2a) yields

B(d[ν]+∆τ∆d[ν])+g(τ [ν+1]) = AT
W [ν]λ

[ν]
W (8.10)

=−µep +AT
W [ν](λ

[ν]
W +µζ)

All coefficients on the right-hand side of Eq. (8.10) are also valid choices λ̃ for the dual
variables as long as they have the correct sign. Hence, we need to compute the index q and
multiplier µ of the exchange constraint. We determine µ∗ by the following ratio test:

µ
∗ := min

i∈W [ν+1]
α

d
i , where α

d
i =

{
−λm+i

ζm+i
, if sgn(λm+i) 6= sgn(µζm+i)

∞, otherwise.
. (8.11)

141

Chapter 8. Solution of sparse and nonconvex quadratic programs

If µ∗ = ∞, then the parametric QP is infeasible beyond τ [ν+1], in particular in τ = 1 by
convexity of the feasible set. Otherwise, let q be a minimizing index of the ratio set und let
λ [ν+1] := λ̃ where

λ̃m+p =−µ
∗, λ̃i = λ

[ν+1]
i +µ

∗
ζi (8.12)

Furthermore, λ̃m+q vanishes by construction of µ∗. Removing constraint q from W [ν+1]

restores linear independence, see [21] for a proof.

Determining zero curvature (Step 7)
The new working setW [ν+1] is formed by removal of bound q fromW [ν]. The dimension of
the null space of AW [ν+1] grows by one compared to AW [ν] . This may lead to exposition of a
direction of zero curvature in the null space, which implies loss of invertibility in Eq. (8.7).
Directions of zero curvature can be detected by solving[

B AT
W [ν]

AW [ν]

][
s
ζ

]
=

[
0

−em+q

]
. (8.13)

with em+q ∈ Rm+|W [ν]|. B is singular on the null space of AW [ν+1] if and only if ζ = 0,
see [21]. The zero curvature disappears if a suitable exchange bound is added to the working
set instead. To determine the exchange bound, note that s solves

Bs = 0, em+qs =−1, AW [ν+1]s = 0

and all points d̃ = d[ν+1]+σs, σ > 0 are also optimal solutions if d̃ is primal feasible. We
can determine the largest σ from the ratio tests

σ = min
i∈(W [ν+1]){

α
p
i =

−d[ν+1]

i −b`,i(τ)
si

, if si < 0
bu,i(τ)−d[ν+1]

i
si

, if si > 0
∞, otherwise.

If σ = ∞, then the parametric QP is unbounded beyond τ [ν+1], and in particular in τ = 1.
Otherwise, let p be a minimizing index of the ratio set, and let d[ν+1] := d[ν+1]+σs. By
construction of σ , the constraint row p is active in d[ν+1] and can be added to the working
set. Again, we refer to [21] for a proof.

8.2. Linear algebra

The main computational burden associated with solving a QP (8.1) is the solution of the
KKT systems in Eq. (8.7) and (8.8) or (8.13) in every iteration ν of the parametric quadratic
programming algorithm. First we describe how the dimension of the system can be reduced
from n+m+ |W| to n+m−|W| by exploiting the fact that inequalities are only given as
simple bounds on the variables. Then we describe a Schur complement approach that allows
to employ efficient sparse solvers for the large KKT matrix at the first iteration and maintain
dense updates for a small Schur complement as the iterations proceed.

142

8.2. Linear algebra

8.2.1. Simple bounds

For the solution of the n+m+ |W| system (8.7) during an iteration ν , consider first a per-
mutation and partition of the primal variables into free and fixed variables, ∆d = (∆dF ,∆dX)
according to the current working set W . Similarly, we partition ∆λW = (∆λA,∆λX) into
multipliers for linear constraints and active variable bounds. The generic right-hand side
vectors g = (gF ,gX) and b = (bA,bX) as well as Hessian H and Jacobian A are permuted and
partitioned accordingly,

B =

(
BFF BT

FX
BFX BXX

)
, A =

(
AF AX

)
.

Then system (8.7) reads as
BFF BT

FX AT
F

BFX BXX AT
X I

AF AX

I

∆dF

∆dX

−∆λA

−∆λX

=

gF

gX

bA

bX

 .
From this system, we immediately see that ∆dX = bX . We can now obtain ∆dF and ∆λA by
solving the reduced KKT system[

BFF AT
F

AF

][
∆dF

−∆λA

]
=

[
gF −BT

FX bX

bA−AX bX

]
. (8.14)

Finally, we recover the multipliers for the fixed variables as

∆λX = BFX ∆dF +HXX bX −AT
X ∆λA−gX .

Systems (8.8), and (8.13) are also solved using the reduced system (8.14) and appropriate
right-hand sides.

8.2.2. Schur complement approach

Every active-set iteration ν in the parametric active-set QP method requires the solution
of linear systems of the form (8.14). We denote the reduced KKT matrix from (8.14) in
iteration ν by

K[ν] :=

[
B[ν] A[ν]T

A[ν]

]
, (8.15)

where H [ν] is the matrix obtained from H by deleting the rows and columns that correspond to
the indices inW [ν]. Similarly, A[ν] is obtained from A by deleting the columns corresponding
to the indices inW [ν].

In many application, in particular our problems from DMS, this matrix is sparse, cf.
Fig 2.2. It can be efficiently factored using a symmetric indefinite LBLT -factorization. In

143

Chapter 8. Solution of sparse and nonconvex quadratic programs

our implementation, this is accomplished by the sparse multifrontal solver MA57 [63] with
approximate minimum degree ordering computed by MC47 [6]. Other direct methods for
sparse systems that could be used in this context include PARDISO [175] and MUMPS [7].

Computing a new LBLT factorization every time the working set changes would be
inefficient. Instead we follow the Schur complement approach described by [27, 94, 97, 104],
which computes a factorization of (8.15) only for the initial working setW [0] set and then
maintains and updates factors for a Schur complement as the iterations proceed.

Forming K[ν] by augmentation
When the working set changes, the KKT matrix changes by a single row and column.
Instead of factoring the matrix (8.15) again, the first matrix K[0] may be bordered in a way
that reflects the changes to the working set during a set of ν subsequent iterations. The
solution of systems involving (8.15) is then found by using a fixed factorization of K[0], and
a factorization of a smaller matrix of order at most 2ν .

To see this, let us first consider the case where a variable with index p enters the working
set in the first iteration. Then K[1] is obtained by bordering K[0] with the p-th unit row and
column vector ep ∈ Rn:

K[1] =

 H [0] A[0]T ep

A[0] 0 0
eT

p 0 0

Now assume that a variable with index q 6= p leaves the working set in the second iteration.
Then K[1] is bordered as follows:

K[2] =

H [0] A[0]T ep HW [0],q
A[0] 0 0 Aq

eT
p 0 0 0

HT
W [0],q AT

q 0 Hqq

 ,
where Aq is the q-th columns of A, HW [0],q is the q-th column of H with the elements corre-
sponding to the working set deleted, and Hqq is the q-th diagonal element of H. If p leaves
or q enters the working set again in a future iteration, we simply delete the corresponding
rows and columns.

In summary, after ν iterations, the KKT system is maintained as a symmetric augmented
system of the form

K[ν] =

[
K[0] M[ν]

M[ν]T N[ν]

]
, ν = 1,2, (8.16)

where N[ν] is of dimension of at most 2ν because when a bound is added there may be an
exchange bound that is removed due to linear dependency. Conversely, when a bound is
removed there may be another bound added due to zero curvature.

144

8.2. Linear algebra

Solving sytems involving K[ν]

Suppose we now want to solve a system involving K[ν][
K[0] M[ν]

M[ν]T N[ν]

][
α

β

]
=

[
r
t

]
with appropriately chosen vectors α , β , r, t to represent one of the systems (8.7), (8.8), or
(8.13). The key insight is that a solution with K[ν] only requires the solution of the following
systems:

K[0]u = r, S[ν]β = t−M[ν]T u, K[0]
α = r−M[ν]

β ,

where S[ν] is the Schur complement of K[0] in K[ν]:

S[ν] = N[ν]−M[ν]T K[0]−1
M[ν]. (8.17)

This can be done at greatly reduced cost compared to a new factorization of K[ν]: The
LBLT -factors for K[0] are computed only once at the beginning, and we maintain a dense QR
factorization of the small Schur complement S[ν].

The question remains how to maintain and update the Schur complement. For this,
consider an iteration ν +1 with a single change in the working set such that either a bound
is added that has not been removed before or a bound is removed that has not been added
before. Then the matrices M[ν+1] and N[ν+1] have the form

M[ν+1] =
[
M[ν] m

]
, N[ν+1] =

[
N[ν] v
vT σ

]
,

with m, v, and σ depending on the type of change in the working set. Following the definition
of the Schur complement (8.17), the new Schur complement S[ν+1] is given by

S[ν+1] =

[
N[ν] v
vT σ

]
−
[

M[ν]T

mT

]
K[0]−1 [

M[ν] m
]
=

[
S[ν] u
uT γ

]
(8.18)

with K[0]t =m, u = v−M[ν]T u and γ = σ−mT t. Note that another solve with K[0] is required
to update S.

Thus the new Schur complement is constructed from the old one by bordering it with
one row and column. On the other hand, if a working set change reverts an earlier update
of the Schur complement, the new Schur complement shrinks by one row and one column.
For completeness we have included Algorithm 10, which details the procedure of updating
a dense QR factorization of the symmetric matrix S. The algorithm is standard, see [103].
Note that other factorizations for S are possible.

In practice, the KKT matrix K[ν] is refactorized from time to time and replaces the
factorizations of K[0] and S[ν], e.g. when the dimension of S[ν] exceeds a given threshold
nSmax and the cost of maintaining the dense factors of S[ν] becomes too high.

145

Chapter 8. Solution of sparse and nonconvex quadratic programs

Algorithm 10: Updating QR factors of the Schur complement.

Goal: Compute QR factors of the Schur complement S[ν+1] of dimension n[ν+1]
S after a working

set change using existing QR factors for S[ν] = Q[ν]R[ν].
Case 1. S[ν+1] is S[ν] bordered by a row and a column, n[ν+1]

S = n[ν]S +1

1. Set

Q[ν+1]T S[ν+1] =

[
Q[ν]T

1

][
S[ν] u
uT γ

]

=

[
Q[ν]T S[ν] Q[ν]T u

uT γ

]
=

[
R[ν] Q[ν]T

uT γ

]
= R[ν+1]

2. Apply n[ν+1]
S −1 Givens rotations to zero components of uT in the last row of R[ν+1]:

GT (n[ν+1]
S −1,n[ν+1]

S) · · ·GT (1,n[ν+1]
S)·Q[ν+1]T ·S[ν+1] =

GT (n[ν+1]
S −1,n[ν+1]

S) · · ·GT (1,n[ν+1]
S)·R[ν+1]

Case 2. S[ν+1] is S[ν] with row and column j̄ deleted, n[ν+1]
S = n[ν]S −1

1. Delete column j̄ to obtain n[ν]S × n[ν+1]
S matrices R1 and S1. Apply n[ν+1]

S − j̄ Givens
rotations to bring R1 to triangular form:

GT (n[ν+1]
S −1,n[ν+1]

S) · · ·GT (j̄, j̄+1)·Q[ν]T ·S1 =

GT (n[ν+1]
S −1,n[ν+1]

S) · · ·GT (j̄, j̄+1)·R1

2. Simultaneous permutation of Q[ν] and S1: Move row j̄ to position n[ν]S

3. Delete row n[ν]S . Apply n[ν+1]
S Givens rotations to zero the first n[ν+1]

S elements of the last

column of Q[ν]T . The last element will be α with α ∈ {−1,1}. Note that the leading
n[ν+1]

S elements of the last row of Q[ν]T will be zero automatically due to orthogonality.

GT (n[ν]S ,1) ·GT (n[ν]S ,n[ν+1]
S) ·Q[ν]T ·

[
S[ν+1]

uT

]
=

[
Q[ν+1]T 0

0 α

][
S[ν+1]

uT

]
= GT (n[ν]S ,1) ·GT (n[ν]S ,n[ν+1]

S) ·R1 =

[
R[ν+1]

vT

]
.

Q[ν+1] and R[ν+1] are the new factors.

4. If row permutation (i.e. n[ν+1]
S − j̄) was odd and α = 1 or row permutation was even

and α =−1: Change the sign of the first column of Q[ν+1] and the first row of R[ν+1] to
maintain a Q[ν+1] with det(Q[ν+1]) = 1

146

8.3. Handling nonconvexity

8.3. Handling nonconvexity

The discussion so far has only been concerned with positive semidefinite Hessians. An
important feature of our SQP Algorithm 6 is that indefinite Hessians are allowed as long
as they are positive definite on the null space of AS . In this section, we show how Step
7 of Algorithm 9 must be modified to handle indefinite Hessians. We first summarize the
flipping bounds strategy that is invoked by qpOASES whenever the nullspace picks up a
negative eigenvalue. Afterwards we describe two possibilities how negative curvature can
be detected when the nullspace grows. The first one is specifically tailored to the Schur
complement approach by monitoring the inertia of the Schur complement. The second one
is a generalization of the nonzero curvature test described above. We implemented the first
strategy in qpOASES for our numerical tests.

8.3.1. Flipping bounds strategy

The flipping bounds strategy relies on the fact that all variables have finite bounds. If one
or more bounds are missing, b`,i =−∞ or bu,i = ∞, we employ a far bounds strategy [70].
There, infinite or large entries b`,i and bu,i are temporarily set to finite, moderately large
values, M`,i ≈−106 and Mu,i ≈ 106, respectively. Then we solve the QP with far bounds and
distinguish two cases:

1. If no far bounds are active at the solution, this is the solution of the original QP.

2. If the QP with far bounds is infeasible or at least one far bound is active, we enlarge
M`,i and Mu,i by a growth factor, say 103, and solve again, using efficient hot starts.

If case 1 has not occured and the value of the far bounds exceed a very large value considered
infinity, say 1020, the problem is either declared infeasible, if the last QP solved was infeasible,
or unbounded, if the last QP contained an active far bound. Note that the current working
set and matrix factorizations can be reused in the sequence of QPs with growing far bounds,
which allows the far bounds strategy to be carried out very efficiently.

We may now assume all variables have finite bounds. Consider the following situation: A
bound q leaves the working set, i.e., a sign change in the dual variables is blocking, and no
other bound enters, and we detect that by removing this bound a negative eigenvalue appears
in the null space, see Sec. 8.3.2 below for details. In this case we introduce a jump in the QP
homotopy by moving the opposite bound of d[ν]

q such that it becomes active immediately.
This is easily achieved by setting

b`,q(τ [ν]) := bu,q(τ
[ν]), if λ

[ν]
q ≤ 0 and ∆λ

[ν]
q > 0

bu,q(τ
[ν]) := b`,q(τ [ν]), if λ

[ν]
q ≥ 0 and ∆λ

[ν]
q < 0,

and adding q again to the working set. This way, primal and dual feasibility is retained and
we can proceed with the iterations. In particular, the factorization from the previous iteration
stays valid. We next describe how to detect if removing a bound exposes negative curvature
in the null space.

147

Chapter 8. Solution of sparse and nonconvex quadratic programs

8.3.2. Detecting negative curvature by monitoring the inertia of the KKT
matrix

One possibility to ensure that B[ν] stays positive definite on the null space of A[ν] throughout
the working set iterations is to monitor the inertia In(K[ν]) = (n+,n−,n0) of K[ν], where n+,
n−, and n0 are the number of positive, negative, and zero eigenvalues of K[ν]. Our strategy is
similar to the one proposed in [104] and is based on two results that can be proven by using
Sylvester’s law of inertia.

Theorem 8.2 (Gould, [105]). Let B be an n×n symmetric matrix, A an m×n matrix of full
row rank, K the KKT matrix of (8.1) partitioned as in (8.15), and Z a nullspace basis for A.
Then

In(K) = In
[

B AT

A

]
= In(ZT BZ)+(m,m,0)

Theorem 8.3 (Haynsworth, [119]). Let K be the KKT matrix of (8.1) partitioned as in (8.16).
Then

In(K[ν]) = In(K[0])+ In(S[ν]).

Theorem 8.2 allows to deduce the inertia of the reduced Hessian from the inertia of the
KKT matrix. Theorem 8.3 allows to monitor the inertia of K[ν] during modifications of the
Schur complement. As the iterations proceed, we always keep the reduced Hessian positive
definite such that the second-order optimality conditions stated in Thm. 8.1 are satisfied.

We start with an initial KKT matrix K[0] with correct inertia. The case of incorrect inertia
is addressed in Section 8.3.4 below. Thm 8.3 implies that the inertia of K[ν] is correct if and
only if

In(S[ν]) = (σ−,σ+,0), (8.19)

where σ+ is the number of variables added and σ− is the number of variable removed from
the setW [ν] since the most recent LBLT -factorization of the KKT matrix. The inertia of K[ν]

can thus be determined from the inertia of S[ν], and it can be tracked efficiently by observing
the sign of the determinant of S[ν] during every modification of S[ν]. The determinant is
easily computable: We construct the QR factors of S[ν] such that detQ = 1 always holds
for the orthogonal matrix Q. Then detS[ν] is just the product of the diagonal entries of the
triangular factor R.

To see how the sign of the determinant changes, let S[ν+1] and S[ν] have dimensions n[ν+1]
S

and n[ν]S , respectively. A negative eigenvalue can turn up in the null space when we remove a
variable from the working set. For the Schur complement, one of three cases can occur:

• Case 1: The Schur complement grows.

The bound has been in the initial working set and is now to be removed. The Schur
complement is bordered by one row and column, and the new Schur complement is

148

8.3. Handling nonconvexity

given by

S[ν+1] =

(
S[ν] u
uT γ

)
.

Its determinant evaluates to detS[ν+1] = detS[ν] · (γ−uT S[ν]
−1

u). If sgn(detS[ν+1]) 6=
sgn(detS[ν]), the Schur complement gained a negative eigenvalue which is not consis-
tent with the necessary condition (8.19). We set S[ν+1] = S[ν] and the flipping bounds
strategy is invoked.

• Case 2: The Schur complement shrinks.

The bound has not been in the initial working set but has subsequently been added—
causing the Schur complement to grow and gain a negative eigenvalue according to
(8.19)—and is now to be removed again. Suppose row and column 1≤ j̄ ≤ n[ν]S are
deleted from the Schur complement S[ν]; the remainder forms S[ν+1]. We compute
detS[ν] = detR[ν+1] by updating the diagonal elements of R[ν]. If sgn(detS[ν+1]) =
sgn(detS[ν]), the Schur complement lost a positive eigenvalue. This contradicts (8.19),
we set S[ν+1] = S[ν] and the flipping bounds strategy is invoked.

• Case 3: Vacuous Schur complement after a fresh factorization.

The Schur complement has reached its maximum size, but a bound to be removed was
present in the initial working setW [0] and the Schur complement needed to grow. In
this case, the KKT matrix K[ν] is refactorized, and S[ν+1] is now vacuous. We check
the inertia of the new factorization relying on MA57 to provide this information. If
there are more negative eigenvalues than active linear constraints, we start the new
Schur complement S[ν+1] by adding the removed bound at the opposite bound, and
invoke the flipping bounds strategy.

In case 1 and 2, the flipping decisions based on the determinant of S[ν+1] are made before
the QR factorization of S[ν] is updated. In case 1, the computation of det(S[ν+1]) requires a
solve with the known factorization of S[ν]. In case 2, n[ν+1]

S Givens rotations, applied only
to one column of Q[ν] and the diagonal elements of R[ν], are required as well as (n[ν+1]

S − j̄)
rotations applied to one column of Q[ν] and the 3 · (n[ν+1]

S − j̄) tridiagonal elements of R[ν+1].
Case 3 occurs only infrequently, depending on the maximum allowed size of the Schur
complement.

Observing Theorems 8.2 and 8.3, the procedure described above can also be used to detect
zero curvature. In this case, a zero eigenvalue appears in the Schur complement. It is thus
suitable to replace Step 7 of Algorithm 9 within a Schur complement approach and the
additional factorization therein can be avoided. A generalization of Step 7 that is independent
of the linear algebra is described next.

149

Chapter 8. Solution of sparse and nonconvex quadratic programs

8.3.3. Detecting negative curvature by a solve with K[ν]

Another possibility to detect negative curvature in Step 7 of Algorithm 9 is given by the
following Lemma.

Lemma 8.4. Let B be an n×n symmetric matrix and A be an m×n matrix of full row rank
with m ≤ n. Let furthermore B be positive definite on the nullspace of A. Denote by A−

the (m−1)×n matrix that is formed from A by removal of the i-th row and let s ∈ Rn and
ζ ∈ Rm be the solution of [

B AT

A

][
s
ζ

]
=

[
0
−ei

]
. (8.20)

Then B is

positive definite
indefinite
singular

 on the nullspace of A− if and only if

ζi > 0
ζi < 0
ζi = 0

.

Proof. By assumption, B is positive definite on the nullspace of A. Every vector that is
in the nullspace of A is also in the nullspace of A−. Thus we only need to consider the
one-dimensional subspace of vectors v for which A−v = 0 but Av 6= 0.

The second row of Eq. (8.20) implies that As = −ei and A−s = 0. In particular, s 6= 0.
Multiplying the first row with sT from the left yields

sT Bs+ sT AT
ζ = sT Bs− eT

i ζ = 0.

This is equivalent to

sT Bs = ζi,

and thus ζi indicates positive or negative definiteness, or singularity of B on the subspace
spanned by s.

Lemma 8.4 means that the sign of ζi indicates if the newly exposed curvature by removal
of a bound is positive, negative, or zero. If it is negative, the flipping bounds strategy is
invoked.

8.3.4. Inertia correction

Whenever the initial KKT matrix K[0] does not have the desired inertia directly after a
factorization, we proceed as follows to obtain a working set that gives rise to a KKT matrix
with correct inertia. We add one by one bounds of free variables to the working setW [0]

and monitor the inertia during every update of the Schur complement as described above.
In our implementation, we add variables with ascending index to their nearest bound. This
procedure iteratively reduces the dimension of the null space. It is terminated as soon as
the inertia is as desired, or when the null space has eventually become vacuous. A similar
procedure is invoked every time the KKT matrix needs to be refactorized and its inertia
is found to be incorrect due to accumulation of round-off errors from earlier working set
iterations.

150

8.4. Practical issues

8.4. Practical issues

The new algorithm using the Schur complement approach and the inertia monitoring strategy
outlined above have been implemented in a variant of the QP solver qpOASES. In this section
we first discuss some practical issues that must be considered in an efficient implementation.
Then we present an algorithmic technique that allows us to efficiently verify positive definite-
ness of the Hessian in the null space of AS which is required to make our SQP Algorithm 6
efficient.

8.4.1. Refactorization and linear independence

From time to time, a new LBLT -factorization of the KKT matrix K[ν] is computed and
replaces the factorizations of K[0] and S[ν]. In our implementation, this occurs in two
situations.

Because the cost for maintaining a dense QR factorization of the Schur complement
S[ν] grows with its size, a new LBLT -factorization is computed when the dimension of S[ν]

exceeds a given threshold nSmax. A refactorization is also triggered when an estimate of the
condition number of S[ν] is larger than a given threshold condMax. In our implementation,
the estimate is computed by the LAPACK routine DTRCON which is applied to the triangular
factor R of the QR decomposition. We found that the values nSmax=100 and condMax=1014

work well in practice.
It is possible that the LBLT -factorization cannot be performed because the matrix K[ν] is

singular. Recall that the final working set from the previous SQP iteration is used as the
initial guess forW [0] at the beginning of the solution of QP(B[k,l]). However, K[0] may be
singular because the constraint Jacobian A[k] and Hessian approximation B[k,l] are different at
the new iterate. Similarly, during a later QP iteration ν , a variable may have been added to
the working set even though the resulting matrix A[ν] no longer has full rank. This can occur
because of numerical errors in the test for linear-independence due to finite precision. In this
situation, if a refactorization is triggered at a later point, the corresponding KKT matrix is
singular and the LBLT -factorization cannot be performed.

In both cases, we make use of a feature of the symmetric indefinite solver MA57 and obtain
the list of zero pivot indices. This enables us to remove linearly dependent rows and columns
from K[ν] by manipulating the working setW [ν] appropriately. According to this list, we
either (i) add a variable from the working setW [ν] if the zero pivot is found in the first block
diagonal of (8.15), or (ii) add a slack variable 0≤ s≤ 0 to an equality constraint but do not
add it to the working setW [ν] if the zero pivot corresponds to the second, all-zero block
diagonal in (8.15).

8.4.2. Verifying positive definiteness of the Hessian on the null space of AS

We now consider the subproblems QP(B[k,l]) in Step 2 of the SQP Algorithm 6. For a trial
Hessian B[k,l], we need to verify positive definiteness on the null space of A[k,l]

S to decide if a
direction produced by the solution of QP(B[k,l]) is admissible for the line search. Recall the

151

Chapter 8. Solution of sparse and nonconvex quadratic programs

definitions of the set S [k,l] given in (6.4):

S [k,l] :=
{

1≤ i≤ n | (x[k]i = b`,i or x[k]i = bu,i) and d[k,l]
i = 0

}
.

In particular, S [k,l] can only be formed after QP(B[k,l]) has been solved. The associated
Jacobian A[k,l]

S is defined as A[k] augmented by unit row vectors corresponding to the elements
in S [k,l].

For each subproblem, qpOASES is warm-started using the primal-dual solution and working
set of the previous SQP iteration, i.e. the one of the QP(B[k−1]) that yielded the final accepted
direction d[k−1]. For this initial working setW [0], three cases can occur:

• Case 1: The resulting KKT matrix is singular.

Then the working set is augmented according to the procedure described in Sec-
tion 8.4.1, which gives us a KKT matrix with correct inertia.

• Case 2: The resulting KKT matrix has correct inertia.

Then the parametric active-set Algorithm 9 is carried out to find a critical point of
QP(B[k,l]). Afterwards, we determine the set S [k,l]. To find out the curvature of B[k,l] in
the null space of A[k,l]

S we have two options:

1. We factorize the KKT matrix corresponding to S [k,l] and obtain its inertia from
the linear solver. If there are more negative eigenvalues than rows in A, we
proceed with the next iteration l +1 in Step 2 of Algorithm 6.

2. We successively remove the bounds that are in the final working setW [ν] but
not in S [k,l] and modify the Schur complement accordingly. By monitoring the
inertia as described in Section 8.3.2, we can detect whether the constraint null
space picks up a negative eigenvalue of the Hessian matrix. In this case, B[k,l] is
also not positive definite on the larger null space of A[k,l]

S and we proceed with
the next iteration l +1 in Step 2 of Algorithm 6.

In practice, we found the first option to be faster on average.

• Case 3: The resulting KKT matrix does not have correct inertia.

In this case, B[k,l] cannot be positive definite in the null space of A[k,l]
S . To see this, note

that the set S [k,l] is a subset ofW [0] and hence yields a null space of A[k,l]
S that contains

the null space of AW [0] on which the negative curvature is detected. The QP solution is
then terminated immediately and the loop in Step 2 of Algorithm 6 proceeds to the
next iteration l +1. In our numerical experiments, this was often the case and saved
many active set iterations.

152

Part IV.

Software and numerical results

153

Chapter 9.

Implementations

An important part of this thesis is the implementation of the presented numerical methods as
efficient software. We designed two software packages: blockSQP is an implementation of
the SR1-BFGS SQP method described in Chapters 6–8 that is especially suited for problems
with block-diagonal Hessian, such as problems arising in DMS. muse is an implementation
of the multiple shooting parameterizations for OED problems described in Chapter 4 and
comes as extension for the software package VPLAN [134]. Both software packages are
designed to be used together—muse provides structured and efficient evaluation of the NLP
objective and constraints and blockSQP solves the block-structured NLP—but we stress
that both can be used independently of each other and the interface between them is rather
generic. This allows for easy maintenance, enhancement and substitution of individual
components. In this chapter, we first describe the software package blockSQP. We give
some implementation details and show how an NLP is specified using a generic problem
specification class. Then, we give a description of our second software package muse, that
implements the problem specification class to represent OED or OC problems parameterized
by DMS.

9.1. blockSQP: An SR1-BFGS SQP method for NLPs with
block-diagonal Hessian matrix

The filter line search SQP method described in the Chapters 6–8 is implemented in the
C++-software package blockSQP. It solves NLPs of the form

min
x∈Rn

ϕ(x)

s.t. b` ≤
[

x
c(x)

]
≤ bu.

It is especially suited for NLPs with a block-diagonal Hessian matrix. Quadratic subproblems
are solved using a Schur complement variant of the QP solver qpOASES. First derivatives of
the problem functions must be provided. The block-diagonal Hessian of second derivatives
is approximated blockwise by SR1 and BFGS update schemes, however, exact second
derivatives may also be included for individual blocks. In this case, update schemes are
only maintained for the remaining blocks. The default option is to give the SR1 update
preference and employ a BFGS update with selective sizing if the SR1 update yields negative

155

Chapter 9. Implementations

curvature in the nullspace of AS . That means, at most two QPs per major iteration are solved.
Other Hessian sequences are also possible, such as convex combinations between SR1 and
BFGS with a given maximum number of steps lmax. The QPs can be solved in parallel as
described in Sec. 7.1. Furthermore, blockSQP allows to include problem-specific feasibility
restoration heuristics.

9.1.1. Problem specification

An NLP is specified using the abstract class Problemspec that holds all the information that
the SQP method needs to have about the problem:

class Problemspec {
/∗ DATA MEMBERS ∗ /
public:
int nVar; / / /< number o f v a r i a b l e s
int nCon; / / /< number o f c o n s t r a i n t s

double objLo; / / /< lower bound f o r o b j e c t i v e
double objUp; / / /< upper bound f o r o b j e c t i v e
Matrix bl; / / /< lower bounds o f v a r i a b l e s and c o n s t r a i n t s
Matrix bu; / / /< upper bounds o f v a r i a b l e s and c o n s t r a i n t s

int nBlocks; / / /< number o f d i a g o n a l b l o c k s i n t h e Hess ian
int* blockIdx; / / /< i n d i c e s c o r r e s p o n d i n g t o b l o c k s t r u c t u r e

/∗ METHODS ∗ /
public:

/∗ ∗ S e t i n i t i a l v a l u e s f o r x i and lambda ,
∗ and l i n e a r c o n s t r a i n t m a t r i x ∗ /
virtual void initialize(Matrix &xi, Matrix &lambda,

Matrix &constrJac , int *info) = 0;

/∗ ∗ E v a l u a t e problem f u n c t i o n s and t h e i r d e r i v a t i v e s a t p o i n t x i ∗ /
virtual void evaluate(const Matrix &xi,

double *objval, Matrix &constr,
Matrix &gradObj, Matrix &constrJac ,
int dmode, int *info) = 0;

/∗ ∗ Problem s p e c i f i c h e u r i s t i c t o r ed u ce c o n s t r a i n t v i o l a t i o n ∗ /
virtual void reduceConstrVio(Matrix &xi, int *info){};

};

An instance of this class describes an NLP of the form

min
x∈Rn

ϕ(x)

s.t. b` ≤
[

x
c(x)

]
≤ bu

with additional information about partial separability of the Lagrangian given by the variables
nBlocks and blockIdx. The following methods must be implemented for a problem:

156

9.1. blockSQP: An SR1-BFGS SQP method for NLPs with block-diagonal Hessian matrix

• initialize: Initial values x[0] must be set. Additionally, the part of the Jacobian
may be set that corresponds to purely linear constraints and does not change during
the iterations.

• evaluate: The central evaluation method for objective and constraint functions.
When called with dmode=0, objval and constr must contain the objective and
constraints evaluated at xi on exit. If dmode=1, additionally the constraint Jacobian
and objective gradient must be written to constrJac and gradObj, respectively.

Optionally, the following method can be implemented:

• reduceConstrVio: Sometimes, a problem offers possibilities to reduce its infeasibil-
ity in a computationally cheap way but the SQP method usually does not have enough
information about the problem structure to exploit this. In this case, a feasibility
heuristic may be implemented for a problem that is always called before the expensive
feasibility restoration phase described in Sec. 6.3.2. A prominent example for this
is the feasibility restoration heuristic for DMS problems described in Algorithm 8.
On entry, xi contains the values of the last accepted iterate. On exit, xi is set by the
restoration heuristic and it is checked if it is acceptable for the current filter.

9.1.2. Running the algorithm

The SQP method itself is modelled as a class SQPmethod which contains as class attribute a
pointer to an object of the class Problemspec; the problem which is to be solved. Another
class attribute is an object of a class SQPiterate, which holds all variables that are updated
during every SQP iteration.
SQPmethod has a class method run, which must be called from a suitable driver program.

In our case, the driver is implemented in VPLAN, that instantiates and runs the method.
When the algorithm is run, it typically produces one line of output for every iteration. The
columns of the output are described in Table 9.1.

Remark 9.1. The object-oriented paradigm allows for an elegant implementation of the
feasibility restoration phase of Sec. 6.3, where a minimum norm NLP is solved. We
implemented a class RestorationProblem derived from ProblemSpec. When instantiated,
it is passed a pointer to the original problem’s Problemspec object. Using the original
problem’s evaluate method, the implementation of the minimum norm constraints and
objective in the evaluate method of the RestorationProblem is straightforward. Then,
we simply instantiate another SQP method within the restoration phase to solve the minimum
norm problem.

9.1.3. Default values of algorithmic parameters

In the specification of Algorithm 6, several parameters must be specified. While some
of them, such as εopt and εfeas can be easily interpreted and should also be adapted to the
problem at hand, the meaning of others is less obvious to the user and they have smaller

157

Chapter 9. Implementations

Column Description

it Number of iteration
qpIt Number of QP iterations for the QP that yielded the accepted step
qpIt2 Number of QP iterations for the QPs whose solution was rejected
obj Value of objective
feas Infeasibility as in (6.3)
opt Optimality as in (6.3)
|lgrd| Maximum norm of Lagrangian gradient
|stp| Maximum norm of step in primal variables
|lstp| Maximum norm of step in dual variables
alpha Steplength
nSOCS Number of second-order correction steps
sk Number of Hessian blocks where the update has been skipped
da Number of Hessian blocks where the update has been damped
sca Value of sizing factor, averaged over all blocks
QPr Number of QPs whose solution was rejected

Table 9.1.: Columns of the textual output of blockSQP.

influence on the overall performance. For these parameters, Table 9.2 reports the default
values that have worked well in our numerical tests for a wide range of problems.

9.2. muse: A multiple shooting method for optimum
experimental design

The methods presented in Chapter 4 for the solution of the OED problem (3.28) are im-
plemented in the software package muse. Additionally, optimal control problems of the
form (2.4) can also be treated using direct single shooting or direct multiple shooting as
described in Chapter 2. muse comes as extension module for the C++ software package
VPLAN [134] and relies on its data structures and interfaces.

More specifically, the role of muse is the following: It takes a user-defined dynamic
model and a parameterization of this model as input. From these information, it generates
a function that corresponds to the objective and the constraint function of the structured
NLP (4.9). If a standard optimal control problem is desired instead of the OED problem,
the function corresponds to the NLP (2.13). The resulting function provides structure-
exploiting evaluation of the objective and constraints as well as their derivatives at any given
point ξ = (s̄x

0, q̂0, ŵ0,s
pe
0 , . . . , s̄x

Ns , q̂Ns , ŵNs ,spe
Ns ,H1,H2). In particular, it comprises calls to the

numerical integration routines to evaluate, e.g., the continuity conditions and their derivatives.
The resulting data structure is derived from blockSQP’s generic ProblemSpec class, but it
can also be easily passed to many other nonlinear programming solvers.

In this section, we first give a brief overview of the software package VPLAN and describe

158

9.2. muse: A multiple shooting method for optimum experimental design

General

εopt 10−5

εfeas 10−5

zero 10−16

inf 1020

Hessian approximations

τCOL 104

εCOL 0.1
εQN 10−14

εSR1 10−8

qpOASES

εLI 10−8

εNZC 10−8

condMax 1014

nsMax 100

Line search

jmax 25
βFη 10−5

βFϕ 10−5

ηmin max{εfeas,10−5}
ηmax 107

δη 1.0
sη 1.1
sϕ 2.3
ηϕ 10−4

κsoc 0.99
κkkt 0.999

Table 9.2.: Default values of algorithmic parameters for blockSQP, grouped according to
the different aspects of the SQP algorithm.

how dynamic optimization problems are formulated. Then we present our multiple shooting
extension muse that sets up a structured NLP from the model formulation and a user-defined
parameterization. We highlight the object-oriented structure and important features of the
implementation. Finally, two examples from optimum experimental design and optimal
control are given to illustrate how muse generates NLPs from a VPLAN model.

9.2.1. The software package VPLAN

The software package VPLAN [134] has been developed since the late 1990s as a tool for
simulation, parameter estimation, and optimum experimental design of dynamic systems—a
virtual laboratory for nonlinear processes. It has been used in numerous applications, e.g.,
[121, 139, 180, 202], and is also successfully applied in industrial practice.

For the solution of the dynamic systems, there exist interfaces to the variable-order and
variable-stepsize BDF methods DAESOL [17] and DAESOL-II [4]. Both methods provide
evaluation of first- and second-order sensitivities by means of IND. All required derivatives
are evaluated using the software ADIFOR [25, 26] that employs the forward mode of
algorithmic differentiation. First results with partial differential equations have been obtained
using the finite-element library deal.II [12] in connection with VPLAN [130].

For parameter estimation as outlined in Sec. 3.1 VPLAN provides interfaces to the software
modules PARFIT [31, 134] and PAREMERA [130] that implement DMS and a reduced
approach for DMS, respectively. So far, optimum experimental design problems are treated

159

Chapter 9. Implementations

by a single shooting approach. The resulting small-scale NLP is solved by the general
purpose SQP method SNOPT [93]. Similarly, optimal control problems for DAE may be
formulated.

With the software package muse, we provide a new module of VPLAN to treat optimum
experimental design and optimal control problems by a novel variant of the DMS method.

9.2.2. Formulating a dynamic model and specifying a parameterization

A model in VPLAN consists of two parts: Files with Fortran code, in which the model
equations are coded, and ini-files that contain the parameterizations and further details about
the model. VPLAN is called with a master file of a problem, vplan.ini, as argument. Then
the specified action—simulation, parameter estimation, optimum experimental design, or
process optimization—is performed.

Problem functions: Fortran-files
The formulation of a dynamic model of the form (3.28) requires the definition of the following
functions:

• The DAE system right-hand side f (t,y(t),z(t), p,u(t)) and g(t,y(t),z(t), p,u(t)),

• model response functions h(t,y(t),z(t), p,u0) and functions for prediction of the stan-
dard deviation σ(t,x, p,u0),

• path constraints cd(t,y(t),z(t), p,u(t)) and nonlinear constraints involving the time-
independent controls u0, cq(u0),

• and functions for multi-point boundary constraints cpe
i (ti,y(ti),z(ti), p,u0,spe).

VPLAN requires that these functions are provided by the user as FORTRAN77 subroutines
that can be handled by the algorithmic differentiation tool ADIFOR 2.0 to provide all
required derivatives. Each function must be coded in a separate file containing exactly the
corresponding subroutine. Other general purpose subroutines can be coded in extra files and
may be called by any of the other subroutines.

The tool DOIT (Design Of experiments Initialization Tool) calls ADIFOR 2.0 several times
to create the required first- and second-order derivatives of the model equations. Furthermore,
it compiles all files and creates a shared library that can be dynamically loaded by VPLAN.

Problem parameterization: ini-files
The second part of the problem formulation in VPLAN is specified within several ASCII text-
files that we call ini-files. VPLAN follows a multi-experiment paradigm: Every experiment
has its own dynamic system, time horizon, and parameterization. However, they share a
single parameter vector p. Consequently, for every experiment, there exists an exp.ini file
that specifies the Fortran files with the model functions and the parameterization according
to the DMS method. Within this file, the following data must be provided:

• Time interval [t0, tf],

160

9.2. muse: A multiple shooting method for optimum experimental design

• initial values of the dynamic states,

• grid for parameterization of controls τc,

• multiple shooting grid τs,

• grid of potential measurement points τm,

• grid for evaluation of path constraints τd,

• points ti for the specification of the multi-point boundary constraints cpe
i .

Furthermore, (initial) values for all design variables q, w, and spe that result from the
parameterization must be given. Note that the definition of every grid may be guided
by considerations of numerical efficiency but also by requirements and constraints of the
underlying process, e.g. a control may only switch at certain times during the process.

A master file, vplan.ini, links all experiments together and also specifies the common
parameter vector p. Options for the integrator and the optimization algorithms are also
specified in the ini-files. Figure 9.1 summarizes the problem formulation with VPLAN.
Details on the functionality of muse are provided in the next section.

9.2.3. Program structure of muse

muse is implemented in the C++ programming language and follows an object-oriented
programming paradigm. The aim of muse is to provide NLPs of the form (4.9) or (2.13)
in a generic form that can be passed to most NLP solvers. To achieve this, we use the
Problemspec class from blockSQP as base class that holds only the information that are
necessary for the optimization algorithm. In particular, no reference to the dynamic system
or the specific constraint structure is needed in the base class. However, the Hessian block
structure that is due to multiple shooting must be communicated to the SQP method to
facilitate blockwise Hessian updates. The abstract methods initialize and evaluate
must be implemented in derived classes. We will now sketch how the core method evaluate
is implemented for OC and OED problems parameterized by DMS.

The class VplProblem
To model OC and OED problems with VPLAN, an abstract class VplProblem is derived from
Problemspec that provides access to the VPLAN data structures. Furthermore, it contains
(pointers to) objects of an abstract class ExpEval that is responsible for the evaluation of all
constraints corresponding to one experiment. An excerpt of the class definition reads as:

class VplProblem : public Problemspec
{

/∗ DATA MEMBERS ∗ /
public:
Mexperiment* V; / / /< P o i n t e r t o c e n t r a l VPLAN da ta s t r u c t u r e
Matrix p; / / /< V e c t o r o f model p a r a m e t e r s

161

Chapter 9. Implementations

ffcn.f

f (t,x(t), p,u(t))

gfcn.f

g(t,x(t), p,u(t))

mfcn.f

h(t,x(t), p,u0)

sfcn.f

σ(t,x(t), p,u0)

bfcn.f

cd(t,x(t), p,u(t))

rfcn.f

cpe
i (t,x(t), p,u(t),spe)

vplan.ini

p

exp.ini

[t0, tf],
x(t0),
τc,
τs,
τm,
τd,
tpe
i ,
sx,
q,
w,
spe

x_ffcn.f,. . .,s_s_rfcn.f

First and second partial derivatives
of model functions: ∂ f

∂x , . . . ,
∂ 2cpe

∂ spe∂ spe ,

libproblem.so

Dynamically loaded by VPLAN

VPLAN data structures

integrate(...):
provides x(t), dx(t)

d(·) ,
d2x(t)

d(·)d(·)

muse

ADIFOR

register in

compile

Figure 9.1.: Problem formulation with VPLAN. The dashed boxes correspond to the user
interface. Some boxes are denoted by prototypical filenames and have below
the mathematical quantities that are defined within these files using the notation
from the OED problem (3.28). The dotted box at the bottom corresponds to the
scope of the tool DOIT. muse relies on the VPLAN data structures to interact
with the model. In particular, VPLAN handles calls to the integrator to evaluate
states and sensitivities at various times τ .

162

9.2. muse: A multiple shooting method for optimum experimental design

int nEx; / / /< T o t a l number o f e x p e r i m e n t s
int nExOpt; / / /< Number o f e x p e r i m e n t s t o be o p t i m i z e d
ExpEval** expEval; / / /< P o i n t e r s t o e v a l u a t i o n o b j e c t s

/∗ METHODS ∗ /
public:

/∗ ∗ E v a l u a t e problem f u n c t i o n s and t h e i r d e r i v a t i v e s a t p o i n t x i ∗ /
virtual void evaluate(const Matrix &xi,

double *objval, Matrix &constr,
Matrix &gradObj, Matrix &constrJac ,
int dmode, int *info);

protected:
/∗ ∗ E v a l u a t e o b j e c t i v e , i t s g r a d i e n t , and i t s Hess ian ∗ /
virtual void evalObjective(const Matrix &xi, double *objval,

Matrix &gradObj, SymMatrix *&hess,
int dmode, int *info) = 0;

};

The abstract method evaluate() from the parent class Problemspec is implemented here
in a generic way. Its body reads as

void VplProblem::evaluate(const Matrix &xi,
double *objval, Matrix &constr,
Matrix &gradObj, Matrix &constrJac ,
int dmode, int *info) {

[...]
#pragma omp parallel for default(shared) private(iShootTotal)
for(iShootTotal=0; iShootTotal <nShootTotal; iShootTotal++)
{

int i, currExp, iShoot;

/∗ Find o u t t h e c u r r e n t e x p e r i m e n t ∗ /
for(i=0; i<nExOpt; i++)

if(iShootTotal < nShootArray[i]) {
currExp = i;
break;

}

/∗ i S h o o t i s t h e e x p e r i m e n t−l o c a l s h o o t i n g node i n d e x ∗ /
iShoot = iShootTotal;
if(currExp > 0)

iShoot -= nShootArray[currExp -1];

/∗ E v a l u a t e a l l c o n s t r a i n t s a s s i g n e d t o one s h o o t i n g node ∗ /
infos[currExp][iShoot] = 0;
expEval[currExp]->evalOneShootingNode(iShoot, xi, lambda,

objval, constr,
gradObj, constrJac , hess,
dmode, conflag,
&infos[currExp][iShoot]);

}

163

Chapter 9. Implementations

[...]

/∗ E v a l u a t e o b j e c t i v e f u n c t i o n ∗ /
evalObjective(xi, objval, gradObj, hess, dmode, info);

[...]
}

The evaluation is now distributed to the individual shooting nodes through the method
evalOneShootingNode that is a member of the class ExpEval. This class is described
below. Note that the loop over all shooting nodes is parallelized using OpenMP [53].
Actually, there would be two loops: An outer loop for all experiments and an inner loop for
the shooting nodes of this experiment. To facilitate parallelization on both multi-experiment
and shooting-node level, we combined both into a single for-loop running over the set of
all shooting nodes from all experiments combined. Furthermore, there exists a method
evalObjective to evaluate the objective function ϕ . This is abstract in VplProblem and
must be implemented for all problem classes. We have implemented classes for the following
problems:

• single shooting OED problem,

• multiple shooting OED problem,

• single shooting OC problem, and

• multiple shooting OC problem.

For the multiple shooting OED case, there are also the pseudo states formulations available
that are described in Sec. 4.5.4 and 4.5.3. Figure 9.2 summarizes the problem specification
classes in the form of an inheritance diagram. In each class, the array ExpEval** expEval
contains pointers to objects of a corresponding derived class of the base class ExpEval that
implements a sutiable variant of evalOneShootingNode.

The class ExpEval
The ExpEval class and its derived classes have a similar structure as the VplProblem class,
see Figure 9.3. The parent class ExpEval has methods to evaluate the different types of
constraints of a problem parameterized by DMS, such as (4.9) or (2.13), for example

• calcContinuityConstraints – continuity constraints for nominal states

• calcVarContinuityConstraints – continuity constraints for variational states

• calcConsistencyConstraints – consistency constraints for nominal algebraic
states

• calcVarConsistencyConstraints – consistency constraints for variational alge-
braic states

• calcPathConstraints – path constraints

164

9.2. muse: A multiple shooting method for optimum experimental design

VplProblem

VplProblem_OC_MS

VplProblem_OC_SS

VplProblem_OED_Cov

VplProblem_OED_FIM

VplProblem_OED_FIMPS

VplProblem_OED_SS

Problemspec

Figure 9.2.: Inheritance diagram for problem specification classes.

ExpEval

ExpEval_OC_MS

ExpEval_OC_SS

ExpEval_OED_Cov

ExpEval_OED_FIM

ExpEval_OED_FIMPS

ExpEval_OED_SS

Figure 9.3.: Inheritance diagram for experiment evaluation classes.

165

Chapter 9. Implementations

• calcMeasContrib – contributions to the Fisher information matrix

• etc.

These methods take as input a shooting node index and results from the integrator. Then they
write the result of the computation to the proper position of the constraint vector and the
constraint Jacobian that are passed through by the NLP solver. This is facilitated by a set
of index structures, **varIdx and **conIdx. They are pointers to integer pointers and are
defined as follows:

• varIdx[j][k] = position of variable type k from shooting node j in the overall
variable vector, where k represents a type, such as sy,sz,q,w, etc.

• conIdx[j][k] = position of constraint type k from shooting node j in the overall
constraint vector, where k represents a constraint type, such as continuity constraints,
path constraints, etc.

The class ExpEval has two abstract methods, that must be implemented for every derived
class, see Fig. 9.3:

• countVarsAndCons: This determines the index structures **varIdx and **conIdx.
The challenging part is that all grids are totally independent, so every shooting node
may be assigned a different number of variables and constraints. Furthermore, it
may be necessary to introduce artificial constraints if, e.g. a shooting node lies in the
interior of a control interval. Every problem class (OC and OED, single and multiple
shooting) has a different constraint and variable structure.

• evalOneShootingNode: This method forms the core of the evaluation. VPLAN’s
integrate function is called here and all constraints assigned to one shooting node
are processed by calling a suitable set of the evaluation methods defined in the parent
class ExpEval. For example, the single shooting problems do not have continuity
constraints; OC problems do not need to take into account contributions to the Fisher
matrix, etc.

9.2.4. Examples

We present two examples to illustrate the structure of the NLP generated by muse from a
VPLAN model, one OED and one OC problem.

Optimum experimental design
As an example, let us consider a simple Lotka–Volterra type system as described in [170].
Here, we want to design an experiment to estimate the variables α and β of the following
system:

ẏ1(t) = y1(t)−αy1(t)y2(t)−0.4u(t)y1(t), (9.1a)

ẏ2(t) =−y2(t)+βy1(t)y2(t)−0.2u(t)y2(t), (9.1b)

0≤ u(t)≤ 1.

166

9.2. muse: A multiple shooting method for optimum experimental design

We need to code only the two ODE right-hand side equations in a Fortran subroutine. In the
files vplan.ini we define the parameters and set the current estimate to α = β = 1. In the
file exp.ini, we set the parameterization grids. We assume that we can observe both states
at τm = (3,6,9,12)T but we have to choose the two best observations for every observable.
The shooting grid is τs = (0,6,12)T and the control grid is τc = (0,4,6,8,12). We refer to
the VPLAN documentation for details on how to set up the Fortran- and ini-files.

From these information, muse generates an NLP with 21 variables and 11 constraints.
Using muse’s printVariables and printConstraintsmethods, we obtain the following
output:

<|----- Variables -----|>
1: exp1 [0] q_u1 [0, 4] 0 <= 0.3 <= 1
2: exp1 [0] q_u1 [4, 6] 0 <= 0.3 <= 1
3: exp1 [0] w1 (t=3) 0 <= 1 <= 1
4: exp1 [0] w2 (t=3) 0 <= 1 <= 1
5: exp1 [1] s_y(1) -1e+20 <= 0.503 <= 1e+20
6: exp1 [1] s_y(2) -1e+20 <= 1.11 <= 1e+20
7: exp1 [1] s_yp(1,1) -1e+20 <= 0.317 <= 1e+20
8: exp1 [1] s_yp(2,1) -1e+20 <= -0.266 <= 1e+20
9: exp1 [1] s_yp(1,2) -1e+20 <= -0.146 <= 1e+20
10: exp1 [1] s_yp(2,2) -1e+20 <= -0.809 <= 1e+20
11: exp1 [1] q_u1 [6, 8] 0 <= 0.3 <= 1
12: exp1 [1] q_u1 [8, 12] 0 <= 0.3 <= 1
13: exp1 [1] w1 (t=6) 0 <= 1 <= 1
14: exp1 [1] w2 (t=6) 0 <= 1 <= 1
15: exp1 [1] w1 (t=9) 0 <= 1 <= 1
16: exp1 [1] w2 (t=9) 0 <= 1 <= 1
17: exp1 [1] w1 (t=12) 0 <= 1 <= 1
18: exp1 [1] w2 (t=12) 0 <= 1 <= 1
19: [linC] H(p1,p1) 0 <= 5.33 <= 1e+20
20: [linC] H(p2,p1) -1e+20 <= 2.62 <= 1e+20
21: [linC] H(p2,p2) 0 <= 9.96 <= 1e+20

<|----- Constraints -----|>
1: exp1 [0] cont y(1) 0 <= 0 <= 0
2: exp1 [0] cont y(2) 0 <= 0 <= 0
3: exp1 [0] cont yp(1,1) 0 <= 0 <= 0
4: exp1 [0] cont yp(2,1) 0 <= 0 <= 0
5: exp1 [0] cont yp(1,2) 0 <= 0 <= 0
6: exp1 [0] cont yp(2,2) 0 <= 0 <= 0
7: exp1 [lin] meas/fun (mfcn1) 2 <= 4 <= 2
8: exp1 [lin] meas/fun (mfcn2) 2 <= 4 <= 2
9: [linC] cc H(p1,p1) 0 <= 0 <= 0
10: [linC] cc H(p2,p1) 0 <= 0 <= 0
11: [linC] cc H(p2,p2) 0 <= 0 <= 0

The variables and constraints are shown with their initial values and their lower and upper
bounds. Note that shooting variables and continuity constraints for the two variational states
are created automatically, i.e. we do not have to code the VDAE. Note also that we do not
have shooting variables for the first and the last node, as they would enter the whole problem

167

Chapter 9. Implementations

only linearly and can thus be omitted to reduce costs for the linear algebra. Consequently,
there are only continuity constraints for the node τs

1 = 6. The values for all shooting variables
(5-10) are set such that the continuity constraints are satisfied. Constraints 7 and 8 are linear
constraints for the maximum number of measurements. Constraints 9-11 are the np(np+1)/2
linearly coupled constraints for the Fisher information matrix.

Optimal control
As an optimal control example, we consider a variant of problem (9.1) described in [172].
The goal is to choose an optimal control to bring both the predator and prey states to a
prescribed steady state. We augment Eqs. (9.1) by a Lagrange term that describes the
distance to the steady state and obtain:

ẏ1(t) = y1(t)−αy1(t)y2(t)−0.4u(t)y1(t), (9.2a)

ẏ2(t) =− y2(t)+βy1(t)y2(t)−0.2u(t)y2(t), (9.2b)

ẏ3(t) = (y1(t)−1)2 +(y2(t)−1)2, (9.2c)

0≤ u(t)≤ 1.

Now we choose the shooting grid as τs = (0,3,6,9,12)T and the control grid as τc =
(0,4,6,8,12). The generated NLP has 19 variables and 15 equality constraints:

<|----- Variables -----|>
1: exp1 [0] +q_u1 [0, 3] -1e+20 <= 0.3 <= 1e+20
2: exp1 [1] s_y(1) -1e+20 <= 1.79 <= 1e+20
3: exp1 [1] s_y(2) -1e+20 <= 0.553 <= 1e+20
4: exp1 [1] s_y(3) 0 <= 1.38 <= 1000
5: exp1 [1] q_u1 [3, 4] 0 <= 0.3 <= 1
6: exp1 [1] q_u1 [4, 6] 0 <= 0.3 <= 1
7: exp1 [2] s_y(1) -1e+20 <= 0.503 <= 1e+20
8: exp1 [2] s_y(2) -1e+20 <= 1.11 <= 1e+20
9: exp1 [2] s_y(3) 0 <= 3.22 <= 1000
10: exp1 [2] q_u1 [6, 8] 0 <= 0.3 <= 1
11: exp1 [2] +q_u1 [8, 9] -1e+20 <= 0.3 <= 1e+20
12: exp1 [3] s_y(1) -1e+20 <= 1.27 <= 1e+20
13: exp1 [3] s_y(2) -1e+20 <= 0.379 <= 1e+20
14: exp1 [3] s_y(3) 0 <= 4.33 <= 1000
15: exp1 [3] q_u1 [9, 12] 0 <= 0.3 <= 1
16: exp1 [4] s_y(1) -1e+20 <= 0.739 <= 1e+20
17: exp1 [4] s_y(2) -1e+20 <= 1.61 <= 1e+20
18: exp1 [4] s_y(3) 0 <= 6.41 <= 1000
19: exp1 [4] +q_u1 [12, 12] -1e+20 <= 0.3 <= 1e+20

<|----- Constraints -----|>
1: exp1 [0] cont y(1) 0 <= 0 <= 0
2: exp1 [0] cont y(2) 0 <= 0 <= 0
3: exp1 [0] cont y(3) 0 <= 0 <= 0
4: exp1 [1] cont y(1) 0 <= 0 <= 0
5: exp1 [1] cont y(2) 0 <= 0 <= 0
6: exp1 [1] cont y(3) 0 <= 0 <= 0
7: exp1 [2] cont y(1) 0 <= 0 <= 0

168

9.2. muse: A multiple shooting method for optimum experimental design

8: exp1 [2] cont y(2) 0 <= 0 <= 0
9: exp1 [2] cont y(3) 0 <= 0 <= 0
10: exp1 [3] cont y(1) 0 <= 0 <= 0
11: exp1 [3] cont y(2) 0 <= 0 <= 0
12: exp1 [3] cont y(3) 0 <= 0 <= 0
13: exp1 [lin] cont+ u1 (node 1) 0 <= 0 <= 0
14: exp1 [lin] cont+ u1 (node 3) 0 <= 0 <= 0
15: exp1 [lin] cont+ u1 (node 4) 0 <= 0 <= 0

Note that the two shooting nodes at t = 3 and t = 9 are not part of the control grid τc.
There, muse introduces the additional variables 1 and 11 (+q_u1), and linear constraints
13 and 14 to maintain separability but also ensure equivalence to the originally selected
parameterization. Furthermore, another artificial variable was introduced at tf. This is to
facilitate the computation of exact Hessians of the objective. By explicitly maintaining
variables sx

Ns and q̂Ns we avoid computing second-order sensitivities of the states when the
objective Hessian is evaluated.

169

Chapter 10.

Performance of blockSQP on benchmark
collection

In this chapter, we evaluate the performance of different variants of our SQP implementation
blockSQP on a range of NLPs arising from DMS for optimum experimental design and
optimal control. We are interested in how fast and reliable blockSQP can find a local solution
of a given NLP. In particular, we evaluate different Hessian approximation sequences and
scaling strategies discussed in Chapter 7. We show that a strategy based on switching
between an SR1 update and a BFGS update with selective sizing yields the best overall
performance in terms of reliability, number of SQP iterations, and CPU time. This confirms
our results from Section 5.3 where we showed for a model problem that indefinite Hessian
approximations are necessary for fast local convergence. A comparison with the popular
SQP solver SNOPT7 [93] shows that blockSQP is superior for problems arising in DMS in
terms of SQP iterations and CPU time.

10.1. Test problems and algorithmic parameters

We first introduce our test set of OED and OC problems from the literature. Then we describe
the multiple shooting parameterization settings and give an overview over algorithmic settings
used. Finally, we explain performance profiles, a tool introduced in [61] for evaluating the
performance of competing algorithms on a benchmark set.

10.1.1. Test problems

In total, we test blockSQP on 6 OED examples and 10 OC examples. Most of them are
taken from the literature. The equations for the ocean and fermenter examples are given in
the appendix.

OC problems
From the COPS 3.0 test set [60], we consider the optimal control problems 4 (hanging chain),
9 (particle steering), 10 (goddard rocket), 11 (hang glider), and 14 (catalyst mixing). The
Lotka–Volterra optimal control model is described in [172], the Williams-Otto semi-batch
reactor in [82], and the batch distillation process in [57]. Both the fermenter and ocean
problems are found in the MUSCOD-II collection of optimal control problems [34, 142].

171

Chapter 10. Performance of blockSQP on benchmark collection

Their equations are given in Appendix A. Table 10.1 summarizes the number of states,
controls, and path constraints of the models.

Problem name nx nu nd

oc-batchdist 13 2 22
oc-catalyst-mixing 4 1 0
oc-goddard 3 2 4
oc-hangglider 4 2 2
oc-hanging-chain 3 1 0
oc-particle-steering 5 2 0
oc-fermenter 10 3 19
oc-lotka 3 2 0
oc-ocean 3 2 4
oc-williams-otto 9 2 3

Table 10.1.: Characteristics of OC test problems. Shown are the number of states, control
functions, and nonlinear dynamic constraints.

OED problems
We use the catalyst mixing model from the COPS test set and formulate it as an OED problem
with the frequency factor of x2 as uncertain parameter and both states as observables. The
continuous stirred-tank reactor (CSTR) model is from [65] and is discussed in the context of
OED in [123]. The Lotka–Volterra OED problem is taken from [170]. The polymerization
example is described in [205]. The Urethane reaction was first described as OED problem
in [134]. The baker’s yeast problem appears in a number of publications on OED, e.g., [85].
Table 10.2 lists the number of states, parameters, controls, observables, and path constraints
for the models. All OED problems are optimized with regard to the A-criterion.

Problem name nx np nu nh nd

oed-catalyst-mixing 2 1 1 2 0
oed-cstr 2 2 2 2 4
oed-lotka 2 2 1 2 0
oed-polymerization 9 4 3 4 0
oed-urethane 6 6 10 4 0
oed-yeast 2 4 3 2 0

Table 10.2.: Characteristics of OED test problems. Shown are the number of states, parame-
ters, control functions, observables, and nonlinear dynamic constraints.

172

10.1. Test problems and algorithmic parameters

10.1.2. Problem discretization

We discretize the problems using equdistant grids τc = τs = τd = τm. Here, we choose the
same grid for the controls, multiple shooting, measurements, and path constraints. The case
with different grids will be investigated in Chapter 12. The controls are approximated by
piecewise constant functions. The number of intervals and the size of the resulting NLPs are
given in Table 10.3. For the first iterate x[0], we chose all shooting variables such that the
continuity conditions are satisfied. For the OED problems, we set all wi = 1. The starting
values of the control variables and the parameter values are given in Appendix B.

Problem name Ns variables constraints

oed-catalyst-mixing 64 447 255
oed-cstr 16 159 95
oed-lotka 64 575 383
oed-polymerization 4 167 147
oed-urethane 16 862 781
oed-yeast 16 225 176
oc-batchdist 64 1092 1027
oc-cops-catalyst-mixing 64 257 193
oc-cops-goddard 64 322 258
oc-cops-hangglider 64 386 324
oc-cops-hanging-chain 64 257 195
oc-cops-particle-steering 64 450 388
oc-fermenter 64 900 708
oc-lotka 64 322 257
oc-ocean 64 322 194
oc-williams-otto 64 706 578

Table 10.3.: Number of variables and constraints for benchmark NLPs.

10.1.3. Algorithmic settings

All problems are implemented in VPLAN using muse to generate the NLPs. The integration
tolerances of DAESOL are set between 10−7 and 10−9.

In blockSQP, we use limited memory Hessian updates with a memory size of M̃ = 20.
This proved to be enough for the asymptotic properties of the updates to kick in while still
allowing old and hence irrelevant information to be forgotten. For the OED problems, we
use the exact second derivative of the A-criterion in the lower right block of the Hessian as
described in Sec. 4.3.2.

We declare optimality if the KKT tolerance (6.3) is satisfied with εopt = εfeas = 10−5. The
SQP iteration limit was set to 500 and the maximum number of QP iterations (active set
changes) per SQP iteration was set to 2500.

173

Chapter 10. Performance of blockSQP on benchmark collection

10.1.4. Performance profiles

Performance profiles were introduced by [61] as a tool for benchmarking and comparing
optimization software. First, a performance index is selected, which is often the CPU
time needed to solve a problem. However, as we are particularly interested in the local
convergence properties of the algorithms, the number of SQP iterations provides a more
meaningful message. Furthermore, in OED for large dynamical systems, as they appear in
industrial applications, the overall computational cost is dominated by the cost of problem
linearization, which is usually done once per iteration. This means that it is reasonable to
concentrate on the number of SQP iterations. We define:

perf℘,s := number of SQP iterations of solver s for problem ℘.

To compare different solvers from a set S, we compare the performance of a solver s on
a problem ℘ with the best performance of all the solvers on problem ℘. We define the
performance ratio r℘,s:

r℘,s :=
perf℘,s

min
{

perf℘,s | s ∈ S
}

The performance profile for a solver is the cumulative distribution function for a performance
metric. Suppose P is a set of problems. If we define

ρs(T) :=

∣∣{℘∈ P | r℘,s ≤ T
}∣∣

|P| .

then ρs(T) is the probability for solver s ∈ S that a performance ratio r℘,s is within a factor
T ∈ R of the best possible performance ratio. Usually, solvers with large probabilities ρs(T)
are to be preferred. In particular, the value ρs(1) denotes the fraction of problems for which
solver s yields the best performance.

10.1.5. Computing environment

All results were obtained on a workstation with two Intel R© Xeon R© E5645 hexacore CPUs
(2.4 GHz) and 32 GB memory running Ubuntu 14.04. VPLAN, muse, blockSQP, and the
problem functions were compiled using the GCC 4.8.2 compiler collection with the -O3
compiler flag set. The maximum number of parallel threads was set to 16.

10.2. Comparison of Hessian scaling strategies

First, we evaluate the different scaling strategies introduced in Sections 7.2.4 and 7.3 for
BFGS and SR1 updates:

1. Scaling B[0] by σ
[k]
SP (Shanno–Phua),

174

10.3. Comparison of Hessian approximation sequences

2. scaling B[0] by σ
[k]
OL (Oren–Luenberger),

3. scaling B[0] by σ
[k]
Mean (geometric mean of σSP and σOL),

4. scaling B[k] for k ≥ 0 by σ
[k]
COL if 0 < εCOL < σ

[k]
COL < 1 (selective sizing strategy).

Recall that the strategies 1–3 scale only the initial approximation B[0], while the selective
sizing strategy attempts to scale every approximation B[k] before it is updated. Figure 10.1a
compares the options in form of a performance profile for the block-BFGS update.

We see that the selective sizing strategy clearly dominates the other strategies that scale
only the initial Hessian. In the remaining computations, we use it as the fallback approxima-
tion B[k,lmax] in Step 2 of Algorithm 6.

To evaluate scaling options for SR1 updates, we use SR1 whenever possible and use BFGS
with selective sizing as fallback strategy, i.e. B[k,0] = B[k]

SR1 and B[k,1] = B[k]
BFGS. Figure 10.1b

shows that the selective sizing strategy is not the best choice for the SR1 updates. In the
subsequent numerical experiments, we chose the Oren-Luenberger scaling factor σOL for the
initial SR1 approximations.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
T

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
pr

ob
le

m
s

so
lv

ed
w

ith
in

T
×

(#
it.

of
th

e
be

st
so

lv
er

)

BFGS different scalings

σSP

σOL

σMean

σCOL

(a) Performance profile comparing the number of
SQP iterations for different scaling strategies
for block-BFGS.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
T

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
pr

ob
le

m
s

so
lv

ed
w

ith
in

T
×

(#
it.

of
th

e
be

st
so

lv
er

)

SR1 different scalings

σSP

σOL

σMean

σCOL

(b) Performance profile comparing the number
of SQP iterations for different scaling strate-
gies for block-SR1. The fallback strategy uses
BFGS updates with selective sizing.

Figure 10.1.: Performance profiles comparing different scaling strategies

10.3. Comparison of Hessian approximation sequences

Next, we compare several Hessian approximation sequences. Motivated by the observations
in Section 5.3, we want to include meaningful negative curvature as often as possible. On the

175

Chapter 10. Performance of blockSQP on benchmark collection

other hand, we need to ensure that Assumption 6.1 is eventually satisfied and we want to avoid
solving too many quadratic subproblems in every iteration. We compare the performance for
five different strategies:

1. BFGS only, lmax = 0,

2. convex combination SR1 and BFGS, lmax = 1,

3. convex combination SR1 and BFGS, lmax = 2,

4. convex combination SR1 and BFGS, lmax = 4,

5. convex combination of SR1 and σOLI, lmax = 4.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
T

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
pr

ob
le

m
s

so
lv

ed
w

ith
in

T
×

(#
it.

of
th

e
be

st
so

lv
er

)

SQP iterations for different Hessian sequences

BFGS
SR1/BFGS, lmax = 1
SR1/BFGS, lmax = 2

SR1/BFGS, lmax = 4
SR1/σSPI, lmax = 4

(a) Performance profile comparing the number of
SQP iterations for different Hessian approxi-
mation sequences.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
T

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

pr
ob

le
m

s
so

lv
ed

w
ith

in
T
×

(#
qp

it.
of

th
e

be
st

so
lv

er
)

QP iterations for different Hessian sequences

BFGS
SR1/BFGS, lmax = 1
SR1/BFGS, lmax = 2

SR1/BFGS, lmax = 4
SR1/σSPI, lmax = 4

(b) Performance profile comparing the number of
QP iterations for different Hessian approxima-
tion sequences.

Figure 10.2.: Performance profiles comparing different Hessian approximation sequences

Figure 10.2a shows the performance profile for the number of SQP iterations for all options.
We see that strategies 2–4 are superior to the variant where only BFGS updates are used,
meaning more problems are solved in fewer iterations. Option 5 is not competitive at all and
we made similar experience with other strategies based on a convex combination of SR1 and
a scaled identity. We also notice that strategy 4 scores the most wins, being the best method
in terms of SQP iterations for more than 60% of the problems. However, strategies 3 and
4 require far too many QP iterations which makes them too slow in practice. Figure 10.2b
shows the performance profile for the number of QP iterations. As we expect, the pure BFGS
version of blockSQP requires comparably few QP iterations for most problems because only
one QP is solved per iteration. Strategies 3 and 4, where sometimes three or more QPs must

176

10.3. Comparison of Hessian approximation sequences

be solved per iteration, are not competitive at all. Strategy 2 is also very competitive with the
pure BFGS version in terms of QP iterations, making it the best method overall.

Table 10.4 shows the results for SQP iterations, QP iterations, and CPU time. We note
that the SR1-BFGS method requires fewer SQP iterations on all 16 problems and is faster
in terms of CPU time on 14 problems. Interestingly, SR1 updates are accepted relatively
rarely by the globalization strategy. Figure 10.3 shows in which particular iterations the SR1
updates are accepted. This is mostly the case during the last iterations, when the active set
has settled and the exact Hessian is positive definite in the null space of active constraints.
However, if they are accepted, SR1 updates provide rapid local convergence and repair the
undesirable behavior of the block-BFGS updates pointed out in Section 5.3.

Instance SR1-BFGS BFGS
SQP QP CPU[s] SQP QP CPU[s]

oed-catalyst-mixing 39 (3) 557 1.77 45 484 2.26
oed-cstr 39 (3) 517 1.28 40 453 1.22
oed-lotka 111 (7) 2167 9.93 131 1896 9.99
oed-polymerization 30(11) 466 4.41 45 427 7.52
oed-urethane 49 (4) 676 22.38 59 787 25.79
oed-yeast 92 (7) 2026 7.94 143 2312 11.53
oc-batchdist 87 (5) 700 15.37 27† 1417† 15.5†

oc-catalyst-mixing 46 (7) 1318 2.73 62 3582 4.89
oc-goddard 41 (6) 371 1.49 58 300 1.81
oc-hangglider 44 (6) 600 2.53 136† 1257† 15.41†

oc-hanging-chain 86 (7) 700 2.65 107 548 2.94
oc-particle-steering 19 (2) 338 1.27 20 321 1.26
oc-fermenter 51 (3) 700 5.65 82 744 7.72
oc-lotka 17 (3) 444 0.82 20 355 0.82
oc-ocean 34 (5) 3764 3.51 51 3359 3.96
oc-williams-otto 36 (6) 1690 6.57 45 1692 6.86

Table 10.4.: SQP iterations, QP iterations, and run times for blockSQP with SR1-BFGS
and for pure BFGS updates. Listed in parentheses is the number of SQP
iterations in which the SR1 update was accepted by the inertia controlling
strategy. Boldface numbers indicate the algorithm with better performance in
the respective category. Failures are marked by †.

The reason why strategy 2 needs only little more QP iteration than the pure BFGS strategy
is that we can terminate the QP solver early whenever the initial active set has the wrong
inertia, cf. Sec. 8.4.2. Table 10.5 shows that this technique saves many QP iterations. For
convex combinations of SR1 and BFGS with 0 < µ < 1, this was less often the case, causing
the strategies with lmax > 1 to be less efficient overall.

177

Chapter 10. Performance of blockSQP on benchmark collection

Instance with QP early term. w/o QP early term.
QP CPU[s] QP CPU[s]

oed-catalyst-mixing 557 1.77 5562 8.02
oed-cstr 517 1.28 9454 5.53
oed-lotka 2167 9.93 35981 89.85
oed-polymerization 466 4.41 1602 7.27
oed-urethane 676 22.38 67201 605.74
oed-yeast 2026 7.94 125150 123.54
oc-batchdist 700 15.37 26826 276.99
oc-catalyst-mixing 1318 2.73 4761 6.53
oc-goddard 371 1.49 7314 10.17
oc-hangglider 600 2.53 27034 44.09
oc-hanging-chain 700 2.65 22414 20.95
oc-particle-steering 338 1.27 4641 13.11
oc-fermenter 700 5.65 18414 115.19
oc-lotka 444 0.82 1962 2.76
oc-ocean 3764 3.51 16861 13.23
oc-williams-otto 1690 6.57 17583 57.25

Table 10.5.: Total number of QP iterations and overall computing times of SR1-BFGS
blockSQP (lmax = 1) with and without early termination of the QP solution.
The number of SQP iterations is not affected.

178

10.4. Comparison with SNOPT

0 20 40 60 80 100 120 140
SQP iteration

oc-williams-otto

oc-ocean

oc-lotka

oc-fermenter

oc-particle-steering

oc-hanging-chain

oc-hangglider

oc-goddard

oc-catalyst-mixing

oc-batchdist

oed-yeast

oed-urethane

oed-polymerization

oed-lotka

oed-cstr

oed-catalyst-mixing

Distribution of SR1 updates

SR1 accepted
SR1 rejected
BFGS-SQP

Figure 10.3.: Distribution of accepted and rejected SR1 updates for blockSQP with SR1-
BFGS. The number of iterations for blockSQP using only BFGS are given for
comparison.

We conclude that blockSQP with a combination of SR1 and selectively sized BFGS
updates is a fast and reliable algorithm for problems arising in DMS and we will use this
algorithm variant for the computations in the remainder of this thesis. In practical situations,
where dynamic systems are larger and more complicated than those considered here, the
linearization is expected to dominate the computation time compared to the solution of the
QPs. There, we expect blockSQP to be particularly efficient and clearly superior in terms of
CPU time.

10.4. Comparison with SNOPT

Finally, we compare blockSQP to the state-of-the-art SQP method SNOPT7 [93] for our
problem test set. It uses a line search based on an augmented Lagrangian merit function
to promote global convergence and the primal active set method SQOPT to solve the
quadratic subproblems. A limited memory BFGS update is used that gives rise to convex
QPs. Although in general sparsity is exploited, SNOPT does not take into account the
block-diagonal structure of the Hessian arising in DMS. Table 10.6 compares the number of
SQP iterations to those of blockSQP.

We notice that SNOPT fails to find a solution to four out of six OED problems. These
four examples describe chemical reactions and involve highly nonlinear ODE systems,
whereas the two other problems, oed-lotka and oed-catalyst-mixing, contain only

179

Chapter 10. Performance of blockSQP on benchmark collection

mild nonlinearities in the right-hand side of the ODE. We conclude that a general purpose
SQP method is insufficient for practical OED problems parameterized by DMS and that a
dedicated, structure-exploiting SQP method is required to solve this class of problems.

Instance blockSQP SNOPT7

oed-catalyst-mixing 39 36
oed-cstr 39 159†

oed-lotka 111 371
oed-polymerization 30 6†

oed-urethane 49 842†

oed-yeast 92 10†

oc-batchdist 87 10†

oc-catalyst-mixing 46 43
oc-goddard 41 34
oc-hangglider 44 151
oc-hanging-chain 86 151
oc-particle-steering 19 169
oc-fermenter 51 34
oc-lotka 17 24
oc-ocean 34 340†

oc-williams-otto 36 78

Table 10.6.: Number of SQP iterations for blockSQP and SNOPT7. Boldface numbers
indicate better performance of the respective method. Failures are marked by †.

180

Chapter 11.

Optimum experimental design case studies

In this chapter we illustrate the capabilities of the newly developed methods by two example
applications from chemical engineering. First, we study a continuous stirred tank reactor
that is operated under restrictive process constraints. We investigate optimal solutions with
respect to the A-criterion defined on the covariance matrix and the exp-criterion defined on
the Fisher matrix. The second example is the Urethane reaction from [134] that has a highly
nonlinear dynamic. For both examples, our newly implemented methods are significantly
better in terms of SQP iterations and computing time compared to the existing single shooting
implementation of VPLAN.

11.1. A continuous stirred-tank reactor

11.1.1. Model

The first example is a continuous stirred-tank reactor (CSTR) introduced in [65] and formu-
lated as OED problem in [123]. An exothermic reaction of c(·) takes place in a liquid with
feed u1(·), and is controlled by external regulation u2(·) of the temperature T (·). The state
variables are formulated as follows:

ċ(t) =
Finu1(t)−Foutc(t)

ArL
− kr,0 exp

(
− E

RT (t)

)
c(t) (11.1a)

Ṫ (t) =
FinTin−FoutT (t)

ArL
− ∆Hr

ρCp
kr,0 exp

(
− E

RT (t)

)
c(t)+

2U
rρCp

(u2(t)−T (t)) (11.1b)

The OED task is to minimize the uncertainty of the frequency factor kr,0 and the heat transfer
coefficient U using the controls u1 and u2 and 4 observations of each c(·) and T (·) during an
experiment time of 20 minutes. We assume that the level of the liquid is perfectly controlled,
hence Fin = Fout. The process constraints are

0.8mol/l≤ c(t)≤ 1mol/l, (11.2a)

298K≤ T (t)≤ 333K, (11.2b)

and the control constraints are

0.8mol/l≤ u1(t)≤ 1mol/l, (11.3a)

288K≤ u2 ≤ 353K. (11.3b)

181

Chapter 11. Optimum experimental design case studies

Table 11.1 lists all units and values for the CSTR model.

Sym. Value Unit

c(t) mol/l
T (t) K
u1(t) mol/l
u2(t) K
L 6.6 dm
Fin 100 l/min
Tin 350 K

Sym. Value Unit

r 2.19 dm
E 72740 J/mol
ρ 1 kg/l
Cp 239 J/(kg K)
∆Hr −5 ·104 J/mol
U 549.36 J/(min dm2 K)
kr,0 7.2 ·1010 1/min

Table 11.1.: State and control units and parameter values and units for the CSTR model.

Parameterization and starting values
For the control, measurement and path constraint grids, we divide the time horizon into 64
equidistant intervals, hence

τ
c
j = τ

d
j = τ

m
j = 20 · j

64
, j = 0, . . . ,64.

The controls are approximated on the grid τc by piecewise constant functions, which means
that the control constraints (11.3) are linear. The multiple shooting grid consists of 33 nodes
which are chosen such that

τ
s
j = τ

d
2 j, j = 0, . . . ,32.

Note that half of the path constraint (11.2) are now simple bounds for the shooting variables,
while the other half are added as nonlinear inequality constraints to the NLP. The resulting
NLP has a total of 444 variables and 257 constraints, 255 of which are nonlinear.

The initial values of the states are fixed at x1(0) = 0.877 and x2(0) = 323. As starting point
for the optimization we set the controls to u1(t) = 0.9 and u2(t) = 300. All 130 measurement
weights are set to 1. The values for the shooting variables are obtained by forward integration.
The parameters kr,0 and U are both scaled to 1. The absolute and relative integrator tolerances
are set to 10−9.

11.1.2. A-optimal design

First, we compute an OED with respect to the A-criterion, that means we minimize the
average variance of the parameters. With the configuration given above, the standard
deviation of the parameters are 33.56% for kr,0 and 12.97% for U , which corresponds to an
A-criterion objective value of ΦA = 0.06473. Note, however, that this design is infeasible
because all 130 potential measurements are selected, but only eight are allowed.

When we run the optimization, blockSQP converges in 46 iterations taking 6.7 seconds.
Figure 11.1 depicts the optimal controls and the corresponding states. The standard deviation

182

11.1. A continuous stirred-tank reactor

of the parameters at the optimum is 3.86% for kr,0 and 2.37% for U , yielding an objective
value of ΦA = 0.001027.

0 5 10 15 20
time [min]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

c
[m

ol
/l]

CSTR states

305

310

315

320

325

298

333

T
[K

]
0 5 10 15 20

time [min]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u 1
[m

ol
/l]

CSTR controls

280

300

310

320

330

340

360

288

353

u 2
[K

]

Figure 11.1.: Optimal states and controls with respect to the A-criterion for the CSTR ex-
ample. Dashed lines mark state and control constraints. Triangles mark opti-
mal measurement placements. The four measurements for c(t) have integral
weights equal to one, for T (t), three weights are integral. The remaining mea-
surement is split between two weights at t = 14.6875 (w2

49 = 0.51) and t = 20
(w2

64 = 0.49).

11.1.3. Fisher matrix optimization criterion

Next, we investigate a new OED criterion based on the Fisher matrix that was introduced
in [120]. Here, the idea is to avoid the computation of the covariance matrix, which can be
a problem if the model is poorly identified, and optimize a criterion on the Fisher matrix
instead. The criterion reads as follows:

Φexp(H) = 1
np

np

∑
i=1

exp(−ai ·Hii), (11.4)

where Hii are the diagonal elements of the Fisher matrix and ai are suitable scaling factors.
Note that in one dimension, Φexp(H) = exp(−a ·H) has a similar shape as the classical
criteria on the covariance matrix, Φ(C) = 1/H, except that it is defined for H = 0.

In our experiment, we chose ai = 1/H [0]
ii , i.e. the diagonal elements of the Fisher matrix

for the initial design. With the same starting configuration as above, blockSQP needed 63
iterations and 12.7 seconds to converge. Figure 11.2 shows the optimal solution for this
choice. However, we noted in our experiments that the solution strongly depends on the
choice of the scaling factors. In the plot, we see that the maximum number of measurements is
already exhausted after about 6 minutes, before the end of the experiment. Then the objective
is independent of the choice of the controls after the last measurement. Although in general
this may cause numerical problems, we found in our experiments that our algorithm coped
quite well with these situations. The optimal solution depicted in Fig. 11.2 yields standard

183

Chapter 11. Optimum experimental design case studies

deviations of only 25.52% for kr,0 and 15.88% for U . When we start the optimization with
respect to the A-criterion in the solution point, the standard deviations can be reduced to
4.46% and 2.75% which is close to the optimum computed above. Hence, we recommend
using the A criterion if the covariance matrix is available because then the new criterion does
not provide any numerical benefits.

0 5 10 15 20
time [min]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

c
[m

ol
/l]

CSTR states

305

310

315

320

325

298

333

T
[K

]

0 5 10 15 20
time [min]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

u 1
[m

ol
/l]

CSTR controls

280

300

310

320

330

340

360

288

353

u 2
[K

]

Figure 11.2.: Optimal states and controls with respect to the exp-criterion for the CSTR
example. Dashed lines mark state and control constraints. Triangles mark
optimal measurement placements. Note that all measurements weights are
integral.

11.1.4. Comparison with existing implementation

We now compare our new method with the existing OED implementation in VPLAN. We
optimize with respect to the A-criterion using a single shooting approach and SNOPT to
solve the NLP. The single shooting NLP has 258 variables and 131 constraints (path and
measurement constraints). We note that the method finds a different local minimum, yielding
standard deviations of 4.32% for kr,0 and 3.69% for U , which is slightly higher than those
found by blockSQP and muse.

The existing implementation requires 66 SQP major iterations but takes 156.1 seconds.
This is a factor of more than 23 compared to the 6.7 seconds computing time of the new
method! The reasons for this are the following:

• Sensitivity load: We compute all sensitivities using the forward mode of AD. That
means for the single shooting objective gradient we need to solve a forward variational
ODE over the whole time interval for every control discretization variable q. Although
the reverse mode of AD allows a considerably cheaper computation of the objective
gradient, the presence of many path constraints limits its efficiency. This is because
the constraint Jacobian for the path constraints of dimension 128×128 needs to be
evaluated. In contrast, the DMS method only requires the solution of variational
systems for the local control variables on every shooting interval. Here, one multiple
shooting interval comprises two control intervals, i.e., a total of four control variables.

184

11.2. The Urethane reaction

• Parallelization: The sensitivities are evaluated in parallel on the multiple shooting
intervals. However, evaluating the sensitivities sequentially yields a computing time of
14.8 seconds which is still more than ten times faster than the existing implementation.
Here, the parallelization on 16 threads improves the runtime only by a factor of about
2.2 as considerable time is spent for the solution of the individual QPs, which is not
parallelized.

11.2. The Urethane reaction

11.2.1. Model

Our second OED case study is the Urethane reaction, a challenging OED benchmark example
introduced in [134], and discussed in several other publications, e.g., [15, 126, 135]. The
reaction scheme is the following:

A+B→C

A+C
 D

3A→ E

Educts are phenylisocyanate A and butanol B in the solvent dimethylsulfoxide L. During the
reaction the product urethane C, the byproduct allophanate D and the byproduct isocyanate
E are formed.

The products C, D, and E are modelled as differential states while A, B, and L can be
computed from C, D, and E using molar number balance. In total, six parameters have
to be identified, namely the frequency factors and activation energies for the Arrhenius
kinetics. To achieve this, one experiment is to be designed for the time horizon [t0, tf] =
[0h,80h]. Every 30 minutes, a measurement may be taken using one out of three potential
measurement procedures. The reactor is run in a stirrer tank with two feeds: Feed 1 contains
phenylisocyanate and the solvent, feed 2 contains dimethylsulfoxide and the solvent. Both
can be fed into the reactor during the process. Furthermore, the temperature can be controlled.
The full model including process constraints and measurement methods is summarized in
Table 11.3.

Remark 11.1. Note the different interpretation of the measurement grids τm in the CSTR
model and in the Urethane model: In the CSTR model, we are interested in the optimal
sampling times. We approximate this by choosing a grid of potential measurements. There,
the choice of the measurement grid is arbitrary. In the Urethane model, the measurement
grid is considered to be part of the model formulation. The sampling times are fixed but the
choice of measurement function at each time is optimized.

Parameterization and starting values
For the numerical computation, we parameterize u1(t) = ˙f eed1(t), u2(t) = ˙f eed2(t), and
u3 = Ṫ (t) by piecewise constant functions on 16 equidistant intervals. The actual process
controls T (t), f eed1(t), and f eed2(t) are set up as additional differential states, so we

185

Chapter 11. Optimum experimental design case studies

States

ṅC =V · (r1− r2 + r3), nC(0) = 0

ṅD =V · (r2− r3), nD(0) = 0

ṅE =V · r4, nE(0) = 0
˙f eed1 = u1, f eed1(0) = 0
˙f eed2 = u2, f eed2(0) = 0

Ṫ = u3, T (0) = 293.15

Educts

nA,e = nA,e1,0 · f eed1

nB,e = nB,e2,0 · f eed2

nL,e = nL,e1,0 · f eed1 +nL,e2,0 · f eed2

nA = nA,0 +nA,e−nC−2 ·nD−3 ·nE

nB = nB,0 +nB,e−nC−nD

nL = nL,0 +nL,e

Reaction Rates

r1 = kre f 1 · exp
(
−Ea,1

R
·
(

1
T
− 1

363.16

))
· nA

V
· nB

V

r2 = kre f 2 · exp
(
−Ea,2

R
·
(

1
T
− 1

363.16

))
· nA

V
· nC

V

r3 = kre f 2 · exp
(
−Ea,2

R
·
(

1
T
− 1

363.16

))
·
(

KC2 · e−
∆H2

R ·
(

1
T − 1

TC2

))−1

· nD

V

r4 = kre f 4 · exp
(
−Ea,4

R
·
(

1
T
− 1

363.16

))
·
(nA

V

)2

V =
nA ·MA

ρA
+

nB ·MB

ρB
+

nC ·MC

ρC
+

nD ·MD

ρD
+

nE ·ME

ρE
+

nL ·ML

ρL

Time Dependent Controls

0≤ f eed1, f eed2 ≤ 1

0≤ u1,u2 ≤ 0.0125

273.15≤ T ≤ 473.15

−40≤ u3 ≤ 40

Time Independent Controls

0.1≤ nA,0 ≤ 1, 0≤ nB,0,nL,0 ≤ 1
nA,0MA +nB,0MB

nA,0MA +nB,0MB +nL,0ML
≤ 0.8

nA,0MAρ
−1
A +nB,0MBρ

−1
B +nL,0MLρ

−1
L ≤ 7.5 ·10−4

Measurements

h1(t) = 100 · nA ·MA

nA ·MA +nB ·MB +nC ·MC +nD ·MD +nE ·ME +nL ·ML

h2(t) = 100 · nC ·MC

nA ·MA +nB ·MB +nC ·MC +nD ·MD +nE ·ME +nL ·ML

h3(t) = 100 · nD ·MD

nA ·MA +nB ·MB +nC ·MC +nD ·MD +nE ·ME +nL ·ML

h4(t) = 100 · nE ·ME

nA ·MA +nB ·MB +nC ·MC +nD ·MD +nE ·ME +nL ·ML

w2
i = w3

i , w1
i +w2

i +w4
i ≤ 1 i = 0, . . . ,16

Figure 11.3.: Urethane Reaction Model.

186

11.2. The Urethane reaction

Parameter Value

kre f 1 5.0 ·10−4

Ea,1 35240
kre f 2 8.0 ·10−8

Ea,2 85000
kre f 4 1.0 ·10−8

Ea,4 35000

Constant Value Constant Value

MA 0.11911 ρA 1095
MB 0.07412 ρB 809
MC 0.19323 ρC 1415
MD 0.31234 ρD 1528
ME 0.35733 ρE 1451
ML 0.07806 ρL 1101
∆H2 −17031.0 KC2 0.17

Table 11.2.: Parameters and constants for the Urethane model.

end up with a total of six state variables. The constraints on the controls are formulated
as path constraints. The multiple shooting grid comprises 8 equidistant intervals. The
resulting NLP has a total of 470 variables and 415 constraints, 349 of which are nonlinear.
The linear constraints are the measurement restrictions and localization constraints for the
time-independent controls to achieve separability of the NLP.

As starting values for the optimization we set u1(t) = u2(t) = 0.0125 and u3(t) = 2 for
t ∈ [0,80]. The starting values for the time independent controls are nA,0 = 0.1, nB,0 = 0, and
nL,0 = 0.2. All 51 measurement weights are set to 0.33. Values for the shooting variables are
obtained by forward integration and all parameters are scaled to 1. The absolute and relative
integrator tolerances are set to 10−8.

11.2.2. A-optimal design

We compute an OED with respect to the A-criterion. With the configuration given above, the
A-criterion objective value of the starting point is ΦA = 1265.52.

When we run the optimization, blockSQP converges in 40 iterations taking 12.4 seconds.
The objective value is reduced to ΦA = 0.1763. Table 11.3 lists the standard deviations of
the parameters before and after the optimization and Figure 11.1 depicts the optimal controls
and the corresponding states. For 12 out of 16 measurement times, the weights are integral,
i.e., exactly one of the measurement procedures is selected. If the fractional weights are
rounded to the next integer, the objective increases only slightly to ΦA = 0.1765.

11.2.3. Comparison with existing implementation

Again, we compare the new method to the existing implementation in VPLAN. We optimize
with respect to the A-criterion using a single shooting approach and SNOPT to solve the NLP.
Here, the default settings of SNOPT are used, as they provided the best performance in our
tests. The single shooting NLP has 106 variables and 76 constraints (path and measurement
constraints). The method finds a different local minimum, yielding an objective value of
ΦA = 0.2324. Figure 11.5 depicts the optimal controls and corresponding states.

187

Chapter 11. Optimum experimental design case studies

0 10 20 30 40 50 60 70 80
time [h]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

[m
ol

]

Urethane states

nC

nD

nE

0 10 20 30 40 50 60 70 80
time [h]

300

350

400

450

T
[K

]

Urethane controls

T
f eed1

f eed2

0.0

0.2

0.4

0.6

0.8

1.0

Fe
ed

pr
ofi

le
s

Figure 11.4.: Optimal states and controls with respect to the A-criterion for the Urethane
example computed with blockSQP.

Parameter Std. dev. before Std. dev. after

kre f 1 20.40% 34.17%
Ea,1 11.97% 24.70%
kre f 2 220.09% 37.60%
Ea,2 52.21% 7.92%
kre f 4 5209.56% 67.30%
Ea,4 6981.39% 52.87%

Table 11.3.: Standard deviation of parameters at an A-optimal design computed with
blockSQP.

0 10 20 30 40 50 60 70 80
time [h]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

[m
ol

]

Urethane states

nC

nD

nE

0 10 20 30 40 50 60 70 80
time [h]

300

350

400

450

T
[K

]

Urethane controls

T
f eed1

f eed2

0.0

0.2

0.4

0.6

0.8

1.0

Fe
ed

pr
ofi

le
s

Figure 11.5.: Optimal states and controls with respect to the A-criterion for the Urethane
example computed with SNOPT.

188

11.2. The Urethane reaction

The existing VPLAN implementation requires 234 SQP major iterations and takes 283.2
seconds. We note that the number of SQP iterations is larger by almost a factor of 6. Here,
the single shooting approach struggles with the highly nonlinear dynamics and takes only
small steps. We also note that the cost of one iteration in single shooting is more than 3 times
higher than for DMS because of the reasons provided in Section 11.1.4.

189

Chapter 12.

Numerical study of lifting

In Chapter 11, we already used the capability of muse to employ shooting grids that are
coarser than the control grids. In many cases, coarser shooting grids yield the best overall
performance as a trade-off between the number of SQP iterations, QP size, and sensitivity
load. In this chapter, we study the effect of lifting in OC and OED problems on the number
of SQP iterations. To this end, we consider several problems from the test set of Chapter 10
with fixed control discretization grids, but vary the multiple shooting grid. This gives rise to
families of equivalent NLPs in the sense of Def. 5.1 which we solve with blockSQP.

Then, we study one of these problems, a Lotka–Volterra OED problem, in detail. Here,
an increasing number of shooting intervals has a negative impact on the number of SQP
iterations. Further experiments to investigate the local convergence properties reveal that
the effect is due to the higher number of iterations before a domain of local convergence is
reached. Once that has happened, the SR1 updates provide fast, grid-independent conver-
gence. In the local setting, the nonlinear transformation of the OED objective introduced
in [150] can further reduce the number of SQP iterations.

Finally, we study OC problems where the objective is to track an optimal solution. Their
Hessian is positive definite. Here, numerical results for five problems show that lifting has a
positive impact on the number of SQP iterations.

12.1. Experimental setup and results

We consider several problems from the test set of Chapter 10:

• The OC problems oc-goddard, oc-lotka, and oc-particle-steering, and

• the OED problems oed-catalyst-mixing, oed-lotka, and oed-urethane.

For oed-urethane, the control functions are discretized on a grid of 16 intervals. For the
five remaining problems, we use 64 equidistant intervals. For the OED problems, we ignore
the measurement restrictions and eliminate the measurement weights from the problems by
internally setting all wi = 1. This eliminates a number of local minima in the OED problems
that make a comparison difficult. For all problems, we use the starting values as given in
Appendix B

We now consider different, equidistant shooting grids to obtain a families of NLPs that are
equivalent in the sense of Def. 5.1. We choose grids with 2i, i = 0, . . . ,6 (oed-urethane:

191

Chapter 12. Numerical study of lifting

✵✿✵ ✵✿✷ ✵✿✹ ✵✿✻ ✵✿✽ ✶✿✵

◆s

✵✿✵

✵✿✷

✵✿✹

✵✿✻

✵✿✽

✶✿✵

❙
◗
P
✐t
✳
✭♥
�
✁♠
❛
❧✐
③
❡
❞
✂

✵ ✶ ✷ ✹ ✽ ✶✻ ✸✷ ✻✹

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✄☎✆♦✝✝✞✟✝

✵ ✶ ✷ ✹ ✽ ✶✻ ✸✷ ✻✹

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✄☎✠♦✡☛✞

✵ ✶ ✹ ✽ ✶✻ ✸✷ ✻✹

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✄☎☞✞✟✡✌✄✠✍☎✎✡✍✍✟✌✏✆

✵ ✶ ✷ ✹ ✽ ✶✻ ✸✷ ✻✹

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✍✝☎✄✞✡✞✠✑✎✡☎✒✌✓✌✏✆

✵ ✶ ✷ ✹ ✽ ✶✻ ✸✷ ✻✹

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✍✝☎✠♦✡☛✞

✵ ✶ ✷ ✹ ✽ ✶✻

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✍✝☎✔✟✍✡✕✞✏✍

Figure 12.1.: Number of shooting intervals plotted versus number of SQP iterations for three
OC and OED problems. The control discretization grid is fixed. The markers
at 0 correspond to single shooting. The number of iterations are normalized to
the lowest number.

i = 0, . . . ,4) shooting intervals, where 0 intervals represents a single shootin parameterization.
This way, every shooting node coincides with a point in the control grid. Note the difference
between one shooting interval and the single shooting parameterization: One shooting
interval corresponds to a decoupling of the objective and yields a Hessian with two diagonal
blocks. That means the dynamic system is evaluated as part of the constraints while with
direct single shooting the solution of the dynamic system is evaluated as part of the objective.

Results
Figure 12.1 shows the relative number of SQP iterations normalized to the best method. For
all problems except oed-urethane, all formulations converged to the same minimum. For
oed-urethane, the six formulations yielded six different local minima.

The results for four of the problems, oc-goddard, oc-particle-steering,
oed-catalyst-mixing, and oed-urethane, do not provide a clear message in terms of
convergence speed. The number of iterations do not differ much, or do not follow a clear
pattern as in the case of oc-particle-steering. But the results for the two remaining
problems, oed-lotka and oc-lotka, exhibit a certain monotonicity: When we increase the
number of shooting intervals, the number of SQP iterations increases for oed-lotka and
decreases for oc-lotka. In the following sections, we study this behavior in more detail.

192

12.2. A Lotka–Volterra OED problem

0 2 4 6 8 10 12
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 Lotka–Volterra states

prey
predator
u(t)

0 2 4 6 8 10 12
time

−10

−8

−6

−4

−2

0

2

4

6 Lotka–Volterra variational states

dy1/dα
dy2/dα

dy1/dβ
dy2/dβ

Figure 12.2.: Optimal controls and states with respect to the A-criterion for the Lotka–
Volterra example.

12.2. A Lotka–Volterra OED problem

We consider the Lotka–Volterra example from [170]. The system equations are given by

ẏ1(t) = y1(t)−αy1(t)y2(t)−0.4u(t)y1(t), y1(0) = 0.5, (12.1a)

ẏ2(t) =−y2(t)+βy1(t)y2(t)−0.2u(t)y2(t), y2(0) = 0.7, (12.1b)

t ∈ [0,12] ≤ u(t)≤ 1.

We optimize the A-criterion on the covariance matrix of α and β evaluated at α = β = 1.
Measurements of y1 and y2 are taken at τm

j = j · 12
64 , j = 0, . . . ,64. The control is discretized

by piecewise constant functions and the starting values for the control variables are set
to qi = 0.3, i = 0, . . . ,Nc. The starting values for the shooting variables are obtained by
forward integration. We set the absolute and relative integration tolerances to 10−10 and
the tolerances for blockSQP, εtol and εfeas, to 10−6. All formulations produce the same
minimum with objective value ΦA = 0.0032653. Figure 12.2 shows the optimal control and
the corresponding nominal and variational states at the solution.

12.2.1. Results for remote starting values

Figure 12.3 shows the distribution of SR1 and BFGS updates for all formulations. Especially
for finer shooting grids, SR1 updates are accepted mostly in the final iterations, when a
region of local convergence is reached. We attribute the slow convergence to the fact that for
the block-BFGS update many blocks are damped. The minimum number of damped blocks
for all SQP iterations where the BFGS update is used is as follows:

Ns S 1 2 4 8 16 32 64

min. # damped blocks 0 0 1 2 3 5 11 23

193

Chapter 12. Numerical study of lifting

0 20 40 60 80 100
SQP iteration

0

1

2

4

8

16

32

64

N
s

Distribution of SR1 updates for oed-lotka

SR1 accepted
SR1 rejected

Figure 12.3.: SQP iterations plotted against the distribution of BFGS and SR1 updates for
different shooting formulations of the oed-lotka example. The starting values
for the control variables are qi = 0.3, i = 0, . . . ,Nc.

We see that for Ns > 1, an unmodified BFGS step is never taken. We suspect that this
causes the algorithm to proceed only slowly towards a region where SR1 updates are possible.
This confirms our theoretical analysis from Sec. 5.3.

12.2.2. Results for starting values close to the solution

To get a better idea of the local convergence properties, we now choose a starting value close
to the optimal solution. For this, we perturb the optimal values of the control variables as
shown in Fig. 12.2 by 0.01. Again, starting values for the shooting variables are obtained
by forward integration. Fig. 12.4 shows the distribution of SR1 and BFGS updates when
started close to the solution. First, we note that for formulations with a higher number of
shooting intervals, the SR1 update is still rejected more often. However, the overall number
of iterations in the local setting is independent of the number of shooting intervals. If few
shooting intervals are used, the total number of iterations in the local setting is similar or even
higher than with remote starting values.This is due to the fact that low-rank quasi-Newton
updates need a certain number of iterations to collect enough curvature information about
the problem.

12.2.3. Results: Nonlinear transformation of OED objective

We now test the nonlinear transformation proposed in [150] on the oed-lotka problem.
Instead of the A-criterion tr(C) we minimize the function − tr(C)−2. This preserves all
local minima but helps again ill-conditioning as shown in [150]. The implementation of the
transformation is straightforward and does not introduce any noticeable costs.

Table 12.1 lists the number of SQP iterations for the formulation with the nonlinear
transformed objective. The results for the A-criterion objective are given for comparison. We
remark that all formulations reproduced the optimal objective value with the same accuracy,
that means “early termination” of the SQP method due to scaling issues was not the case.
In the remote case, the new formulation suffers from similar problems as the A-criterion.
Relatively few SR1 updates are accepted and the number of iterations for fine shooting grids

194

12.3. Problems with a tracking objective

0 10 20 30 40 50
SQP iteration

0

1

2

4

8

16

32

64

N
s

Distribution of SR1 updates for oed-lotka

SR1 accepted
SR1 rejected

Figure 12.4.: SQP iterations plotted against the distribution of BFGS and SR1 updates
for different shooting formulations of the oed-lotka example. The starting
values for the control variables are obtained by perturbing the optimal solution
depicted in Fig. 12.2 by 0.01.

is higher than for coarse ones. However, when we consider the local setting, we see that
the new formulation converges two to six times faster than the standard formulation. In
particular, the convergence is independent of the shooting grid. This makes the nonlinear
transformed objective an interesting alternative to the standard OED objectives.

Ns ϕ = tr(C) ϕ =− tr(C)−2

S 20 (14) 12(9)
1 33 (27) 39(18)
2 40 (19) 30(12)
4 43 (8) 38(9)
8 47 (15) 43(10)

16 71 (17) 113(14)
32 74 (19) 71(13)
64 94 (25) 68(12)

(a) Results for blockSQP with starting values
qi = 0.3, i = 0, . . . ,Nc.

Ns ϕ = tr(C) ϕ =− tr(C)−2

S 27 (25) 8(8)
1 38 (35) 6(6)
2 36 (31) 6(6)
4 25 (18) 11(8)
8 25 (14) 11(10)

16 38 (9) 8 (8)
32 24 (10) 8 (7)
64 29 (12) 9 (7)

(b) Results for blockSQP with starting values
close to the solution.

Table 12.1.: Number of SQP iterations for different shooting grids and different formulations
of the objective. Listed are iteration numbers for the A-criterion objective and
the nonlinearly transformed A-criterion. In parentheses, the number of accepted
SR1 updates is given.

12.3. Problems with a tracking objective

For the oc-lotka test example we observe a decreasing number of SQP iterations for finer
shooting grids. The objective of this problem is to minimize the Euclidean distance to a

195

Chapter 12. Numerical study of lifting

prescribed steady state:

min
y,u

∫ tf

t0
(y1(τ)−1)2 +(y2(τ)−1)2 dτ,

where y1 and y2 are given by the ODEs (12.1). This is a special case of a tracking problem,
where the distance to a reference trajectory yref is to be minimized:

min
y,y0,u

1
2

∫ tf

t0

∥∥y(τ)− yref(τ)
∥∥2

2 dτ (12.2a)

s.t. ẏ(t) = f (t,y(t),z(t), p,u(t)), t ∈ [t0, tf], (12.2b)

y(t0) = y0, (12.2c)

bL ≤ u(t)≤ bU , t ∈ [t0, tf], (12.2d)

Tracking problems appear, e.g., in the context of nonlinear model-predictive control, where
DMS has been applied successfully [58]. In the following, we study the problem of tracking
an optimal solution for the OED and OC problems from Sec. 12.1.

12.3.1. Problem discretization and properties of the NLP

We apply direct multiple shooting with a piecewise constant control discretization to prob-
lem (12.2) and replace the integral with a sum over all points in the control discretization
grid τc. We assume that yref is the optimal solution of the original problem obtained with the
same discretization τc. For the following analysis, we assume that the state and control are
scalar. Furthermore, we drop inequality constraints. Then the resulting NLP reads as:

min
s,q

1
2

Ns

∑
j=0

Ns

∑
i:

τs
j≤τc

i <τs
j+1

(
y(τc

i ;s j, q̂ j)− yref(τc
i)
)2

(12.3a)

s.t. 0 = y(τs
j ;s j−1, q̂ j−1)− s j, j = 1, . . . ,Ns, (12.3b)

Note that for different multiple shooting grids τs we again obtain a family of equivalent
NLPs. This is because we sum over all points of the control grid τc, which is the same for all
NLPs. We define

F : Rny×Rnq → RNc+1, Fi(s,q) := y(τc
i ;s j(i), q̂ j(i))− yref(τc

i), i = 0, . . . ,Nc.

Here j(i) denotes the index j of the shooting node corresponding to index i∈ τc. Furthermore,
we denote the Jacobian of F by J := J(s,q) ∈ R(Nc+1)×(ny+nq) and by Js j the column of J
corresponding to s j. For the NLP (12.3), the following holds:

Lemma 12.1. Assume that the first and second derivatives of F are bounded in a neighbor-
hood of the global minimum. Then the Hessian of the Lagrangian

L(s,q,λ) = 1
2 ‖F(s,q)‖2

2−
Ns

∑
i= j

λ j
(
y(τs

j ;s j−1, q̂ j−1)− s j
)

(12.4)

of Problem (12.3) is positive semi-definite in a neighborhood of the global minimum.

196

12.3. Problems with a tracking objective

Proof. At the global minimum, we know that F(s∗,q∗) = 0. Therefore, in a neighborhood of
(s∗,q∗) it holds that ‖F(s,q)‖< ε . Furthermore, the gradient of the Lagrangian must vanish
at the solution. The gradient with respect to s j is given by

∇s jL= JT
s j

F +λ j−λ j+1
dy(τs

j+1)

ds j
, j = 0, . . . ,Ns−1,

∇sNsL= JT
sNs F +λNs ,

therefore at the solution we have that

λ
∗
Ns =−JT

sNs F,

λ
∗
j =−JT

s j
F +λ

∗
j+1

dy(τs
j+1)

ds j
, j = 0, . . . ,Ns−1.

Because we assume that the first derivatives are bounded, we conclude that λ j =O(‖F(s,q)‖).
The Hessian of the Lagrangian is given by

∇
2L(s,q,λ) = JT J+

Nc

∑
i=0

Fi∇
2Fi−

Ns

∑
i= j

λ j∇
2 (y(τs

j ;s j−1, q̂ j−1)− s j
)
.

Because we assume that the second derivatives are bounded, the positive definite term JT J
dominates the right-hand side if ‖F(s,q)‖ is sufficiently small.

12.3.2. Results

For the problems from Sec. 12.1, we now consider the problem of tracking a reference
solution. Note that the resulting NLPs have exactly the same set of variables and constraints
and differ only in the objective function. The reference solutions are the optimal trajectories
computed in Sec. 12.1. For OED problems, this comprises the nominal and variational states.
The problem oed-urethane exhibits many local minima and is excluded here. The global
minimum has objective value 0 by construction, so that the Hessian is positive semi-definite
near the solution.

The starting values for all optimization variables and the algorithmic options are chosen
as in Sec. 12.1. We remark that in practice, one would probably chose the starting values
s[0] = yref to exploit prior knowledge about the optimal solution. Also, an algorithm based
on a Gauss–Newton approximation of the Hessian may be more appropriate for tracking
problems. However, here the goal is to study the effect of lifting when applied to a problem
with positive definite Hessian.

Fig. 12.5 depicts the relative number of SQP iterations for different shooting grids. If the
number of shooting nodes is chosen to be smaller than eight, the algorithm did not converge.
We see that the number of SQP iterations decreases as the shooting grid is refined. We
conclude that lifting has a positive effect for tracking problems with regard to convergence
speed.

197

Chapter 12. Numerical study of lifting

✵✿✵ ✵✿✷ ✵✿✹ ✵✿✻ ✵✿✽ ✶✿✵

◆s

✵✿✵

✵✿✷

✵✿✹

✵✿✻

✵✿✽

✶✿✵

❙
◗
P
✐t
✳
✭♥
�
✁♠
❛
❧✐
③
❡
❞
✂

✻✹✸✷✶✻✽

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✄☎✆♦✝✝✞✟✝

✻✹✸✷✶✻✽

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✄☎✠♦✡☛✞

✻✹✸✷✶✻✽

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✄☎☞✞✟✡✌✄✠✍☎✎✡✍✍✟✌✏✆

✻✹✸✷✶✻✽

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✍✝☎✄✞✡✞✠✑✎✡☎✒✌✓✌✏✆

✻✹✸✷✶✻✽

✶✿✵

✶✿✺

✷✿✵

✷✿✺

✸✿✵

✸✿✺

✹✿✵

✹✿✺

✺✿✵
♦✍✝☎✠♦✡☛✞

Figure 12.5.: Number of SQP iterations plotted versus number of shooting intervals for
tracking problems.

198

Conclusions and future work

In this work, we have developed theory, algorithms and software for the numerical solution
of OED and OC problems constrained by DAEs. Based on Bock’s direct multiple shooting
method, we have proposed new ways to transcribe infinite-dimensional OED problems to
finite-dimensional NLPs. A special feature of our method in comparison to previously
proposed DMS implementations is the ability to cope with different grids for the multiple
shooting parameterization, the discretization of controls, the discretization of path constraints,
and—in the case of OED—the discretization of measurement functions. After all, in prob-
lems from industrial practice often very specific restrictions apply concerning process and
measurement constraints. On the other hand, it must be guaranteed that the underlying
dynamic system can be solved reliably and efficiently during the optimization. Different
grids provide the freedom to choose a parameterization that suits best the problem at hand.

From a theoretical point of view, the new formulation allows to investigate DMS in the
light of the lifted Newton method: Different multiple shooting grids correspond to different
liftings of the constraint function. The same SQP method applied to these problems iterates
in different spaces and approaches the solution differently.

We have developed a new SQP method tailored to the specially structured NLPs arising
in DMS that uses blockwise quasi-Newton updates to approximate the Hessian. Numerical
tests with a newly developed implementation of the method have shown how fast local
convergence is impeded if only positive definite blockwise Hessian approximations are used,
which confirms our theoretical findings on model problems. Another important result is
that if the block-diagonal structure in DMS is ignored and full-space updates are employed,
an off-the-shelf SQP solver fails on non-trivial OED problems. This supports our claim
that DMS must be used with a dedicated SQP method. Furthermore, we have performed
numerical experiments to investigate the effect of lifting on the number of SQP iterations
by using different multiple shooting grids. Closer examination of a Lotka–Volterra OED
problem has shown that locally, fast convergence can be achieved independent of the multiple
shooting grid, provided that indefinite Hessians are used. Often, however, other, non-local
effects dominate the overall number of SQP iterations. An exception are tracking problems,
where refining the multiple shooting grid considerably improves the speed of convergence.

We want to point out that in practice, the overall performance of the optimization method
is not only dependent on the (expected) number of SQP iterations. It rather is a complex
combination of several factors, including the size of the control discretization, the size and
the characteristic of the dynamic system, the size and condition of the arising quadratic
subproblems, and the parallelization architecture available. Here, muse and blockSQP are a
powerful toolkit that can be easily adjusted to constitute a fast and reliable solution method
for the specific OED or OC problem instance at hand.

199

Conclusions and future work

Directions of further research

During the work on this thesis, several questions arose which we think deserve further
investigation. We conclude this thesis with the most promising ones.

Communication between integrator and SQP method
Occasionally, we observed in our numerical tests certain “outlier” steps. That means, after
a number of SQP iterations, in which only few active set iterations are needed and good
progress towards a solution is made, a step is computed that takes the iterate relatively far
from the current region. We conjecture that this is due to internal changes in the integrator,
which is, strictly speaking, a change of the NLP constraint function. Then the secant
information used to produce the new Hessian may be highly unreliable and thus results
in a poor step. A remedy for this undesirable behavior could be to employ global error
estimators such as those proposed in [18]. Then a fixed integration grid should be used
during several SQP iterations while the global error is monitored along the way. Adjustments
to the grid based on the estimated error should only be made in few iterations and within this
iterations, existing secant information should probably be discarded to avoid poor Hessian
approximations.

Development of a second-order SQP method
The SQP framework presented in Ch. 6 is independent of the specific Hessian approximations
and the QP method presented in Ch. 8 can exploit arbitrary sparsity patterns. In many
applications, (sparse) Hessians are available by employing algorithmic differentiation. This
motivates the development of a second-order SQP method, where exact Hessians are used
within the inner loop of the line search SQP Algorithm 6. A challenge is how to proceed if
the exact Hessian is rejected. If the Lagrangian is still partially separable, sparsity-exploiting
quasi-Newton updates such as [111] can be employed as fallback. Another possibility that
should be investigated in this context are strategies based on recently proposed convexification
schemes [96].

200

Danksagungen

Mein Dank geht an meine Lehrer und Mentoren der Fakultät für Mathematik und Informatik,
von denen ich in den letzten Jahren so viel lernen durfte und die wesentlich zum Gelingen
dieser Arbeit beigetragen haben: Stefan Körkel, Georg Bock, Sebastian Sager (Uni Magde-
burg), Christian Kirches und Johannes Schlöder. Jede Diskussion mit Ihnen über neue (und
alte) Ideen hat diese Arbeit ein Stück weiter voran gebracht.

Des weiteren gebührt Andreas Wächter großer Dank, der mir den Aufenthalt an der North-
western University ermöglicht hat und mich dort so hervorragend betreut hat. Diese Arbeit hat
wesentlich von seiner Expertise profitiert und die drei Monate in Evanston waren insgesamt
eine tolle Erfahrung für mich.

Meinen Kollegen der Arbeitsgruppen Optimum Experimental Design, Simulation & Opti-
mierung, Optimization of Uncertain Systems und Model-Based Optimizing Control danke ich
für die freundliche und kooperative Atmosphäre, die vielen fachlichen und nicht-fachlichen
Gespräche und dafür, dass in den vergangenen Jahren das Arbeiten ein solches Vergnügen
war. Für die schöne und erfolgreiche Zusammenarbeit im SIAM Chapter danke ich Dörte
Beigel, Holger Diedam, Kathrin Hatz und Andreas Sommer. Für Diskussionen im Kon-
text meiner Arbeit danke ich besonders Chris Hoffmann, Robert Kircheis, Mario Mommer,
Andreas Potschka, Andreas Schmidt, Sebastian Walter und Christoph Weiler.

Der BASF SE, der Heidelberg Graduate School MathComp sowie der Northwestern Univer-
sity danke ich für finanzielle Unterstützung.

Von Herzen danke ich meinen Eltern Günter und Gerlinde sowie meinen Schwestern Katrin
und Amelie für ihre fortwährende Unterstützung. Schließlich gehen Liebe und Dank an
meine Frau Teresa und meinen Sohn Ferenc, die mich immer wieder daran erinnern, was
wirklich wichtig ist.

201

Appendix

A. Model equations for the oc-ocean and oc-fermenter
problems

The oc-ocean model

The model describes fossil fuel consumption and sequestration into the ocean [169]. It is a
two box model where S describes the carbon stock in the atmosphere and upper layer ocean,
R describes the carbon stock in fossil reserve and DL the carbon stock in the deeper layer.
Together with a utility function y we have the following three differential states that are
integrated on [0,400]:

ẏ(t) = exp(−ρt)(U(t)−A(t)−u1(t)C(t)−D(t), y(0) = 0

Ṡ(t) = u1(t)−u2(t)− γ · (S(t)−ωDL(t)) , S(0) = 2000

Ṙ(t) =−u1(t), R(0) = 104

where

U(t) = bu1(t)−µu1(t)2, D(t) = v(0.3S(t)−Spreind)
2,

A(t) = a1u2(t)+a2u2(t)2, DL(t) = DL,0 +R0 +S0−R(t)−S(t),

C(t) = c1− c2R(t).

The objective is to maximize the utility function y at tf = 400. The states S and R, and the
controls u1 and u2 are subject to the following bounds:

0≤ S(t),R(t)≤ 105, 0≤ u1(t),u2(t)≤ 40.

Values for all remaining constants are listed in Table A.1.

Sym. Value

ρ 0.03
γ 0.001
ω 0.1
b 50
µ 0.5

Sym. Value

a1 2
a2 2
v 1
c1 50
c2 0.004

Sym. Value

Spreind 600
S0 2000
R0 104

DL,0 2.3 ·104

Table A.1.: Constants for the oc-ocean model.

203

Appendix

The oc-fermenter model

The model describes a fermentation process with two substrates S1 and S2, and two products
P and G. Enzyme biomass concentration is modeled by a state E. Further states are the
fermentation volume V and the accumulated product Pacc and substrates S1,acc and S2,acc. S1
and S2 can be fed into the reactor. This is described by two controls uS1 and uS2 . Furthermore,
P can be harvested with rate uP. The full system reads as

Ṗ(t) =µpE(t)S1(t)S2(t)−P(t)
uS1(t)+uS2(t)

25V (t)
, P(0) = 0,

Ṡ1(t) =− γx,1E(t)S1(t)S2(t)G(t)− γp,1E(t)S1(t)S2(t)

+0.42
uS1

25V (t)
−S1(t)

uS1(t)+uS2(t)
25V (t)

, S1(0) = 0.03,

Ṡ2(t) =− γx,2E(t)S1(t)S2(t)G(t)− γp,2E(t)S1(t)S2(t)

+0.333
uS2

25V (t)
−S2(t)

uS1(t)+uS2(t)
25V (t)

, S2(0) = 0.03,

Ė(t) =µxE(t)S1(t)S2(t)G(t)−E(t)
uS1(t)+uS2(t)

25V (t)
, S3(0) = 0.01,

V̇ (t) =uS1(t)+uS2(t)−uP(t), V (0) = 0.3,

Ġ(t) =− γx,gE(t)S1(t)S2(t)G(t)−G(t)
uS1(t)+uS2(t)

25V (t)
, G(0) = 0.1,

Ṗacc(t) =uP(t)P(t)+
uS1(t)+uS2(t)−uP(t)

25
P(t)+V (t)Ṗ(t), Pacc(0) = 0.0,

Ṡ1,acc(t) =0.0168uS1 , S1,acc(0) = 0.009,

Ṡ2,acc(t) =0.01332uS2 , S2,acc(0) = 0.009.

The objective is to minimize the following cost function:

φ(tf) =
2S1,acc(tf)S2,acc(tf)

Pacc(tf)

at tf = 1. The control functions are subject to the bounds

0≤ uS1 ≤ 15, 0≤ uS2 ≤ 1, 0≤ uP ≤ 30,

and the states are constrained by

0≤ P(t)≤ 0.1, 0≤ S1(t)≤ 0.04, 0≤ S2(t)≤ 0.03

0≤ E(t)≤ 0.1, 0.3≤V (t)≤ 0.45, 0≤ G(t)≤ 0.1

0≤ Pacc(t)≤ 0.05, 0≤ S1,acc(t)≤ 0.2, 0≤ S2,acc(t)≤ 0.025.

Values for all remaining constants are listed in Table A.2.

204

B. Control and parameter values for the optimization benchmark collection

Sym. Value

µx 2 ·105

µp 5000
γx,g 5 ·104

Sym. Value

γx,1 105

γp,1 2 ·104

Sym. Value

γx,2 1500
γp,2 5 ·104

Table A.2.: Constants for the oc-fermenter model.

B. Control and parameter values for the optimization
benchmark collection

Table B.1 lists the starting values for the controls that were used in the numerical tests in
Chapter 10. Table B.2 lists the values of the parameters that were used for the OED problems.

Problem name u1 u2 u3

oed-catalyst-mixing 0.5
oed-cstr 0.9 300.0
oed-lotka 0.3
oed-polymerization [2.73 : 3.13] 1.0 1.0
oed-urethane 0.0125 0.0125 2.0
oed-yeast 0.2 35
oc-batchdist 8.0
oc-cops-catalyst-mixing 0.5
oc-cops-goddard 1.75
oc-cops-hangglider 0.7
oc-cops-hanging-chain [−2.0 : 6.0]
oc-cops-particle-steering 0.0
oc-fermenter [14.0 : 0.0] 0.7 0.5
oc-lotka 0.3
oc-ocean 30.0 10.0
oc-williams-otto 0.5 2.9

Table B.1.: Starting values for the control variables for the optimization benchmark collection.
A single value indicates that all q are set to the same value. Squared brackets
indicate that q is chosen as a linear interpolation between [q0 : qNc].

Problem name p1 p2 p3 p4 p5 p6

oed-catalyst-mixing 10
oed-cstr 549.36 7.2 ·1010

oed-lotka 1 1
oed-polymerization 8.96 ·106 −3557 4.16 ·1016 −16573
oed-urethane 5 ·10−4 35240 8 ·10−8 8.5 ·104 10−8 3.5 ·104

oed-yeast 0.31 0.18 0.55 0.05

Table B.2.: Parameter values for the OED problem instances. Note that for the computation
of the covariance matrix, all parameters are scaled to 1.

205

Bibliography

[1] W. Achtziger and C. Kanzow. “Mathematical programs with vanishing constraints:
optimality conditions and constraint qualifications”. In: Mathematical Programming
114.1 (2008), pp. 69–99 (cit. on p. 28).

[2] M. Al-Baali. “Global and superlinear convergence of a restricted class of self-
scaling methods with inexact line searches, for convex functions”. In: Computational
Optimization and Applications 9.2 (1998), pp. 191–203 (cit. on p. 132).

[3] M. Al-Baali. “Numerical experience with a class of self-scaling quasi-Newton algo-
rithms”. In: Journal of Optimization Theory and Applications 96.3 (1998), pp. 533–
553 (cit. on p. 132).

[4] J. Albersmeyer. “Adjoint based algorithms and numerical methods for sensitivity
generation and optimization of large scale dynamic systems”. PhD thesis. Universität
Heidelberg, 2010 (cit. on pp. 52, 86, 159).

[5] J. Albersmeyer and M. Diehl. “The Lifted Newton Method and its Application in
Optimization”. In: SIAM Journal on Optimization 20.3 (2010), pp. 1655–1684 (cit.
on pp. 21, 22, 106–108).

[6] P. Amestoy, H. S. Dollar, J. K. Reid, and J. A. Scott. An approximate minimum degree
algorithm for matrices with dense rows. Tech. rep. RAL-TR-2007-020. Rutherford
Appleton Laboratory, 2007 (cit. on p. 144).

[7] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. “A fully asynchronous
multifrontal solver using distributed dynamic scheduling”. In: SIAM Journal on
Matrix Analysis and Applications 23.1 (2001), pp. 15–41 (cit. on p. 144).

[8] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell. Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations. Philadelphia, PA: SIAM, 1995
(cit. on p. 51).

[9] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential–Algebraic Equations. Philadelphia: SIAM, 1998 (cit. on
p. 51).

[10] A. C. Atkinson and A. Donev. Optimum Experimental Designs. Ed. by A. C. Atkin-
son, J. B. Copas, D. A. Pierce, M. J. Schervish, and D. M. Titterington. Oxford
Statistical Sciences Series 8. Oxford: Oxford University Press, 1992 (cit. on pp. 18,
60, 68).

[11] J. Banga and E. Balsa-Canto. “Parameter estimation and optimal experimental
design”. In: Essays Biochem 45 (2008), pp. 195–210 (cit. on p. 60).

207

Bibliography

[12] W. Bangerth, R. Hartmann, and G. Kanschat. “deal.II—a general-purpose object-
oriented finite element library”. In: ACM Transactions on Mathematical Software
(TOMS) 33.4 (2007), p. 24 (cit. on p. 159).

[13] Y. Bard. Nonlinear Parameter Estimation. Academic Press, 1974 (cit. on p. 61).

[14] I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder. “Numerical Methods for Initial
Value Problems and Derivative Generation for DAE Models with Application to
Optimum Experimental Design of Chemical Processes”. In: Scientific Computing
in Chemical Engineering II. Ed. by F. Keil, W. Mackens, H. Voß, and J. Werther.
Springer, 1999, pp. 282–289 (cit. on p. 51).

[15] I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder. “Numerical methods for optimum
experimental design in DAE systems”. In: J. Comput. Appl. Math. 120.1-2 (2000),
pp. 1–15 (cit. on pp. 18, 60, 79, 86, 185).

[16] I. Bauer, H. G. Bock, D. Leineweber, and J. P. Schlöder. “Direct Multiple Shooting
Methods for Control and Optimization of DAE in Chemical Engineering”. In: Scien-
tific Computing in Chemical Engineering II. Ed. by F. Keil, W. Mackens, H. Voß,
and J. Werther. Springer, 1999, pp. 2–18 (cit. on p. 45).

[17] I. Bauer, H. G. Bock, and J. P. Schlöder. DAESOL – a BDF-code for the numer-
ical solution of differential algebraic equations. Internal report, IWR, SFB 359,
Universität Heidelberg. 1999 (cit. on pp. 81, 86, 159).

[18] D. Beigel. “Efficient goal-oriented global error estimation for BDF-type methods
using discrete adjoints”. PhD thesis. Universität Heidelberg, 2012 (cit. on p. 200).

[19] M. Benzi, G. H. Golub, and J. Liesen. “Numerical solution of saddle–point problems”.
In: Acta Numerica 14 (2005), pp. 1–137 (cit. on p. 66).

[20] M. J. Best. “Equivalence of some Quadratic Programming Algorithms”. In: Mathe-
matical Programming 30 (1984), pp. 71–87 (cit. on p. 33).

[21] M. J. Best. “An Algorithm for the Solution of the Parametric Quadratic Programming
Problem”. In: Applied Mathematics and Parallel Computing – Festschrift for Klaus
Ritter. Ed. by H. Fischer, B. Riedmüller, and S. Schäffler. Heidelberg: Physica-Verlag,
1996. Chap. 3, pp. 57–76 (cit. on pp. 33, 137, 138, 142).

[22] J. T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming.
Philadelphia: SIAM, 2001 (cit. on p. 43).

[23] L. T. Biegler. “Solution of dynamic optimization problems by successive quadratic
programming and orthogonal collocation”. In: Computers & Chemical Engineering
8 (1984), pp. 243–248 (cit. on p. 45).

[24] L. T. Biegler. Nonlinear Programming: Concepts, Algorithms, and Applications to
Chemical Processes. Series on Optimization. SIAM, 2010 (cit. on p. 43).

208

Bibliography

[25] C. H. Bischof, A. Carle, P. D. Hovland, P. Khademi, and A. Mauer. ADIFOR 2.0
User’s Guide (Revision D). Tech. rep. Mathematics, Computer Science Division
Technical Memorandum no. 192, and Center for Research on Parallel Computation,
1998 (cit. on p. 159).

[26] C. H. Bischof, A. Carle, P. Khademi, and A. Mauer. “ADIFOR 2.0: Automatic Differ-
entiation of Fortran 77 Programs”. In: IEEE Computational Science & Engineering
3 (1996), pp. 18–32 (cit. on p. 159).

[27] J. Bisschop and A. Meeraus. “Matrix augmentation and partitioning in the updating
of the basis inverse”. In: Mathematical Programming 13.1 (1977), pp. 241–254
(cit. on pp. 19, 21, 34, 144).

[28] H. G. Bock. “Numerical Solution of Nonlinear Multipoint Boundary Value Problems
with Applications to Optimal Control”. In: Zeitschrift für Angewandte Mathematik
und Mechanik 58 (1978), p. 407 (cit. on p. 45).

[29] H. G. Bock. “Numerical treatment of inverse problems in chemical reaction kinetics”.
In: Modelling of Chemical Reaction Systems. Ed. by K. Ebert, P. Deuflhard, and
W. Jäger. Vol. 18. Springer Series in Chemical Physics. Heidelberg: Springer, 1981,
pp. 102–125 (cit. on pp. 41, 51, 62).

[30] H. G. Bock. “Recent advances in parameter identification techniques for ODE”. In:
Numerical Treatment of Inverse Problems in Differential and Integral Equations.
Ed. by P. Deuflhard and E. Hairer. Boston: Birkhäuser, 1983, pp. 95–121 (cit. on
p. 51).

[31] H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen
nichtlinearer Differentialgleichungen. Vol. 183. Bonner Mathematische Schriften.
Bonn: Universität Bonn, 1987 (cit. on pp. 41, 56, 60–62, 66, 159).

[32] H. G. Bock, E. Eich, and J. P. Schlöder. “Numerical Solution of Constrained Least
Squares Boundary Value Problems in Differential-Algebraic Equations”. In: Numeri-
cal Treatment of Differential Equations. Proceedings of the NUMDIFF-4 Conference,
Halle-Wittenberg, 1987. Ed. by K. Strehmel. Vol. 104. Texte zur Mathematik. Teub-
ner, 1988, pp. 269–280 (cit. on p. 47).

[33] H. G. Bock, E. A. Kostina, and O. I. Kostyukova. “Conjugate Gradient Methods for
Computing Covariance Matrices for Constrained Parameter Estimation Problems”.
In: SIAM Journal on Matrix Analysis and Application 29 (2007), p. 626 (cit. on
p. 63).

[34] H. G. Bock and K. J. Plitt. “A Multiple Shooting algorithm for direct solution
of optimal control problems”. In: Proceedings of the 9th IFAC World Congress.
Budapest: Pergamon Press, 1984, pp. 242–247 (cit. on pp. 18, 43, 45, 55, 56, 102,
127, 171).

[35] P. T. Boggs and J. W. Tolle. “Sequential Quadratic Programming”. In: Acta Numerica
4 (1995), pp. 1–51 (cit. on pp. 19, 27).

209

Bibliography

[36] G. E. P. Box and N. R. Draper. Empirical model-building and response surfaces.
John Wiley & Sons, 1987 (cit. on pp. 18, 60).

[37] C. G. Broyden. “The convergence of a class of double–rank minimization algorithms”.
In: Journal of the Institute of Mathematics and its Applications 6 (1970), pp. 76–90
(cit. on p. 34).

[38] A. E. Bryson and Y.-C. Ho. Applied Optimal Control. New York: Wiley, 1975 (cit. on
p. 43).

[39] R. Bulirsch. Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randw-
ertproblemen und Aufgaben der optimalen Steuerung. Tech. rep. Oberpfaffenhofen:
Carl-Cranz-Gesellschaft, 1971 (cit. on p. 45).

[40] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel. “Analysis of a symmetric rank-one
trust region method”. In: SIAM Journal on Optimization 6.4 (1996), pp. 1025–1039
(cit. on pp. 35, 128).

[41] R. H. Byrd, J. Nocedal, and R. B. Schnabel. “Representations of quasi-Newton
matrices and their use in limited memory methods”. In: Mathematical Programming
63 (1994), pp. 129–156 (cit. on pp. 35, 131).

[42] R. H. Byrd, F. E. Curtis, and J. Nocedal. “Infeasibility detection and SQP methods for
nonlinear optimization”. In: SIAM Journal on Optimization 20.5 (2010), pp. 2281–
2299 (cit. on p. 32).

[43] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. “An algorithm for nonlinear
optimization using linear programming and equality constrained subproblems”. In:
Mathematical Programming 100.1 (2003), pp. 27–48 (cit. on p. 39).

[44] R. H. Byrd, J. Nocedal, and R. A. Waltz. “KNITRO: An integrated package for
nonlinear optimization”. In: Large-scale nonlinear optimization. Springer, 2006,
pp. 35–59 (cit. on pp. 39, 41).

[45] R. H. Byrd, J. Nocedal, and R. A. Waltz. “Steering exact penalty methods for nonlin-
ear programming”. In: Optimization Methods and Software 23.2 (2008), pp. 197–213
(cit. on p. 36).

[46] A. R. Conn, N. I. M. Gould, and P. L. Toint. “Convergence of quasi-Newton matrices
generated by the symmetric rank one update”. In: Mathematical Programming 50.1-3
(1991), pp. 177–195 (cit. on pp. 35, 128, 129).

[47] A. R. Conn, N. I. M. Gould, and P. L. Toint. Lancelot: A FORTRAN Package for
Large-Scale Nonlinear Optimization (Release A). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1992 (cit. on p. 40).

[48] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust region methods. Vol. 1. Siam,
2000 (cit. on p. 37).

[49] B. L. Contesse. “Une caractérisation complète des minima locaux en programmation
quadratique.” In: Numerische Mathematik 34 (1980), pp. 315–332 (cit. on pp. 33,
106).

210

Bibliography

[50] M. Contreras and R. A. Tapia. “Sizing the BFGS and DFP updates: numerical study”.
In: Journal of Optimization Theory and Applications 78.1 (1993), pp. 93–108 (cit. on
pp. 21, 132, 134, 135).

[51] F. E. Curtis, T. C. Johnson, D. P. Robinson, and A. Wächter. “An Inexact Sequential
Quadratic Optimization Algorithm for Nonlinear Optimization”. In: SIAM Journal
on Optimization 24.3 (2014), pp. 1041–1074 (cit. on p. 34).

[52] J. E. Cuthrell and L. T. Biegler. “On the optimization of differential-algebraic process
systems”. In: AIChE Journal 33.8 (1987), pp. 1257–1270 (cit. on p. 45).

[53] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-memory
programming”. In: Computational Science & Engineering, IEEE 5.1 (1998), pp. 46–
55 (cit. on p. 164).

[54] W. C. Davidon. “Variable metric method for minimization”. In: SIAM Journal on
Optimization 1.1 (1991), pp. 1–17 (cit. on pp. 34, 128).

[55] J. E. Dennis Jr and J. J. Moré. “Quasi-Newton methods, motivation and theory”. In:
SIAM review 19.1 (1977), pp. 46–89 (cit. on pp. 35, 130).

[56] J. E. Dennis Jr, D. M. Gay, and R. E. Welsch. “Algorithm 573: NL2SOL—an adaptive
nonlinear least-squares algorithm [E4]”. In: ACM Transactions on Mathematical
Software (TOMS) 7.3 (1981), pp. 369–383 (cit. on p. 133).

[57] M. Diehl, H. G. Bock, and E. Kostina. “An approximation technique for robust
nonlinear optimization”. In: Mathematical Programming 107 (2006), pp. 213–230
(cit. on p. 171).

[58] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. “Real-
time optimization and Nonlinear Model Predictive Control of Processes governed
by differential-algebraic equations”. In: J. Proc. Contr. 12.4 (2002), pp. 577–585
(cit. on pp. 45, 196).

[59] M. Diehl, D. B. Leineweber, and A. A. S. Schäfer. MUSCOD-II Users’ Manual.
IWR-Preprint 2001-25. Universität Heidelberg, 2001 (cit. on p. 19).

[60] E. D. Dolan, J. J. Moré, and T. S. Munson. Benchmarking Optimization Software
with COPS 3.0. Tech. rep. ANL/MCS-TM-273. 9700 South Cass Avenue, Argonne,
IL 60439, U.S.A.: Mathematics and Computer Science Division, Argonne National
Laboratory, 2004 (cit. on p. 171).

[61] E. D. Dolan and J. J. Moré. “Benchmarking optimization software with performance
profiles”. In: Mathematical Programming 91.2 (2002), pp. 201–213 (cit. on pp. 171,
174).

[62] E. D. Dolan, J. J. Moré, and T. S. Munson. “Optimality measures for performance
profiles”. In: SIAM Journal on Optimization 16.3 (2006), pp. 891–909 (cit. on p. 32).

[63] I. S. Duff. “MA57 — a code for the solution of sparse symmetric definite and
indefinite systems”. In: ACM Transactions on Mathematical Software 30.2 (2004),
pp. 118–144 (cit. on pp. 21, 144).

211

Bibliography

[64] P. S. Dwyer and M. S. MacPhail. “Symbolic matrix derivatives”. In: The annals of
mathematical statistics (1948), pp. 517–534 (cit. on p. 92).

[65] S Engell and K.-U. Klatt. “Nonlinear control of a non-minimum-phase CSTR”. In:
American Control Conference, 1993. IEEE. 1993, pp. 2941–2945 (cit. on pp. 172,
181).

[66] D. Espie and S. Macchietto. “The optimal design of dynamic experiments”. In:
AIChE Journal 35.2 (1989), pp. 223–229 (cit. on pp. 18, 60, 79).

[67] V. V. Fedorov. Theory of optimal experiments. Elsevier, 1972 (cit. on pp. 18, 60).

[68] H. J. Ferreau, H. G. Bock, and M. Diehl. “An online active set strategy to overcome
the limitations of explicit MPC”. In: International Journal of Robust and Nonlinear
Control 18.8 (2008), pp. 816–830 (cit. on p. 137).

[69] H. J. Ferreau, A. Potschka, and C. Kirches. qpOASES webpage. http://www.
qpOASES.org/. 2007–2015 (cit. on p. 137).

[70] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl. “qpOASES:
A parametric active-set algorithm for quadratic programming”. In: Mathematical
Programming Computation (2014), pp. 1–37 (cit. on pp. 19, 21, 33, 34, 137, 147).

[71] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques. New York: John Wiley and Sons, Inc., 1968
(cit. on p. 128).

[72] R. Fletcher. “A new approach to variable metric algorithms”. In: Computer Journal
13 (1970), pp. 317–322 (cit. on p. 34).

[73] R. Fletcher. “A general quadratic programming algorithm”. In: J. Inst. Math. Appl. 7
(1971), pp. 76–91 (cit. on p. 33).

[74] R. Fletcher. Practical Methods of Optimization. Second. ISBN 0-471-49463-1 (pa-
perback). Chichester: Wiley, 1987 (cit. on p. 27).

[75] R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint, and A. Wächter. “Global conver-
gence of a trust-region SQP-filter algorithm for general nonlinear programming”. In:
SIAM Journal on Optimization 13.3 (2002), pp. 635–659 (cit. on p. 36).

[76] R. Fletcher and S. Leyffer. “User manual for filterSQP”. In: University of Dundee
Numerical Analysis Report NA-181 (1998) (cit. on pp. 19, 39).

[77] R. Fletcher and S. Leyffer. “Nonlinear programming without a penalty function”. In:
Mathematical Programming 91.2 (2002), pp. 239–269 (cit. on pp. 36, 37).

[78] R. Fletcher, S. Leyffer, and P. L. Toint. “A brief history of filter methods”. In:
Preprint ANL/MCS-P1372-0906, Argonne National Laboratory, Mathematics and
Computer Science Division (2006) (cit. on p. 36).

[79] R. Fletcher, S. Leyffer, and P. L. Toint. “On the Global Convergence of a Filter–SQP
Algorithm”. In: SIAM Journal on Optimization 13.1 (2002), pp. 44–59 (cit. on p. 36).

212

http://www.qpOASES.org/
http://www.qpOASES.org/

Bibliography

[80] R. Fletcher and M. J. D. Powell. “A rapidly convergent descent method for mini-
mization”. In: The Computer Journal 6.2 (1963), pp. 163–168 (cit. on p. 34).

[81] C. A. Floudas. Deterministic global optimization. Vol. 37. Springer, 1999 (cit. on
p. 28).

[82] J. Forbes. “Model structure and adjustable parameter selection for operations op-
timizations”. PhD thesis. McMaster University, Hamilton, Canada, 1994 (cit. on
p. 171).

[83] G. Franceschini and S. Macchietto. “Model-based design of experiments for pa-
rameter precision: State of the art”. In: Chemical Engineering Science 63 (2008),
pp. 4846–4872 (cit. on pp. 18, 59, 60).

[84] F. Galvanin, A. Boschiero, M. Barolo, and F. Bezzo. “Model-based design of ex-
periments in the presence of continuous measurement systems”. In: Industrial &
Engineering Chemistry Research 50.4 (2011), pp. 2167–2175 (cit. on p. 79).

[85] F. Galvanin, S. Macchietto, and F. Bezzo. “Model-based design of parallel experi-
ments”. In: Industrial & Engineering Chemistry Research 46.3 (2007), pp. 871–882
(cit. on pp. 18, 172).

[86] R.-P. Ge and M. J. D. Powell. “The convergence of variable metric matrices in
unconstrained optimization”. In: Mathematical Programming 27.2 (1983), pp. 123–
143 (cit. on p. 131).

[87] C. Geiger and C. Kanzow. Theorie und Numerik restringierter Optimierungsauf-
gaben. Springer, 2002 (cit. on p. 27).

[88] M. Gerdts. “Direct shooting method for the numerical solution of higher index DAE
optimal control problems”. In: Journal of Optimization Theory and Applications
117.2 (2003), pp. 267–294 (cit. on p. 45).

[89] M. Gerdts. Optimal Control of ODEs and DAEs. De Gruyter, 2012 (cit. on p. 43).

[90] M. B. Giles. “Collected matrix derivative results for forward and reverse mode
algorithmic differentiation”. In: Advances in Automatic Differentiation. Springer,
2008, pp. 35–44 (cit. on p. 92).

[91] P. E. Gill, L. O. Jay, M. W. Leonard, L. R. Petzold, and V. Sharma. “An SQP
method for the optimal control of large-scale dynamical systems”. In: Journal of
Computational and Applied Mathematics 120.1-2 (2000), pp. 197–213 (cit. on p. 56).

[92] P. E. Gill and W. Murray. “Numerically Stable Methods for Quadratic Programming”.
In: Mathematical Programming 14 (1978), pp. 349–372 (cit. on p. 34).

[93] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP algorithm for
large-scale constrained optimization”. In: SIAM Journal of Optimization 12 (2002),
pp. 979–1006 (cit. on pp. 19, 37, 160, 171, 179).

[94] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A Schur-complement
method for sparse quadratic programming. Tech. rep. Stanford Univ., CA (USA).
Systems Optimization Lab., 1987 (cit. on pp. 19, 21, 34, 144).

213

Bibliography

[95] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. “Inertia-Controlling
Methods for General Quadratic Programming”. In: SIAM Review 33.1 (1991), pp. 1–
36 (cit. on p. 33).

[96] P. E. Gill and E. Wong. Convexification schemes for SQP methods. Tech. rep. CCoM-
14-06. Center for Computational Mathematics, University of California at San Diego,
July 2014 (cit. on pp. 126, 200).

[97] P. E. Gill and E. Wong. “Methods for convex and general quadratic programming”.
In: Mathematical Programming Computation 7.1 (2015), pp. 71–112 (cit. on pp. 19,
21, 144).

[98] P. E. Gill, W. Murray, and M. A. Saunders. User’s Guide for SQOPT Version 7:
Software for Large-Scale Linear and Quadratic Programming. 2006 (cit. on p. 37).

[99] P. E. Gill, M. A. Saunders, and E. Wong. On the Performance of SQP Methods for
Nonlinear Optimization. http://www.optimization-online.org/DB_HTML/
2015/01/4761.html. 2015 (cit. on p. 19).

[100] P. E. Gill and E. Wong. “Sequential quadratic programming methods”. In: Mixed
integer nonlinear programming. Springer, 2012, pp. 147–224 (cit. on pp. 19, 27).

[101] D. Goldfarb. “A family of variable metric updates derived by variational means”. In:
Mathematics of Computation 24 (1970), pp. 23–26 (cit. on p. 34).

[102] D. Goldfarb and A. Idnani. “A numerically stable dual method for solving strictly
convex quadratic programs”. In: Mathematical Programming 27 (1983), pp. 1–33
(cit. on p. 33).

[103] G. H. Golub and C. F. Van Loan. Matrix computations. Vol. 3. JHU Press, 2012
(cit. on p. 145).

[104] N. I. M. Gould and P. L. Toint. “An iterative working-set method for large-scale
nonconvex quadratic programming”. In: Applied Numerical Mathematics 43.1 (2002),
pp. 109–128 (cit. on pp. 19, 21, 144, 148).

[105] N. I. M. Gould. “On practical conditions for the existence and uniqueness of solu-
tions to the general equality quadratic programming problem”. In: Mathematical
Programming 32.1 (1985), pp. 90–99 (cit. on p. 148).

[106] N. I. M. Gould, Y. Loh, and D. P. Robinson. “A filter method with unified step
computation for nonlinear optimization”. In: SIAM Journal on Optimization 24.1
(2014), pp. 175–209 (cit. on p. 36).

[107] N. I. M. Gould and P. L. Toint. “Nonlinear programming without a penalty function
or a filter”. In: Mathematical Programming 122.1 (2010), pp. 155–196 (cit. on p. 36).

[108] N. I. M. Gould and P. L. Toint. “A quadratic programming bibliography”. In: Numer-
ical Analysis Group Internal Report 1 (2000) (cit. on p. 32).

214

http://www.optimization-online.org/DB_HTML/2015/01/4761.html
http://www.optimization-online.org/DB_HTML/2015/01/4761.html

Bibliography

[109] N. I. M. Gould and P. L. Toint. “SQP Methods for Large-Scale Nonlinear Program-
ming”. English. In: System Modelling and Optimization. Ed. by M. Powell and S.
Scholtes. Vol. 46. IFIP — The International Federation for Information Processing.
Springer US, 2000, pp. 149–178 (cit. on pp. 19, 27).

[110] A. Griewank and P. L. Toint. “Local convergence analysis for partitioned quasi-
Newton updates”. In: Numerische Mathematik 39.3 (1982), pp. 429–448 (cit. on
p. 127).

[111] A. Griewank and P. L. Toint. “Partitioned variable metric updates for large structured
optimization problems”. In: Numerische Mathematik 39.1 (1982), pp. 119–137 (cit.
on pp. 127, 200).

[112] A. Griewank and A. Walther. Evaluating Derivatives. Second. SIAM, 2008 (cit. on
pp. 51, 86).

[113] A. Griewank and P. L. Toint. “On the Unconstrained Optimization of Partially
Separable Functions”. In: Nonlinear Optimization 1981. Ed. by M. J. D. Powell.
New York, NY: Academic Press, 1982, pp. 301–312 (cit. on p. 54).

[114] A. Griewank and A. Walther. “On constrained optimization by adjoint based quasi-
Newton methods”. In: Optimization Methods and Software 17.5 (2002), pp. 869–889
(cit. on p. 34).

[115] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations
I. Second. Vol. 8. Springer Series in Computational Mathematics. Berlin: Springer-
Verlag, 1993 (cit. on p. 51).

[116] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Second. Vol. 14.
Springer Series in Computational Mathematics. Berlin: Springer, 1996 (cit. on p. 51).

[117] S. P. Han. “A globally convergent method for nonlinear programming”. In: Journal
of Optimization Theory and Applications 22 (1977), pp. 297–310 (cit. on pp. 19, 30).

[118] K. Hatz, S. Leyffer, J. P. Schlöder, and H. G. Bock. Regularizing Bilevel Nonlinear
Programs by Lifting. Tech. rep. Technical Report ANL/MCS-P4076-0613, Argonne
National Laboratory, Mathematics and Computer Science Division, 2013 (cit. on
p. 28).

[119] E. V. Haynsworth. “Determination of the inertia of a partitioned Hermitian matrix”.
In: Linear algebra and its applications 1.1 (1968), pp. 73–81 (cit. on p. 148).

[120] T. A. N. Heirung, B. E. Ydstie, and B. Foss. “An adaptive model predictive dual
controller”. In: Adaptation and Learning in Control and Signal Processing. Vol. 11.
1. 2013, pp. 62–67 (cit. on pp. 69, 183).

[121] J. Herold, S. F. Walter, S. Körkel, and M. Buchner. “Optimal experimental design
for parameter estimation of the Fitness-Fatigue model”. In: Proceeding of the Inter-
national Conference on Biomechanics and Sports Engineering, Riga, Latvia, 24-25
Oct 2014. 2014 (cit. on p. 159).

215

Bibliography

[122] D. M. Hoang, T Barz, V. A. Merchan, L. T. Biegler, and H Arellano-Garcia. “Simul-
taneous solution approach to model-based experimental design”. In: AIChE Journal
(2013) (cit. on pp. 18, 79).

[123] D. M. Hoang. “A simultaneuos optimization approach to optimal experimental
design”. PhD thesis. Technische Universität Berlin, 2014 (cit. on pp. 172, 181).

[124] D. Janka. “Optimum Experimental Design and Multiple Shooting”. Diploma Thesis.
Universität Heidelberg, 2010 (cit. on pp. 18, 19, 79, 100, 101).

[125] D. Janka, C. Kirches, S. Sager, and A. Wächter. “An SR1-BFGS SQP algorithm for
nonconvex nonlinear programs with block-diagonal Hessian matrix”. In: Mathemati-
cal Programming Computation (2015 (submitted)) (cit. on pp. 108, 115, 137).

[126] D. Janka, S. Körkel, and H. G. Bock. “Direct multiple shooting for nonlinear opti-
mum experimental design”. In: Multiple Shooting and Time Domain Decomposition
Methods. Ed. by T. Carraro, M. Geiger, S. Körkel, and R. Rannacher. Contributions
in Mathematical and Computational Sciences. Springer, 2014 (submitted) (cit. on
pp. 79, 185).

[127] S. J. Julier and J. K. Uhlmann. “Unscented filtering and nonlinear estimation”. In:
Proceedings of the IEEE 92.3 (2004), pp. 401–422 (cit. on p. 67).

[128] M. N. Jung, C. Kirches, and S. Sager. “On perspective functions and vanishing
constraints in mixed-integer nonlinear optimal control”. In: Facets of Combinatorial
Optimization. Springer, 2013, pp. 387–417 (cit. on p. 28).

[129] H. F. Khalfan, R. H. Byrd, and R. B. Schnabel. “A theoretical and experimental study
of the symmetric rank-one update”. In: SIAM Journal on Optimization 3.1 (1993),
pp. 1–24 (cit. on pp. 35, 128).

[130] R. Kircheis. “Structure Exploiting Parameter Estimation and Optimum Experimental
Design Methods and Applications in Microbial Enhanced Oil Recovery”. PhD thesis.
Universität Heidelberg, 2015 (cit. on p. 159).

[131] C. Kirches, H. G. Bock, J. P. Schlöder, and S. Sager. “A Factorization with Update
Procedures for a KKT Matrix Arising in Direct Optimal Control”. In: Mathematical
Programming Computation 3.4 (2011), pp. 319–348 (cit. on p. 56).

[132] C. Kirches, H. G. Bock, J. P. Schlöder, and S. Sager. “Block Structured Quadratic
Programming for the Direct Multiple Shooting Method for Optimal Control”. In:
Optimization Methods and Software 26.2 (Apr. 2011), pp. 239–257 (cit. on p. 56).

[133] C. Kirches, H. G. Bock, J. P. Schlöder, and S. Sager. “Complementary Condensing for
the Direct Multiple Shooting Method”. In: Modeling, Simulation, and Optimization
of Complex Processes. Proceedings of the Fourth International Conference on High
Performance Scientific Computing, March 2-6, 2009, Hanoi, Vietnam. Ed. by H.
Bock, H. Phu, R. Rannacher, and J. Schlöder. Heidelberg Dordrecht London New
York: Springer Verlag, 2012, pp. 195–206 (cit. on p. 56).

216

Bibliography

[134] S. Körkel. “Numerische Methoden für Optimale Versuchsplanungsprobleme bei
nichtlinearen DAE-Modellen”. PhD thesis. Heidelberg: Universität Heidelberg, 2002
(cit. on pp. 18, 60, 74, 79, 86, 92, 93, 155, 158, 159, 172, 181, 185).

[135] S. Körkel, E. Kostina, H. G. Bock, and J. P. Schlöder. “Numerical Methods for
Optimal Control Problems in Design of Robust Optimal Experiments for Nonlinear
Dynamic Processes”. In: Optimization Methods and Software 19 (2004), pp. 327–338
(cit. on pp. 18, 73, 185).

[136] S. Körkel, A. Potschka, H. G. Bock, and S. Sager. “A Multiple Shooting Formu-
lation for Optimum Experimental Design”. In: Mathematical Programming (2012
(submitted revisions)) (cit. on pp. 18, 79, 83, 100).

[137] S. Körkel, H. Arellano-Garcia, J. Schöneberger, and G. Wozny. “Optimum Experi-
mental Design for Key Performance Indicators”. In: Proceedings of 18th European
Symposium on Computer Aided Process Engineering – ESCAPE 18. Ed. by B.
Braunschweig and X. Joulia. 2008 (cit. on p. 74).

[138] M. K. Kozlov, S. P. Tarasov, and L. G. Khachiyan. “The polynomial solvability
of convex quadratic programming”. In: USSR Computational Mathematics and
Mathematical Physics 20.5 (1980), pp. 223–228 (cit. on p. 106).

[139] A. Kud, S. Körkel, and S. Maixner. “A cubic equation of state based on saturated
vapor modeling and the application of model-based design of experiments for its
validation”. In: Chemical Engineering Science 65.14 (2010), pp. 4194–4207 (cit. on
p. 159).

[140] D. B. Leineweber. “Analyse und Restrukturierung eines Verfahrens zur direkten
Lösung von Optimal-Steuerungsproblemen”. Diploma thesis. Universität Heidelberg,
1995 (cit. on p. 56).

[141] D. B. Leineweber. Efficient reduced SQP methods for the optimization of chemical
processes described by large sparse DAE models. Vol. 613. Fortschritt-Berichte VDI
Reihe 3, Verfahrenstechnik. Düsseldorf: VDI Verlag, 1999 (cit. on p. 32).

[142] D. B. Leineweber, I. Bauer, A. A. S. Schäfer, H. G. Bock, and J. P. Schlöder. “An
Efficient Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic
Process Optimization (Parts I and II)”. In: Computers & Chemical Engineering 27
(2003), pp. 157–174 (cit. on pp. 18, 19, 45, 56, 171).

[143] S. Leyffer and A. Mahajan. “Foundations of Constrained Optimization”. In: Wiley
Encyclopedia of Operations Research and Management Science. John Wiley and
Sons, Inc., 2011 (cit. on pp. 27, 35).

[144] S. Lindner. “Skalierung von BFGS Approximationen in einem SQP Verfahren”.
Bachelor’s Thesis. Universität Heidelberg, 2013 (cit. on pp. 132, 135).

[145] D. C. Liu and J. Nocedal. “On the limited memory BFGS method for large scale
optimization”. In: Mathematical Programming 45.1-3 (1989), pp. 503–528 (cit. on
pp. 35, 131).

217

Bibliography

[146] T. Lohmann, H. G. Bock, and J. P. Schlöder. “Numerical methods for parameter esti-
mation and optimal experiment design in chemical reaction systems”. In: Industrial
& Engineering Chemistry Research 31.1 (1992), pp. 54–57 (cit. on pp. 18, 60).

[147] X. Lu. “A Study of the Limited Memory SR1 Method in Practice”. PhD thesis.
University of Colorado at Boulder, 1996 (cit. on pp. 128, 131).

[148] D. G. Luenberger. Linear and nonlinear programming. Reading, Massachusetts:
Addison-Wesley, 1989 (cit. on p. 27).

[149] N. Maratos. “Exact penalty function algorithms for finite dimensional and control
optimization problems”. PhD thesis. Imperial College London, 1978 (cit. on p. 119).

[150] M. S. Mommer, A. Sommer, J. P. Schlöder, and H. G. Bock. “A nonlinear precondi-
tioner for experimental design problems”. In: arXiv preprint arXiv:1108.1689 (2011)
(cit. on pp. 100, 191, 194).

[151] B. A. Murtagh and M. A. Saunders. MINOS 5.51 user’s guide. Tech. rep. SOL
83-20R. Stanford Univ., CA (USA). Systems Optimization Lab., 2003 (cit. on p. 40).

[152] M. Nattermann. “Numerical Methods for Optimum Experimental Design Based
on Second-Order Approximation of Confidence Regions”. PhD thesis. Universität
Marburg, 2014 (cit. on p. 67).

[153] J. Nocedal. “Updating quasi-Newton matrices with limited storage”. In: Mathematics
of Computation 35 (1980), pp. 773–782 (cit. on p. 35).

[154] J. Nocedal and S. J. Wright. Numerical Optimization. Second. ISBN 0-387-30303-0
(hardcover). Berlin Heidelberg New York: Springer Verlag, 2006 (cit. on pp. 27, 31,
33, 35, 36, 40, 106, 108, 120, 127, 130).

[155] J. Nocedal and Y.-X. Yuan. “Analysis of a self-scaling quasi-Newton method”. In:
Mathematical Programming 61.1-3 (1993), pp. 19–37 (cit. on p. 132).

[156] S. S. Oren. “Perspectives on self-scaling variable metric algorithms”. In: Journal of
Optimization Theory and Applications 37.2 (1982), pp. 137–147 (cit. on p. 132).

[157] S. S. Oren and D. G. Luenberger. “Self-Scaling Variable Metric (SSVM) Algorithms
Part I: Criteria and Sufficient Conditions for Scaling a Class of Algorithms”. In:
Management Science 20.5 (1974), pp. 845–862 (cit. on p. 132).

[158] S. S. Oren and E. Spedicato. “Optimal conditioning of self-scaling variable metric
algorithms”. In: Mathematical Programming 10.1 (1976), pp. 70–90 (cit. on p. 132).

[159] M. R. Osborne. “On shooting methods for boundary value problems”. In: Journal of
Mathematical Analysis and Applications 27 (1969), pp. 417–433 (cit. on p. 56).

[160] P. M. Pardalos and C. A. Floudas. State of the art in global optimization: com-
putational methods and applications. Kluwer Academic Publishers, 1996 (cit. on
p. 28).

218

Bibliography

[161] P. M. Pardalos and G. Schnitger. “Checking local optimality in constrained quadratic
programming is NP-hard”. In: Operations Research Letters 7.1 (1988), pp. 33–35
(cit. on p. 33).

[162] P. M. Pardalos and S. A. Vavasis. “Quadratic programming with one negative eigen-
value is NP-hard”. In: Journal of Global Optimization 1.1 (1991), pp. 15–22 (cit. on
pp. 33, 106).

[163] K. J. Plitt. “Ein superlinear konvergentes Mehrzielverfahren zur direkten Berech-
nung beschränkter optimaler Steuerungen”. Diploma Thesis. Rheinische Friedrich–
Wilhelms–Universität Bonn, 1981 (cit. on pp. 43, 45, 55, 56, 102, 127).

[164] A. Potschka, H. G. Bock, and J. P. Schlöder. “A minima tracking variant of semi-
infinite programming for the treatment of path constraints within direct solution
of optimal control problems”. In: Optimization Methods and Software 24.2 (2009),
pp. 237–252 (cit. on p. 49).

[165] M. J. D. Powell. “A fast algorithm for nonlinearly constrained optimization calcula-
tions”. In: Numerical Analysis. Ed. by G. e. Watson. Vol. 3. Springer Verlag. Berlin,
1978, pp. 144–157 (cit. on pp. 19, 30, 108, 130).

[166] M. J. D. Powell. “The convergence of variable metric methods for non-linearly
constrained optimization calculations”. In: Nonlinear programming 3 (1978) (cit. on
pp. 34, 35).

[167] F. Pukelsheim. Optimal Design of Experiments. Classics in Applied Mathematics 50.
ISBN 978-0-898716-04-7. SIAM, 2006 (cit. on pp. 18, 60, 68).

[168] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, and
J. Timmer. “Structural and practical identifiability analysis of partially observed
dynamical models by exploiting the profile likelihood”. In: Bioinformatics 25.15
(2009), pp. 1923–1929 (cit. on p. 67).

[169] W. Rickels and S. Sager. Personal communication. 2015 (cit. on p. 203).

[170] S. Sager. On the Integration of Optimization Approaches for Mixed-Integer Nonlinear
Optimal Control. Universität Heidelberg. Habilitationsschrift. Aug. 2011 (cit. on
pp. 166, 172, 193).

[171] S. Sager. “Sampling Decisions in Optimum Experimental Design in the Light of
Pontryagin’s Maximum Principle”. In: SIAM Journal on Control and Optimization
51.4 (2013), pp. 3181–3207 (cit. on pp. 81, 99, 112).

[172] S. Sager, H. G. Bock, M. Diehl, G. Reinelt, and J. P. Schlöder. “Numerical methods
for optimal control with binary control functions applied to a Lotka-Volterra type
fishing problem”. In: Recent Advances in Optimization. Ed. by A. Seeger. Vol. 563.
Lectures Notes in Economics and Mathematical Systems. ISBN 978-3-5402-8257-0.
Heidelberg: Springer, 2009, pp. 269–289 (cit. on pp. 168, 171).

219

Bibliography

[173] R. W. H. Sargent and G. R. Sullivan. “The development of an efficient optimal control
package”. In: Proceedings of the 8th IFIP Conference on Optimization Techniques
(1977), Part 2. Ed. by J. Stoer. Heidelberg: Springer, 1978 (cit. on p. 45).

[174] A. A. S. Schäfer. “Efficient reduced Newton-type methods for solution of large-
scale structured optimization problems with application to biological and chemical
processes”. PhD thesis. Universität Heidelberg, 2005 (cit. on p. 56).

[175] O. Schenk and K. Gärtner. “Solving unsymmetric sparse systems of linear equations
with PARDISO”. In: Future Generation Computer Systems 20.3 (2004), pp. 475–487
(cit. on p. 144).

[176] R. Schenkendorf, A Kremling, and M Mangold. “Optimal experimental design with
the sigma point method”. In: IET systems biology 3.1 (2009), pp. 10–23 (cit. on
p. 67).

[177] K Schittkowski. “Experimental design tools for ordinary and algebraic differential
equations”. In: Industrial & Engineering Chemistry Research 46.26 (2007), pp. 9137–
9147 (cit. on pp. 18, 60, 79).

[178] M. Schlegel, K. Stockmann, T. Binder, and W. Marquardt. “Dynamic optimiza-
tion using adaptive control vector parameterization”. In: Computers & Chemical
Engineering 29.8 (2005), pp. 1731–1751 (cit. on p. 45).

[179] J. P. Schlöder. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben
der Parameteridentifizierung. Vol. 187. Bonner Mathematische Schriften. Bonn:
Universität Bonn, 1988 (cit. on pp. 60, 61).

[180] J. C. Schoneberger, H. Arellano-Garcia, G. Wozny, S. Körkel, and H. Thielert.
“Model-based experimental analysis of a fixed-bed reactor for catalytic SO2 oxida-
tion”. In: Industrial & Engineering Chemistry Research 48.11 (2009), pp. 5165–5176
(cit. on p. 159).

[181] V. H. Schulz. “Reduced SQP methods for large-scale optimal control problems
in DAE with application to path planning problems for satellite mounted robots”.
PhD thesis. Universität Heidelberg, 1996 (cit. on pp. 45, 56).

[182] S. R. Searle. “Matrix algebra useful for statistics”. In: New York (1982) (cit. on p. 97).

[183] R. Serban and A. C. Hindmarsh. “CVODES: the sensitivity-enabled ODE solver in
SUNDIALS”. In: ASME 2005 International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference. American Society
of Mechanical Engineers. 2005, pp. 257–269 (cit. on p. 86).

[184] D. F. Shanno. “Conditioning of Quasi–Newton methods for function minimization”.
In: Mathematics of Computation 24.111 (July 1970), pp. 647–656 (cit. on p. 34).

[185] D. F. Shanno and K.-H. Phua. “Matrix conditioning and nonlinear optimization”. In:
Mathematical Programming 14.1 (1978), pp. 149–160 (cit. on p. 132).

[186] M. C. Steinbach. “Fast recursive SQP methods for large-scale optimal control prob-
lems”. PhD thesis. Universität Heidelberg, 1995 (cit. on p. 56).

220

Bibliography

[187] O. Stryk. “Numerical solution of optimal control problems by direct collocation”. In:
Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical
Methods. Vol. 111. Bulirsch et al., 1993, pp. 129–143 (cit. on p. 45).

[188] O. Stryk. “Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung,
Parameteroptimierung und Berechnung der adjungierten Variablen”. PhD thesis. TU
Munich, 1995 (cit. on p. 45).

[189] P. Tanartkit and L. T. Biegler. “Stable decomposition for dynamic optimization”. In:
Industrial and Engineering Chemistry Research 34 (1995), pp. 1253–1266 (cit. on
p. 56).

[190] R. Tapia. “On averaging and representation properties of the BFGS and related secant
updates”. In: Mathematical Programming (2014), pp. 1–18 (cit. on pp. 127, 130).

[191] M. Ulbrich and S. Ulbrich. Nichtlineare Optimierung. Springer, 2012 (cit. on p. 27).

[192] M. Ulbrich, S. Ulbrich, and L. N. Vicente. “A globally convergent primal-dual
interior-point filter method for nonlinear programming”. In: Mathematical Program-
ming 100.2 (2004), pp. 379–410 (cit. on p. 36).

[193] S. Ulbrich. “On the superlinear local convergence of a filter-SQP method”. In:
Mathematical Programming 100.1 (2004), pp. 217–245 (cit. on p. 36).

[194] R. J. Vanderbei and D. F. Shanno. “An interior-point algorithm for nonconvex non-
linear programming”. In: Computational Optimization and Applications 13 (1999),
pp. 231–252 (cit. on p. 117).

[195] R. J. Vanderbei. “LOQO: An interior point code for quadratic programming”. In:
Optimization Methods and Software 11.1-4 (1999), pp. 451–484 (cit. on pp. 41, 126).

[196] V. S. Vassiliadis, R. W. H. Sargent, and C. C. Pantelides. “Solution of a class
of multistage dynamic optimization problems. Parts 1. & 2.” In: Industrial and
Engineering Chemistry Research 10.33 (1994), pp. 2111–2133 (cit. on p. 45).

[197] A. Wächter and L. T. Biegler. “Line search filter methods for nonlinear programming:
Local convergence”. In: SIAM Journal on Optimization 16.1 (2005), pp. 32–48 (cit.
on pp. 19, 36, 117).

[198] A. Wächter and L. T. Biegler. “Line search filter methods for nonlinear programming:
Motivation and global convergence”. In: SIAM Journal on Optimization 16.1 (2005),
pp. 1–31 (cit. on pp. 19, 21, 36, 115–117, 122).

[199] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”. In: Mathematical
Programming 106.1 (2006), pp. 25–57 (cit. on pp. 41, 117, 126).

[200] S. F. Walter. “Structured higher-order algorithmic differentiation in the forward
and reverse mode with application in optimum experimental design”. PhD thesis.
Humboldt Universität zu Berlin, 2012 (cit. on p. 69).

221

Bibliography

[201] S. F. Walter, A. Schmidt, and S. Körkel. “Adjoint-based optimization of experimental
designs with many control variables”. In: Journal of Process Control 24.10 (2014),
pp. 1504–1515 (cit. on pp. 79, 81).

[202] C. K. F. Weiler and S Körkel. “Optimum experimental design for extended Gaussian
disorder modeled organic semiconductor devices”. In: Journal of Applied Physics
113.9 (2013), p. 094903 (cit. on p. 159).

[203] R. B. Wilson. “A simplicial algorithm for concave programming”. PhD thesis. Har-
vard University, 1963 (cit. on pp. 19, 30).

[204] P. Wolfe. “The simplex method for quadratic programming”. In: Econometrica 27
(1959), pp. 382–398 (cit. on p. 33).

[205] M. Wulkow. “Computer Aided Modeling of Polymer Reaction Engineering—The
Status of Predici, I-Simulation”. In: Macromolecular Reaction Engineering 2.6
(2008), pp. 461–494 (cit. on p. 172).

[206] H. Yabe, H. J. Martinez, and R. A. Tapia. “On sizing and shifting the BFGS update
within the sized-Broyden family of secant updates”. In: SIAM Journal on Optimiza-
tion 15.1 (2004), pp. 139–160 (cit. on p. 132).

222

	List of acronyms
	List of selected symbols
	Introduction
	Problem description and challenges
	Contributions of the thesis
	Thesis overview

	Background
	Elements of nonlinear programming
	Theoretical foundations
	Sequential quadratic programming methods
	Other nonlinear programming methods

	Optimization of dynamic processes
	Problem formulation
	Direct multiple shooting for optimal control problems
	Direct multiple shooting: practical issues

	Optimum experimental design for parameter estimation
	Formulation of optimum experimental design problems
	Parameter estimation
	Sensitivity analysis of the estimates
	The optimum experimental design problem
	Discussion and problem variants

	Direct shooting parameterizations for optimum experimental design problems
	General approach
	Direct multiple shooting parameterization
	Derivatives of the structured NLPs
	Application to related problems
	Problem modifications

	Sequential quadratic programming
	Preliminary considerations: SQP and multiple shooting
	Requirements for an SQP method for direct multiple shooting
	Multiple shooting and the lifted Newton method
	Nonconvexity in block-structured problems

	A filter line search SQP method with indefinite Hessians
	The algorithm
	Filter line search procedure
	Feasibility restoration phase

	Hessian approximations
	Choice of the Hessian sequence
	Partitioned quasi-Newton updates
	Sizing of quasi-Newton updates

	Solution of sparse and nonconvex quadratic programs
	A parametric active set method
	Linear algebra
	Handling nonconvexity
	Practical issues

	Software and numerical results
	Implementations
	blockSQP: An SR1-BFGS SQP method for NLPs with block-diagonal Hessian matrix
	muse: A multiple shooting method for optimum experimental design

	Performance of blockSQP on benchmark collection
	Test problems and algorithmic parameters
	Comparison of Hessian scaling strategies
	Comparison of Hessian approximation sequences
	Comparison with SNOPT

	Optimum experimental design case studies
	A continuous stirred-tank reactor
	The Urethane reaction

	Numerical study of lifting
	Experimental setup and results
	A Lotka–Volterra OED problem
	Problems with a tracking objective

	Conclusions and future work
	Danksagungen
	Appendix
	Model equations for the oc-ocean and oc-fermenter problems
	Control and parameter values for the optimization benchmark collection

	Bibliography

