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λ1αmin

λ2FS

λ2αmin

λ∗λ0

λ1FS

λ1ᾱ
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Abstract

This thesis proposes optimization-based methods for control and estimation of
dynamic systems. Due to their versatility, optimization-based schemes range
among the most advanced and generic methods, and enjoy increasing popularity.
The computational burden associated with the online solution of an optimization
problem, however, still constitutes a major limiting factor on the control and
estimation performance in a range of real-time applications that impedes the
further practical success of this class of methods.

We focus on problems featuring long prediction or estimation horizons, with
both linear and nonlinear dynamics, and constraints. Such problems are of
great practical interest for a variety of reasons including stability guarantees
and control or estimation performance. Particularly in the pursuit of economic
objectives their formulation can be a key necessity. We develop algorithms that
exploit the inherent sparsity of these problems with a focus on concurrency of
the major computational steps, so as to ensure parallelizability on current and
future computational architectures.

In particular, a hierarchical re-linearization procedure for nonlinear model
predictive control (MPC) based on the well-established Real-Time Iteration
scheme is given, thus further bridging the gap between linear and nonlinear
MPC. An improved, reduced-complexity condensing algorithm for dimension
reduction of the arising structured quadratic programming problems (QPs) is
presented.

Moreover, a novel structure-exploiting sparse QP algorithm based on dual
decomposition and a semismooth Newton method is proposed, aiming at a
combination of sparsity-exploitation characteristics from interior-point methods
and warmstarting capabilities from common active-set methods for dense
problems. We prove finite convergence and rigorous infeasibility detection
of the algorithm, and identify its tailored factorization routine with the Riccati
recursion for linear-quadratic control. Most notably, we analyze various

iii



iv ABSTRACT

theoretical and practical numerical aspects of this method, leading to an efficient
implementation that improves the state-of-the-art in QP solution approaches
by factors of more than ten in computation time on a variety of benchmark
problems. The implementation has been publicly released as open-source code
as part of this thesis.

Generalizations of this dual Newton idea to distributed quadratic programming
and to nonlinear programming are examined. The development of a high-fidelity
real-time feasible nonlinear MPC scheme for autonomous driving, which can be
applied for real-time collision avoidance in dangerous driving conditions as well
as for time-optimal driving, concludes this thesis.



Zusammenfassung

In dieser Arbeit werden optimierungsbasierte Verfahren zur Regelung und
zur kombinierten Parameter- und Zustandsschätzung dynamischer Systeme
vorgestellt. Aufgrund ihrer Vielseitigkeit zählen optimierungsbasierte Ansätze
zu den universellsten und mächtigsten Verfahren und sind daher von
großer praktischer Relevanz. Die Echtzeit-Lösung der zugrundeliegenden
Optimierungsprobleme stellt jedoch nach wie vor eine kritische Herausforderung
beim Einsatz dieser Methoden dar.

Wir betrachten hier insbesondere Probleme mit langen Prädiktions-, bzw.
Schätzhorizonten, die sowohl durch lineare als auch durch nichtlineare
Dynamiken, sowie durch zusätzliche Pfadbeschränkungen charakterisiert sein
können. Das Formulieren solcher Probleme ist häufig aus Performanz-
und Stabilitätsgesichtspunkten interessant und ist nimmt insbesondere im
Zusammenhang mit Nicht-Tracking Zielfunktionalen eine zentrale Rolle
ein. Ziel der in dieser Arbeit entwickelten Algorithmen ist eine effiziente
Ausnutzung der probleminhärenten Dünnbesetztheit unter Berücksichtigung von
Parallelisierungsaspekten auf aktuellen und zukünftigen Rechnerarchitekturen.

Insbesondere entwickeln wir ein hierarchisches Relinearisierungsverfahren
für die nichtlineare modellprädiktive Regelung (Model Predictive Control,
MPC), das auf dem etablierten Real-Time Iteration Scheme basiert und
eine Brücke zwischen nichtlinearer und linearer MPC schlägt. Weiterhin
wird ein verbesserter Condensing-Algorithmus zur Dimensionsreduktion der
auftretenden strukturierten quadratischen Optimierungsprobleme (Quadratic
Programming Problem, QP) vorgestellt, der eine Rechenzeitkomplexität von
lediglich quadratischer Ordnung in der Horizontlänge aufweist.

Darüber hinaus wird ein strukturausnutzender Algorithmus zur direkten Lösung
der auftretenden QPs entwickelt, der auf dem Prinzip der Dual Decomposition
und einem semiglatten Newton-Verfahren basiert. Die Absicht dahinter ist es,
Vorteile von Innere-Punkte Methoden bezüglich der Strukturausnutzung mit
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den Warmstart-Fähigkeiten gewöhnlicher Active-Set Methoden für dichtbesetzte
Probleme zu verbinden. Wir beweisen die Termination des Verfahrens nach
endlich vielen Schritten und analysieren die Detektion von primal unzulässigen
Problemen. Weiterhin wird das verwendete Verfahren zur Faktorisierung der
auftretenden linearen Gleichungssysteme mit der aus der linear-quadratischen
Regelung bekannten Riccati Rekursion identifiziert und numerische Teilaspekte
des Algorithmus werden analysiert. Die gewonnenen Erkenntnisse wurden zur
Entwicklung eines effizienten Open-Source Codes verwendet, der auf mehreren
betrachteten Benchmarkproblemen den State-of-the-art strukturausnutzender
QP-Löser um einen Faktor zehn und mehr verbessert.

Im weiteren Verlauf der Arbeit werden Möglichkeiten der Verallgemeinerung
dieser Methode zur Lösung verteilter quadratischer Optimierungsprobleme und
zur Lösung allgemeiner nichtlinearer Optimierungsprobleme untersucht. Zudem
wird ein echtzeitfähiges nichtlineares MPC Schema auf Basis eines detaillierten
Fahrzeugmodells zum Zwecke des autonomen Fahrens entwickelt. Dieses kann
beispielsweise bei der Kollissionsverhütung unter schwierigen Straßen- und
Witterungsverhältnissen oder beim zeitoptimalen Fahren Anwendung finden.



Beknopte Samenvatting

In deze thesis worden optimalisatie-gebaseerde methoden voor het regelen en
meten van dynamische systemen voorgesteld. Inzake hun veelzijdigheid behoren
optimalisatie-gebaseerde schema’s tot de algemeenste en capabelste methoden,
en ze vertonen een groeiende populariteit. Omdat een optimalisatieprobleem in
real time moet opgelost worden is de computationele kost echter nog steeds een
beperkend factor voor de uitbreiding van deze klasse van methoden.

Onze focus in deze thesis is op problemen met een lange horizon, die door
lineaire en niet-lineaire dynamische systemen, en door beperkingen gekenmerkt
kunnen zijn. Zulke problemen zijn van groot praktisch belang, bijvoorbeeld
om stabiliteit te waarborgen, voor hoge regel- of meet-prestaties, of onder
economische doelstellingen. We ontwikkelen algoritmen in deze thesis die
kunnen profiteren van de inherente spaarsheid van deze klasse van problemen
met een focus op parallellisme en actuele en toekomstige computer architecturen.

Met name wordt een hiërarchisch herlinearisatie schema voor niet-lineaire
Model Predictieve Regelaars (Model Predictive Control, MPC) op basis van het
befaamde Real-Time Iteration Scheme gegeven, die de kloof tussen lineaire en
niet-lineaire MPC vermindert. Verder wordt een verbeterd Condensing algoritme
van verminderde complexiteit voor reductie van de dimensionaliteit van de
bekomen kwadratische programmeringsproblemen (Quadratic Programming
Problem, QP) voorgesteld.

Bovendien wordt een nieuwe structuur exploiterend QP algoritme ontwikkeld,
die gebaseerd is op dual decomposition en een semismooth versie van Newton’s
methode. Het doel is om het spaarsheid exploitatie vermogen van interior-point
methoden te combineren met het warmstarting vermogen van gewone active-set
methoden voor dense problemen. We analyseren een diversiteit van theoretische
en numerieke aspecten van deze methode, en gebruiken het inzicht hieruit om
een efficiënte implementatie van dit algoritme te ontwikkelen. De implementatie
verbetert de state-of-the-art in QP oplossingen met factoren van meer dan tien
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in rekentijd op een verscheidenheid van benchmark problemen en is publiekelijk
verkrijgbaar als open source code als deel van deze thesis.

Verder worden generalisaties van dit dual Newton idee naar gedistribueerde QPs
en algemene niet-lineaire problemen onderzocht. Op het einde van deze thesis
wordt nog een high-fidelity real time feasible niet-lineaire MPC regeling voor
het autonome rijden van personenwagens ontwikkelt. Deze regeling kan worden
gebruikt voor het vermijden van ongevallen in gevaarlijke rijomstandigheden of
voor het tijdsoptimaal rijden.
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Chapter 0

Introduction

A famous quote among mathematical optimization researchers reads “Every
problem is an optimization problem”. Despite the natural bias of quoters and
quotee, the core of this bold statement stresses the versatility of mathematical
optimization. Whenever an (approximate) quantitative representation of a
phenomenon is available, tools from mathematical optimization can be used
to analyze the available data and draw conclusions — whether it is directly
in the form of computing optimal configurations of modifiable variables for a
certain task, or indirectly via, for example, a regression or another form of
computational simplification that makes a problem more comprehensible.

This versatility stretches out to dynamic systems, where, in replacement of
simplistic controller and observer designs, any kind of model granularity up to
first principles models from physics, chemistry, biology, economics, or sociology
(to name only a few areas) can be employed in the mathematical optimization
framework to pursue an ultimate objective. Even though theoretical guarantees
(regarding stability, for example) are sometimes harder to obtain in more complex
model settings, the additional insight from the consideration of detailed system
knowledge may often result in a better control and estimation performance, or
in a higher quality of the analysis.

Static optimization, i.e., the solution of mathematical optimization problems
without explicitly considering dynamic evolutions, can be considered well
established for many applications. To give a few examples, just think of
the calculation of set-points for optimal operation of chemical reactors, the
arrangement patterns of goods in a warehouse, or a regression analysis for
the identification of system characteristics. Often, however, the formulation
of a static problem itself may be a simplification. Instead of calculating a

1



2 INTRODUCTION

set-point for a reaction, for example, the ultimate objective in many cases may
be of a different flavor — maximum yield, minimum waste, or highest (energy-)
efficiency to only name a few. Since many phenomena are dynamic by nature,
taking a model of the dynamic evolution into account may result (by way of
computing optimal trajectories instead of steady states, for example) in an
increased performance regarding the ultimate objective.

A prerequisite for this to work well is the existence of models that characterize
the behavior of the underlying dynamic system rather accurately. But even
the most accurate models will exhibit a certain mismatch with reality, the
so-called model-plant mismatch, for almost every practical problem. A powerful
concept to deal with this mismatch is the concept of feedback or, coined at the
optimization lingo, the concept of online optimization. Instead of obtaining all
data in bulk and solving the optimization problem offline, solely based on this
data, it is the idea of these concepts to re-solve the optimization problem online,
i.e., while the dynamic process is “running” (evolving), based on newly acquired
data from the operation of the process. This allows to react to disturbances
in a control task, or to adjust the result of a regression based on the latest
observations.

Online-optimization based feedback and regression is particularly interesting
as it allows to combine three very important aspects around the operation
and analysis of a dynamic process. First, it takes the dynamically changing
characteristics of the system explicitly into account, in form of a model. Second,
it allows to flexibly formulate objectives that are of primary, original interest.
And third, it allows to directly formulate restrictions, on the operation of the
process for example, which then have to be respected in the pursuit of the
primary objective.

The main limitation of online-optimization based feedback and regression
approaches, however, is the computational burden associated with the solution
of the optimization problem in real-time. It is the central goal of this thesis to
push that frontier, by proposing both new and enhanced computational methods
for the solution of optimization problems of dynamic systems in real-time. The
instruments to achieve this goal are bifocal: Above all, characteristic structures
that present themselves rather generically in optimization problems of dynamic
systems are identified and exploited. Then, in the design and analysis of tailored
algorithms, a particular emphasis is put on implementability on multi- and
many-core parallel computational architectures, which become increasingly
available even on cheap and embedded devices, and which are expected to
represent the largest origin of growth in computational power over the coming
years (or even decades) due to physical limitations on the maximum achievable
clock speed.
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The following figure visualizes more specifically a few of the keywords which
are relevant for this thesis:

In particular, we focus our considerations on nonlinear systems, for which
we apply a multiple shooting discretization to obtain a structured nonlinear
programming problem. We develop inexact variants of sequential quadratic
programming schemes for the solution of these problems in real-time and
then focus on a computational bottleneck which is particularly pronounced in
parallel computing environments1 — the solution of the underlying quadratic
programming problems.

Our emphasis is on gaining particular efficiency for problems with long prediction
horizons, i.e., problems with many discretization points in the time domain.
Such problems are desirable to be formulated in practice for a variety of reasons:

• Important among these reasons are safety concerns. For an illustration
just think of a vehicle being operated autonomously at a high speed. It is
imperative that the vehicle is always operated at a state such that it can
safely come to a complete stop without straying off the track. Due to the
involved nonlinear dynamics, the formulation of so-called terminal regions
in state space (a common practice in control engineering to issue similar
guarantees) may become very involved and may lead to overly conservative
control behavior. On the other hand, a long prediction horizon can equip
the controller with sufficient freedom of action while being still able to

1This is due to the fact that in so-called direct simultaneous methods like multiple shooting
(and even more so in collocation) the linearization step is naturally parallelizable.
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decelerate the vehicle completely within the foreseeable future (i.e., the
predicted horizon). Also more generic and formal stability guarantees can
be established without any requirement of terminal cost or constraint for
sufficiently long prediction horizons, cf. [Grü13].

• Along similar lines can be the economic operation of a system. Let us
think of a robotic manipulator for illustration purposes, that is to reach
a certain final position at a fixed point in time, consuming the lowest
possible amount of energy. Whenever the dynamics of this system do not
permit a (tractable) closed-form representation of the so-called cost-to-go
(cf. Section 1.2) — which typically is the case — considering the full
prediction horizon until the time of the desired arrival may be required to
ensure optimality of the operation with respect to the economic objective.

• The quality of online parameter estimation (identification) results depends
largely on the sensitivity of the system with respect to the parameter
(observability) and on the noise on the measurement data. If the sensitivity
is small and/or the measurement noise is strong, a large number of
measurement points along the time grid need to be considered for a
reliable estimate.

• Direct methods, in general, only verify feasibility with respect to path
constraints (e.g., state bounds) on the discretization grid. For a strict
adherence to path constraints, a large number of discretization points along
the prediction horizon is therefore essential. Even methods that make use
of a continuous system trajectory representation (like collocation methods,
for example) can only guarantee adherence to the path constraints up to
the accuracy of the continuous representation between the checkpoints
and therefore also require a fine discretization grid for reliable constraint
satisfaction, which, in turn, results in a long band-structure of the resulting
nonlinear programming problem.

While being practically relevant for the above reasons, optimization problems of
dynamic systems on long prediction horizons are also particularly challenging
due to the entailed large numbers of optimization variables. This sparks the
demand for fast solution algorithms.

On the upside, optimization problems of dynamic systems exhibit very
characteristic, band-structured sparsity patterns, which become increasingly
pronounced with growth of the length of the prediction horizon. This presents
an opportunity for research on efficient, sparsity exploiting algorithms that
render also long-horizon problems tractable in real-time.
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0.1 Contributions

Before detailing the structure of this thesis, let us accentuate a few constitutive
contributions of this thesis:

A hierarchical update scheme for nonlinear MPC In Section 2.4, we present
an algorithmic framework that extends the Real-Time Iteration scheme from
[DBS+02] and the Multi-Level Iteration scheme from [BDKS07] to a more
general concept that allows to tackle nonlinear model predictive control (MPC)
and moving horizon estimation (MHE) problems by a combination of linear
MPC and hierarchical re-linearization updates that can be triggered flexibly in
accordance with the available computational infrastructure. A corresponding,
adapted condensing procedure accounting for the flexibility of the updates is
introduced in Section 3.3.

A structure-exploiting, parallelizable active-set method for QP We
introduce a new algorithm for the solution of band-structured, strictly convex
quadratic programming (QP) problems, as they appear both in linear and
nonlinear MPC and MHE, in Chapter 4. The algorithm is based on a two-level
approach, solving parametric, reduced-size inequality constrained QPs for each
discretization stage and a dual unconstrained consensus problem on top of that.
Numerical details regarding the efficient implementation are given and finite
convergence guarantees are established. We give an in-depth analysis of the
specific dual function at hand that leads to rigorous algorithmic infeasibility
certificates. Furthermore, an O(logN) parallelizable factorization algorithm,
where N is the length of the prediction horizon, is proposed for the consensus
problem, and the warmstarting capabilities (which are significantly superior to
state-of-the-art structure-exploiting interior-point methods) of the algorithm
are illustrated.

An efficient open-source QP solver for MPC and MHE As part of this thesis,
the open-source structure-exploiting QP solver qpDUNES has been developed.
This software is based on the ideas developed in Chapter 4 and is released as free
open-source software under the GNU LGPL license [GNU11]. A presentation
of the software design is given in Chapter 6. This package has already been
successfully used in a variety of applications from control and estimation.

A structure-exploiting, parallelizable nonlinear programming method The
ideas from Chapter 4 are carried further in Section 5.2 to be able to treat also non-
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convex structured optimization problems by modifying the stage subproblems
in an ADMM-inspired augmented-Lagrangian fashion.

A real-time feasible high-fidelity nonlinear MPC for autonomous driving
In Chapter 7, we consider the application problem of autonomous driving in
challenging situations, such as real-time collision avoidance or time-optimal
driving. We present a detailed vehicle model that is usable for nonlinear model
predictive control in real-time and includes significantly more dynamic effects
than the previous state-of-the-art. A spatial representation of the vehicle
dynamics permits a straightforward modeling of road boundaries and obstacles.

0.2 Outline and Structure of this Thesis

The main part of this thesis is structured in three parts, which are further
subdivided in seven chapters; this introduction and a conclusion complement
the main part to a total of nine chapters. The rough dependency structure of
the individual chapters can be seen from the following sketch:

Part I

Part II

Part III

Chapter 1

Chapter 2

Chapter 3
Chapter 4

Chapter 5

Chapter 6

Chapter 7
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Part I is about control, estimation, and the nonlinear programming perspective
of it. Therein Chapter 1 introduces the control and estimation setting we
consider in this thesis, details the treatment of these problems by the framework
of nonlinear programming, and reviews the required theoretical foundations.
Chapter 2 gives the online perspective on the dynamic optimization problems
at hand, in form of introducing model predictive control (MPC) and moving
horizon estimation (MHE). The fundamental concept of the Real-Time Iteration
scheme is reviewed, and algorithmic extensions thereof are presented, which
result in a flexible framework bridging linear and nonlinear MPC.

Part II is about identifying and exploiting structures that arise in quadratic
programming (QP) subproblems from the application of the above algorithms
applied to dynamic optimization problems. In particular, Chapter 3 points out
these structures and presents the classical condensing approach — however, in a
revised fashion that results in a more efficient condensing algorithm. Chapter 4
introduces an alternative to the condensing approach for solving the structured
(strictly convex) quadratic programming problems: a two-level sparse QP
algorithm that performs Newton steps on the dual problem, but maintains
the flavor of an active-set method and is highly parallelizable. Numerical
aspects, theoretical issues, and the efficient application in MPC and MHE are
discussed. Chapter 5 takes the lessons learned from Chapter 4 one step further
and proposes ideas of how to apply this algorithmic frame (a) in more generic
coupling structures, as they appear, for example, in distributed optimization-
based control and estimation, and (b) in a more general problem setting that
allows to treat convex programming problems, positive semidefinite QPs, and
even general non-convex nonlinear programming problems (NLPs).

Part III is about software, benchmarking and applications. Chapter 6 introduces
the open-source band-structured QP solver qpDUNES, which was developed
as part of this thesis, and demonstrates its efficiency in benchmarks from
linear and nonlinear MPC against other state-of-the-art QP solving approaches.
Chapter 7 considers the application case of autonomous driving and presents
an encompassing vehicle model based on a spatial reformulation of the dynamic
system that models safety-critical driving behavior with significantly higher
fidelity than the previous state-of-the-art, but is still comfortably real-time
feasible for control and estimation.
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Chapter 1

Nonlinear Dynamic
Optimization

1.1 Control and Estimation of Dynamic Systems

Let us begin by giving a formal introduction to the considered problem classes
in the following.

1.1.1 Controlled dynamic systems

The common core of all problems central to this thesis are dynamic systems.
These systems can be of physical, chemical, biological, economic or social origin,
to name only the most common sources (cf. [Lue79]). The term dynamic therein
refers to time-changing characteristics which are the dominant feature in all the
considered problems.

A common way to represent a dynamic system mathematically on a continuous
time horizon T := [t0, tf ] ⊆ R := R ∪ {−∞,∞} is through its so called
(differential) state denoted by x ∈ X := {x : T → Rnx}. We assume
that the considered systems can be influenced by some sort of manipulation
or actuation that is denoted mathematically by a vector of control functions
u : T → Rnu , which we assume to be measurable and of bounded variation,
i.e., u ∈ U := {u : T → Rnu | u measurable of bounded variation}. The
law determining the temporal evolution of our dynamic system is commonly

11
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represented as a coupled system of ordinary differential equations (ODEs)

ẋ(t) = f(t,x(t),u(t),p), t ∈ T . (1.1)

The vector p ∈ Rnp denotes time-constant model parameters that influence the
system dynamics f : T × Rnx × Rnu × Rnp → Rnx (also simply known as the
right-hand-side function).

Often, we simply characterize a dynamic system by f , when T , X , and U are
canonical, clear from the context, or merely irrelevant. Some basic systems
theoretic definitions in Sections 1.1.2 and 1.1.3 however will require the following,
more formal definition based on [Son98]:

Definition 1.1 (Dynamic system) Formally, a tuple (T ,X ,U ,f) is called
a (dynamic) system. y

We address several aspects of the dynamic system (1.1) that relate to
computational properties and problem formulations in the following.

Assumption 1.2 Throughout this thesis we assume the system dynamics
f : T × Rnx × Rnu × Rnp → Rnx to be piecewise Lipschitz continuous in x(t)
and continuous in t and u(t).

Assumption 1.2 is crucial, as it forms the basis for existence and uniqueness1
guarantees of x : T → Rnx , our representation of the dynamic system. These
guarantees can be established by the well-known Picard-Lindelöf theorem and
the Carathédory theorem, but may depend on the actual control function
representation and are therefore omitted in this general setting. It is noted
however, that for the choice of a piecewise polynomial control parameterization
(as introduced with the general algorithmic setting in Section 1.2.1) the Picard-
Lindelöf theorem is (at least) piecewise applicable on each interval where u(t)
is continuous. The corresponding, uniquely determined state trajectory is then
denoted by x(t;x(t0) = x̂0,u,p), where each of the conditional arguments may
be omitted if they are clear from the context or irrelevant.

With regard to the derivative-based numerical methods considered and developed
within this thesis, we additionally demand

Assumption 1.3 The system model representation f : T ×Rnx×Rnu×Rnp →
Rnx is assumed to be twice continuously differentiable with respect to x(t),
u(t), and p, if not stated otherwise.

1Note that for uniqueness we particularly need a fixed initial condition of the system,
which is typically given by x(t0) = x̂0, where x̂0 ∈ Rnx .
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Remark 1.4 In some contexts (most notably in estimation) it is notationally
favorable to express the system behavior explicitly at discrete time points by
the law

x(tk+1) = Fk(x(tk),u(·),p) ∀ k ∈ {0, . . . , N − 1} =: SN .

Due to uniqueness (and existence, of course) of the system representation
x : T → Rnx , the state transition mappings Fk : Rnx×U×Rnp → Rnx , k ∈ SN
are an equivalent representation of the system behavior that is given in explicit
form by

Fk(x(tk),u(·),p) = x(tk) +
∫ tk+1

tk

f(τ,x(τ),u(τ),p) dτ ∀ k ∈ SN .

The integral is understood component-wise in this context.

Remark 1.5 The parameter vector can be hidden by appending np entries to
the state that are uniquely determined over the full time horizon T by

ẋnx+i(t) = 0 ∀ i ∈ {1, . . . , np}, t ∈ T ,

xnx+i(t0) = pi ∀ i ∈ {1, . . . , np}.

Remark 1.6 System (1.1) can be transformed into an autonomous system

ẋ(t) = f̃(x(t),u(t),p) ∀ t ∈ T ,

i.e., one without explicit time-dependency, by introducing one additional state

ẋnx+1(t) = 1 ∀ t ∈ T ,

xnx+1(t0) = t0.

We note that both reformulations above are mainly introduced for notational
convenience. In an algorithmic implementation, a separate treatment of
states, parameters, and time-dependency may lead to increased computational
efficiency.

Remark 1.7 Even though dynamic system (1.1) is stated for a fixed time
horizon T = [t0, tf ], a time horizon of variable length T := tf − t0 can easily
be considered by introducing a parameterization σ of t. We define t(σ) :=
t0 + σ · T, σ ∈ [0, 1] and restate (1.1) accordingly as

ẋ(t) = f(t(σ),x(t(σ)),u(t(σ)),p) · ∂t(σ)
∂σ

= f(t(σ),x(t(σ)),u(t(σ)),p) · T, σ ∈ [0, 1].
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In particular, some applications may require a generalization of the notion of
time in the dynamic system context to a pseudo-time or simply a different
independent variable of the ODE system in lieu of time.

As a final remark to this brief section on dynamic systems, let us note that our
understanding of a dynamic system as an ODE through (1.1) is not exhaustive
in the domains of optimal control and dynamic estimation. Several extensions
are conceivable:

• Some mechanical or chemical systems may require the generalization of
the ODE system to a system of differential algebraic equations (DAEs).
The works [Lei99] and [Die02] elaborate on the treatment of DAEs
with numerical methods that are compatible with the ones presented
in this work; [Lei99] covers offline aspects, while [Die02] focuses on online
computations.

• Systems that feature switched inputs (i.e., inputs that can only attain
values from a discrete set) lead to mixed-integer optimal control problems
(MIOCPs). Computational methods for such problems that build on the
same algorithmic core as this thesis and are therefore largely compatible
with the algorithms presented here can be found in [Sag05] for offline
problems, and in [Kir11] for online problems.

• For phenomena that have a dynamic evolution not only with respect to
time, but also with respect to space (or, in general, that have coupled
multidimensional dynamics), partial differential equation (PDE) models
are required. [Pot11b] discusses a computational approach that is related
to the basis of the methods discussed here (direct multiple shooting
discretization).

• Some systems with uncertain dynamic behavior can be modelled by
stochastic differential equations (SDEs). We refer to [HS14] and the
references therein for an overview of related numerical methods treating
SDEs.

1.1.2 Optimal control

Since the control functions in dynamic system (1.1) can be manipulated and
are thus degrees of freedom, one is naturally interested in choosing them in an
optimal fashion, leading to the problem of optimal control. Here, optimality is
desired with respect to some performance index Φ : X × U × Rnp → R, that
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maps (at least locally) favorable state and control trajectories onto smaller
values than less favorable ones.

A common, generic form of the performance index is the so called Bolza-type
objective, which consists of an integral term and an end-point contribution:

Φ(x(·),u(·),p) =
∫ tf

t0

`(t,x(t),u(t),p) dt+ e(tf ,x(tf ),p).

A performance index that only consists of the integral part is usually referred
to as a Lagrange-type objective, while a performance index that only features
an end-point contribution is known as a Mayer-type objective.

In the context of model predictive control (MPC) so called least-squares
objectives, given by

Φ(x(·),u(·),p) =
∫ tf

t0

‖`(t,x(t),u(t))‖22 dt+ ‖e(tf ,x(tf ))‖22. (1.2)

are occurring frequently, for example in stabilizing control, where the control
objective is to drive a system to an equilibrium (cf. Definition 1.12), or more
generally in tracking control, where any predefined reference trajectory is tracked.
This special case is displayed separately since very powerful algorithms exploiting
the particular structure of this objective exist (most notably the so-called
generalized Gauss-Newton method, cf. Section 1.4.4).

In the domain of optimal control the following definitions are essential and give
a handle on the well-definedness of the control problem. Our formulations are
based on [Son98, RM09].
Definition 1.8 (Reachability) Let (T ,X ,U ,f) be a dynamic system and let
x be implicitly defined by f through (1.1) and a known initial state. A state
x2 ∈ Rnx is said to be reachable on T from the event x(t1) = x1, where t1 ∈ T
and x1 ∈ Rnx , if either

a) there is a t2 ∈ T , t2 ≥ t1 and a u ∈ U such that x(t2) = x2, or

b) t ∈ T for all t > t1 and there is a u ∈ U such that lim
t→∞

x(t) = x2. y

Definition 1.9 (Controllability) We say a dynamic system (T ,X ,U ,f) with
x implicitly defined by f through (1.1) and a known initial state is controllable
on T , if for every event x(t1) = x1, with t1 ∈ T and x1 ∈ Rnx , and x2 ∈ Rnx
we have that x2 is reachable from x(t1) = x1. y

Assumption 1.10 Throughout this thesis we assume in the context of optimal
control that the dynamic system (T ,X ,U ,f) defined by (1.1) is controllable on
T ∞ := [t0,∞[, if not explicitly mentioned otherwise.
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Remark 1.11 We note that for systems theoretic considerations weaker
assumptions than 1.10, such as splitting (1.1) in controllable and uncontrollable
modes, may be advantageous. Since the focus of this thesis however lies
on computational methods, we remain with Assumption 1.10 for reasons of
simplicity and refer to [Son98] for complementary reading.

We further have the important notion of an equilibrium state, which, colloquially,
is a state of the system that, once attained, is never left, cf. [Lue79].

Definition 1.12 (Equilibrium) We call a state x̄ ∈ Rnx an equilibrium
(sometimes also steady state), if there is a control law u∗(t; x̄) ∈ U such
that

f(t, x̄,u∗(t; x̄),p) = 0 ∀ t ∈ T . y

Often in control theory, an equilibrium is a desirable state. To characterize
convergence to an equilibrium, we make use of the following notion.

Definition 1.13 (Asymptotic stability) For a given control law u∗(t) ∈ U ,
we call a dynamic system f asymptotically stable at an equilibrium x̄ if for its
corresponding state trajectory x defined implicitly by (1.1) it holds that both

a) for all ε > 0, there is a δ > 0, such that ‖x(t0) − x̄‖ < δ implies
‖x(t)− x̄‖ < ε for all t ≥ t0 (Lyapunov stability), and

b) there is a η > 0, such that ‖x(t0) − x̄‖ < η implies lim
t→∞

‖x(t) − x̄‖ = 0
(local attractiveness). y

We note that Definition 1.13 is only one out of a large variety of characterizations
of stability. We refer to [RM09] and the references therein for an overview.

1.1.3 Dynamic estimation

The dynamics of a real-world system, and even the state the system is currently
in might not always be (perfectly) known. For illustration just think of a
pressurized tank reactor in chemical engineering. While the precursor volumes
might be known well, the reaction rate might only be known approximately
or might be subject to unmodeled influences, and in consequence the current
product volumes, which could be part of the state, are unknown as they cannot
be measured during the reaction.

In situations like this, one is interested in estimating the current system state
x(tf ) and system parameters p from observations yk ∈ Rny made at time tk
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for each k ∈ {1, . . . ,M}. Typically, the estimation performance index is of the
form

Φ(x(·),u(·),p) = `0(x(t0),p, x̄, p̄) +
M∑
k=1

`k(x(tk),u(tk),p,yk),

where the `0 term is used to include a priori information x̄ and p̄.

A special case, that is however frequently appearing, is the so-called least-squares
estimator, which is characterized by the performance index

Φ(x(·),u(·),p) =
∥∥∥∥[x(t0)− x̄

p− p̄

]∥∥∥∥2

P

+
M∑
k=1
‖yk − h(x(tk),u(tk),p)‖2Vk

.

In this context h : Rnx×Rnu×Rnp → Rny denotes the so-called output function,
which relates dependent system variables to observable system quantities, the so-
called outputs. We assume that h is (at least) twice continuously differentiable for
algorithmic reasons. The shorthand ‖a‖A :=

√
a>Aa denotes the norm induced

by positive semidefinite, symmetric weighting matrices P ∈ R(nx+np)×(nx+np)

and Vk ∈ Rny×ny . We refer to [RM09] for additional details on the formulation
of estimation problems. In particular, so-called process noise variables that
allow to model uncertainty in the system dynamics are introduced there. We
address the issue of how to incorporate these terms into the vectors of discretized
control variables in Section 2.2.

Definition 1.14 (Distinguishability) Let (T ,X ,U ,f) be a dynamic system
with the output function h : Rnx × Rnu × Rnp → Rny , and let x be implicitly
defined by f through (1.1). A pair of events (x(t1) = x1,p1) and (x(t1) =
x2,p2), where t1 ∈ T , is said to be distinguishable on T , if there is at least one
control input ũ ∈ U such that there exists a t ∈ [t0, t1] ⊆ T with

h(x(t;x(t1) = x1), ũ(t),p1) 6= h(x(t;x(t1) = x2), ũ(t),p2). y

Definition 1.15 (Observability) We say a dynamic system (T ,X ,U ,f) with
the output function h : Rnx × Rnu × Rnp → Rny and x implicitly defined by f
through (1.1) is observable if all distinct pairs of events (x(tf ) = xf ,p1) and
(x(tf ) = x2,p2) are distinguishable on T = [t0, tf ]. y

Assumption 1.16 We assume throughout this thesis in the context of dynamic
estimation that a dynamic system (T ,X ,U ,f) defined by (1.1) with its
corresponding output function h : Rnx × Rnu × Rnp → Rny is observable
on T ∞ :=]−∞, tf ], if not explicitly mentioned otherwise.
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Assumption 1.16 is rather weak, and only ensures well-definedness in the sense
that the estimation task is not completely utopian. Instead, due to continuity
of x and h, we can expect that the current state and parameter vector of the
system can be recovered for a sufficiently fine measurement grid and a sufficiently
long measurement history, if the system is excited in the right way (i.e., if the
right control inputs were chosen). For an overview of further observability
characterizations and related concepts we refer to [RM09] and [Son98]. In the
Section 2.2 we will present a more practical definition of observability based on
the actually available measurements.

1.1.4 Dynamic optimization problems

The combination of a performance index as defined in Sections 1.1.2 and 1.1.3
and a constraining dynamic system (1.1) leads to the notion of a dynamic
optimization problem (DOP).

Definition 1.17 (Dynamic Optimization Problem) The standard form
of a dynamic optimization problem assumed throughout this thesis reads

min
x(·),u(·),p

Φ(x(·),u(·),p) (DOP1)

s.t. ẋ(t) = f(t,x(t),u(t),p) ∀ t ∈ T (DOP2)

0 ≥ d(t,x(t),u(t),p) ∀ t ∈ T (DOP3)

0 = ri(x(ti),p) ∀ i ∈ J . (DOP4)

The objective (DOP1) strives to minimize the performance index Φ : X × U ×
Rnp → R for the dynamic system (DOP2), while respecting path constraints
d : T × X × U × Rnp → Rnc through (DOP3) and point constraints ri :
Rnx × Rnp → Rnri , ∀ i ∈ J at discrete time points ti ∈ T from a finite index
set J = {1, . . . , nJ } through (DOP4). y

Depending on whether the objective functional is of control or estimation
nature, we will call the respective instance of (DOP) optimal control problem
(OCP) or state/parameter estimation problem (EP). In an optimal control
context, usually the control functions are regarded as the actual degrees of
freedom in the sense of the optimization, while the state trajectories are seen
as dependent (infinite dimensional) variables and the parameters are usually
assumed to be fully known. In an estimation context on the other hand, one
usually sees parameters, terminal (current) state and possibly the noise vectors
as degrees of freedom in the sense of the optimization, while states and controls
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are dependent variables. We will see in Section 1.2 however that the differences
between control and estimation problems become rather subtle on the numerical
level when applying direct solution methods, which is why we introduce the
major algorithmic concepts more generally for dynamic optimization problems.

Some previous works (e.g., [Lei99, Die02, Sag05]) consider a to some extent
more general setting than Definition 1.17, that allows to formulate so-called
multi-stage optimal control problems, which may appear naturally, e.g., in some
applications from chemical engineering. Other applications, like the optimization
of flight orbits, may require an initial-value-free periodic solution of an OCP,
cf. [Hou07, Hou11]. Problems that fall in these more general classes can, in
principle, still be modeled by (DOP), but at the cost of introducing additional
auxiliary states. An efficient solution algorithms for such problems, which would
need to treat the arising structures specifically, is however beyond the scope of
this thesis.

We conclude this section with an assumption that is relevant for the numerical
methods to be developed:

Assumption 1.18 In regard to derivative-based numerical methods, we also
assume Φ, c, and ri, i ∈ J to be twice continuously differentiable.

1.2 Numerical Methods for Dynamic Optimization

Dynamic optimization problems of the form (DOP) contrast standard
optimization problems (e.g., those classically formulated in the domain of
operations research) through two distinctive features. Firstly, the dynamic
system constraints (DOP2) define the state x only implicitly through a
coupling relation of the state and its derivative; in general, we cannot expect
to find an exact closed form representation of x. And secondly, since the
optimization variables in Formulation (DOP) live in function space, our dynamic
optimization problem is an infinite dimensional optimization problem, and
therefore requires additional effort to be tractable by present-day numerical
computing architecture.

Commonly, the literature distinguishes between three fundamentally different
approaches to tackle (DOP), cf. Figure 1.1. We only give a very brief overview
here, and refer to [Bie10, Sag05, And13] for further reading.

Dynamic programming approaches base on Bellman’s principle of optimality
[Bel57] and proceed by propagating a so-called cost-to-go function backwards
in time. This procedure generally leads to the Hamilton-Jacobi-Bellman partial
differential equation or to a dynamic programming recursion if the propagation
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Figure 1.1: Categorization of solution methods for dynamic optimization
problems.

is performed in discrete time steps. Since for the application to general dynamic
systems a tabulation of the cost-to-go function on a state space discretization
grid is required, this approach is well-known to suffer from the so-called curse
of dimensionality. Except for special cases (cf. Sections 2.1 and 2.2) dynamic
programming approaches are therefore only applicable to systems with few
states. We refer the interested reader to [Loc01, Ber07] for further details on
this approach.

The so-called indirect approach (also known as first-optimize-then-discretize
scheme) is to analytically formulate the (infinite dimensional) first-order
necessary optimality conditions of (DOP) — typically by way of the so-
called maximum principle, cf. [PBGM62, BH75] — and to then (in general)
solve the resulting multi-point boundary value problem (BVP) numerically
(cf., e.g., [Osb69, Boc78]). While the accuracy of the solution obtained by
the indirect approach directly depends on the accuracy of the BVP solution,
this approach has the significant disadvantage that mathematical insight is
required to formulate the optimality conditions analytically for each problem
(or even each modification) individually. Indirect methods can, however, play
an important role for theoretical considerations.
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As an alternative, the so-called direct approach — following a first-discretize-then-
optimize scheme — applies a discretization procedure to transform (DOP) into a
finite-dimensional nonlinear programming problem (NLP), which is subsequently
solved via its (finite-dimensional) optimality conditions. We note that, even
though the direct approach only finds an optimum to a seemingly different
problem, namely a discretized version of (DOP), it was shown (for example in
[Fre79]) that for decreasing discretization error the discrete solution converges
to a solution of the continuous problem in the primal and dual variables.

This thesis is focused on direct methods, and in particular variants of Bock’s
Direct Multiple Shooting (DMS) method [BP84]. While an in-detail comparison
of direct and indirect methods for dynamic optimization is beyond the scope
of this thesis, we state motivating cornerstones in the following. Slightly more
elaborate discussions on this topic, together with further references, can be
found in [Sag05] and [Kir11].

Direct methods have the advantage that they can be fully automated and, in
principle, can tackle any dynamic optimization problem that is casted into their
admissible standard form without the need for additional expert insight2. This
is viable when trying to address several applications at the same time, for each
of which dynamic system models might have to be adapted frequently as a
result of the observed real-world system performance3.

Since the driving spirit behind this thesis are real-time applications, the focus
needs to be on methods that can repeatedly solve dynamic optimization problems
at very high rates. These problems are typically very similar in the sense
that their solutions are proximal in an appropriately defined metric space of
admissible solutions – a fact which particularly DMS methods can exploit better
than many other methods. DMS is also a particular form of variable lifting,
which might reduce the problem nonlinearity and thus increase the domain of
fast local convergence (cf. [AD10a, Pot11a]).

Finally, among direct methods, DMS can be seen as a hybrid approach between
single shooting methods on the one hand, which, per iteration, are characterized
by one (expensive) function evaluation but rather low costs on the actual NLP
solution end, and collocation methods on the other hand, where, simply put,
function evaluations are very cheap and almost all computational effort is shifted
to the NLP. DMS methods require a medium number of function evaluations
(along the time horizon) per iteration, and result in a medium-sized NLP.
Typically, the function evaluations along the time horizon can be parallelized in

2This is notwithstanding the fact that certain problem characteristics might require tuning
of the method at hand to cope with numerical difficulties.

3In general we cannot assume to have an “exact” model in virtually any real-world
application.
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a straight-forward manner, while NLP solution methods exhibit only limited
parallelization possibilities. The expectation behind using DMS is therefore to
profit from parallel computing architectures overproportionally.

We note that DMS and direct collocation may actually be considered very
similar from a nonlinear programming point of view if fixed stepsize integrators
are chosen in DMS. In contrast to single shooting, where the evaluation of the
dynamic system has to be performed in sequential order over the time horizon,
the term direct simultaneous methods was coined for DMS and collocation. We
will come back to this similarity in Chapter 3.

1.2.1 Bock’s Direct Multiple Shooting method

Multiple Shooting has its origin in the solution of Boundary Value Problems
(cf. [MRZ62, Osb69, Bul71, SB08]). Bock and Plitt [BP84] adopted these ideas
in a direct method (originally for the solution of optimal control problems),
the Direct Multiple Shooting (DMS) method. Some extensions of the original
idea and further details can be found in [Boc87, Lei99, LBS+03, Alb10a]. We
largely follow similar presentations of the DMS method that can be found in
[Lei95, Lei99, Die02, Sag05, Kir11].

Solving (DOP) with a DMS approach we first choose N + 1 fixed control
discretization points (the so-called multiple shooting grid)

t0 < t1 < . . . < tN := tf ,

which define a partitioning of the time horizon

T =
N−1⋃
·

k=0
Tk,

into N (not necessarily need to be equidistant) shooting intervals Tk := [tk, tk+1],
or, more generally, discrete time stages. We denote the induced stage index set
by S := {0, 1, . . . , N}, and the induced interval index set by SN := S\{N}.

Next, the control functions u ∈ U are approximated on each interval k ∈ SN
in a suitably chosen finite dimensional space Vk ∼= Rnqk spanned by nqk basis
functions νk,j : Tk → Rnu , j ∈ {1, . . . , nqk}, such that

u(t) ≈ νk(t; qk) :=
nqk⊕
j=1

(
(qk)j � νk,j

)
∀ t ∈ Tk.

A common choice for νk are vectors of polynomials [LBBS03, Kir11]. For
notational simplicity we assume, w.l.o.g., monomials of degree zero as basis
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functions throughout this thesis, i.e., nqk = nu, ∀ k ∈ SN and

u(t) ≈ qk ∀ t ∈ Tk, k ∈ SN ,

if not explicitly stated otherwise. In the domain of control engineering, this
is also known as zero-order hold. Note that in particular any control function
approximation by polynomials of higher degree can be hidden in the state vector
by a state augmentation analogously to Remark 1.6.

The shooting grid induces a natural separation of the system dynamics into N
independent Initial value problems (IVPs), each given by

x(tk) = sk ; ẋ(t) = f(t,x(t), qk) ∀ t ∈ Tk (1.4)

for k ∈ SN . Here, we introduce the additional shooting node variables sk ∈
Rnx , ∀ k ∈ S (the node variable sN is not an initial condition of an IVP, but
only used to check terminal costs and constraints in the NLP formulation)
and we assume that time-constant parameters are hidden in the state vector
for notational convenience. Keep in mind that by Assumption 1.2 the state
trajectory x(t; sk, qk) is uniquely determined by sk and qk on each interval
Tk, k ∈ SN .

The control discretization together with the state trajectory separation are the
two key ingredients of Bock’s multiple shooting method. Substituting both
parameterizations into (DOP) renders (DOP1) and (DOP2) dependent on only
a finite number of optimization variables. For consistency of the transformation
we still need to remove the unphysical degrees of freedom sk, k ∈ SN by
introducing the continuity constraints (also known as matching conditions)

sk+1 = x(tk+1; sk, qk) ∀ k ∈ SN ,

which ensure continuity of the state trajectory.

To complete the transition from Problem (DOP) to a finite-dimensional NLP
we additionally relax the path constraints (DOP3) to only be enforced on a
finite grid. For notational simplicity, we choose, without loss of generality, this
grid identical to the shooting grid, i.e., we demand

0 ≤ d(tk, sk, qk) ∀ k ∈ S

instead of (DOP3); we emphasize, however, that in principle the choice of path
constraint discretization points is independent from the control discretization
grid. We note that, theoretically, this path constraint relaxation does permit
arbitrarily large violations of (DOP3) on the strict interior of the intervals
Tk, k ∈ SN ; for a sufficiently fine shooting grid however, this problem is
virtually irrelevant in practice. Some interesting concepts on how to inhibit
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violations of the infinite dimensional path constraints in a DMS setting can be
found in [Pot06, PBS09].

Altogether, the above steps of Bock’s multiple shooting procedure lead to the
following (finite-dimensional) NLP formulation:

min
s,q

∑
k∈S

`(sk, qk) (MS-NLP1)

s.t. sk+1 = xk(tk+1; sk, qk) ∀ k ∈ SN (MS-NLP2)

0 ≥ d(tk, sk, qk) ∀ k ∈ S (MS-NLP3)

0 = rk(sk, qk) ∀ k ∈ S. (MS-NLP4)

Note that, as for the discretized path constraints, we here assumed that J ⊆ S,
again for notational simplicity. While mathematically the transfer to the
more general formulation is straightforward by simply replacing sk through
xk(ti; sk, qk) in Equation (MS-NLP4) for ti ∈ Tk, where i ∈ J , the efficient
computational treatment requires special numerical integration routines with
support for continuous output (or related features). For details of these methods
we kindly refer the reader to [Alb10a, QGD13] for complementary information.

In Formulation (MS-NLP) we introduced the discretized performance indices
` : Rnx × Rnu × Rnp → R, whose evaluation, on each stage k ∈ SN (i.e.,
each except for the last), may depend on the solution of an initial value
problem (which, in turn, is fully determined by sk, qk, though). The discretized
stage performance indices ` can most efficiently be evaluated alongside the
evaluation of the state trajectory IVPs (1.4), cf. [Lei95, Lei99]. Along the time
horizon, these evaluations are fully independent and thus can be performed
in perfect concurrency on up to N computational threads. Note however
that the practically observed speedup largely depends on the chosen numerical
integration routine. While the integration routines used classically in the domain
of optimal control are so-called adaptive integrators (cf., e.g., [Lei95, Lei99,
DLS01, PLCS06, HF11, Alb10a, HFD11a, Bei12]), that have a very much data-
dependent workload and thus may, in principle, lead to a parallel efficiency as
bad as 1

N , recently so-called fixed-stepsize integrators, that have a predetermined
workload and thus allow for a theoretical worst-case parallel efficiency of 1 if the
mulitple shooting grid is chosen suitably, have gained significant attention in
the area of real-time dynamic optimization, cf. [HFD11b, FHGD11b, FKV+12,
QVD12, VLH+12, QGD13]. These two classes of methods obviously lead to
very different properties of the computed approximations to the exact solutions
of IVPs (1.4). In the context of real-time control and estimation, the higher
computational efficiency of fixed-stepsize methods may outweigh the (principally
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Figure 1.2: Visualization of unconverged (left) and converged (right) state and
control variables of a direct multiple shooting method. Inspired by [Kir11].

possible) higher precision of adaptive methods in terms of control/estimation
performance for practical purposes. A rigorous comparison between these two
classes is beyond the scope of this thesis, though, if possible at all.

The NLP variables of the multiple shooting reformulation are visualized in
Figure 1.2. Particularly note the distinctive characteristic of DMS that the state
trajectory over the time horizon T is, in general, not continuous for infeasible
(e.g., unconverged) NLP variable configurations.

For future reference, we introduce the shorthand notation w ∈ Rn, where
n = N · (nx + nu) + nx in this context, to summarize all optimization variables
of (MS-NLP). In doing so, we assume the ordering

w = (s0, q0, s1, · · · , qN−1, sN ) .

Concluding this short presentation of DMS let us note that, while the
introduction of the additional shooting node variables may at first seem a
steep price to pay for better NLP convergence properties, (MS-NLP) has very
beneficial sparsity structures. The exploitation of these sparsity structures is
absolutely essential for efficient numerical methods, and at the core of this
thesis. We give details in Chapters 3 and 4.
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1.3 A Primer in Nonlinear Programming Theory

For a general discussion of properties of and solution methods for Problem
(MS-NLP), we summarize it in the generic standard form

min
w∈Rn

f(w) (1.6a)

s.t. g(w) = 0 (1.6b)

h(w) ≤ 0, (1.6c)

where f : Rn → R, g : Rn → Rneq , and h : Rn → Rnieq . We assume that g
and h are indexed by distinct index sets E ≡ {1, . . . , neq} and I ≡ {1, . . . , nieq},
respectively.

In consequence of Assumptions 1.3 and 1.18 we also assume twice continuous
differentiability of f , g, and h.

Definition 1.19 (Convex problem) Under the additional assumptions that
f : Rn → R and h : Rn → Rnieq are convex, and that g : Rn → Rneq is affine,
we call (1.6) a convex problem. y

We are interested in characterizing well-known properties of the — not necessarily
convex — NLP (1.6) throughout this section. For this purpose we follow
[NW06, Kir11, Pot11a] in our presentation. We begin with some elementary
definitions:

Definition 1.20 (Feasible point) A vector w̄ ∈ Rn is called feasible, iff it
holds

g(w̄) = 0 ∧ h(w̄) ≤ 0. y

We call (1.6) feasible if a feasible point exists.

Definition 1.21 (Feasible set) The set consisting of all feasible points is
called feasible set and is denoted by

F := {w | g(w) = 0, h(w) ≤ 0}. y

Definition 1.22 (Global Optimum) A vector w∗ ∈ F is called global
solution (or global optimum), iff

f(w∗) ≤ f(w) ∀ w ∈ F . y
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Definition 1.23 (Local Optimimum) A vector w∗ ∈ F is called local
solution (or local optimum), iff there exists an open ball of radius ε around w∗,
denoted by Bε(w∗) ⊂ Rn, with

f(w∗) ≤ f(w) ∀ w ∈ F ∩Bε(w∗). y

Remark 1.24 We note that finding a global solution to (1.6) is, in general,
significantly more challenging than finding a local one (cf., e.g., [FAC+05]). In
the scope of this thesis, we merely focus on computational methods for obtaining
local solutions for two imperative reasons:

1. Real-time global dynamic optimization simply is computationally still
intractable, even for (non-trivial real-world) small-scale systems.

2. For non-pathetic (i.e., well-posed, realistic) dynamic systems (and problem
formulations), it seems reasonable to assume a one-to-one correspondence
of desirable local solutions from one sampling time to the next, as well as
a proximity of these solutions to one another in the space of optimization
variables, given that the sampling rate for re-optimization is sufficiently
high. The initialization techniques discussed in Section 2.3.1 then typically
infer convergence of the here-considered local methods to the corresponding
local solutions. In practical situations, an initialization in a global optimum
is therefore most often sufficient for having one of the considered local
methods actually “follow” a global optimum.

Definition 1.25 (Active constraint) A constraint hi : Rn → R, i ∈ I is
called active in a feasible point w̄ ∈ F , iff

hi(w̄) = 0.

Consequently, all equality constraints gi : Rn → R, i ∈ E are active in any
feasible point w̄ ∈ F . y

Definition 1.26 (Active Set) The set of all active constraints at a feasible
point w̄ ∈ F , the so called active set, is denoted by4

A(w̄) := E ∪ {i | hi(w̄) = 0} ⊆ E ∪ I. y

Definition 1.27 (Linear independence constraint qualification) A fea-
sible vector w̄ ∈ F is said to fulfill the linear independence constraint
qualification (LICQ), if the gradients ∇gi(w̄), i ∈ E and the gradients ∇hi(w̄)
of all active inequality constraints i ∈ I ∩ A(w̄) are linearly independent. y

4Recall that we assumed E and I to be two disjoint index sets.
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Remark 1.28 LICQ is a rather strong constraint qualification, but convenient
to be used for our purposes. For weaker constraint qualifications and comparisons
we refer to the pertinent literature, e.g., [NW06].
Definition 1.29 (Lagrangian function, Lagrange multipliers) For NLP
(1.6), the Lagrangian function is defined as

L(w,λ,µ) = f(w) + λ>g(w) + µ>h(w).
The vectors λ ∈ Rneq and µ ∈ Rnieq are referred to as Lagrange multipliers or
dual variables, and can be interpreted as shadow prices, see [NW06]. y

Remark 1.30 Contrasting the term of dual variables, w are often also referred
to as primal variables.
Definition 1.31 (Dual problem) The problem

max
λ∈Rneq ,
µ∈Rnieq

inf
w∈Rn

L(w,λ,µ) (1.7a)

s.t. µ ≥ 0 (1.7b)
is called the dual problem of (1.6). Contrasting this, (1.6) is called the primal
problem. y

Theorem 1.32 (Concavity of the dual function) The dual function
(λ,µ)→ inf

w∈Rn
L(w,λ,µ)

is concave.
Proof See [NW06]. �

Theorem 1.33 (Weak duality) For any w̄ ∈ Rn feasible, λ̄ ∈ Rneq , and
0 ≤ µ̄ ∈ Rnieq we have

inf
w∈Rn

L(w, λ̄, µ̄) ≤ f(w̄).

Proof See [NW06]. �

Definition 1.34 (Strong duality) If
inf
w∈Rn

L(w, λ̄, µ̄) = f(w̄)

we say that strong duality holds. y

The motivation for formulating dual problems is mainly to obtain an alternative
problem formulation that is easier to solve under some circumstances. In fact,
the method we present in Chapter 4 is based on this motivation. In general, the
dual problem is particularly useful for convex primal problems, where typically
strong duality holds, cf. Section 1.3.1.
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1.3.1 Finite-dimensional optimality conditions

We have the following necessary first-order characterization of locally optimal
points:

Theorem 1.35 (Karush-Kuhn-Tucker (KKT) Conditions) Let w∗ ∈
Rn be a local solution to (1.6) that fulfills the LICQ. Then there exist Lagrange
multipliers λ∗ ∈ Rneq and µ∗ ∈ Rnieq such that it holds:

∇wL(w∗,λ∗,µ∗) = 0 (dual feasibility)

g(w∗) = 0

h(w∗) ≤ 0

}
(primal feasibility)

µ∗ ≥ 0

µ∗>h(w∗) = 0

 (complementarity)

Proof See [NW06]. �

Definition 1.36 (KKT point) A triple (w∗,λ∗,µ∗) in the sense of Theorem
1.35 is called KKT point or primal-dual solution of (1.6). y

Definition 1.37 (Weakly active constraint) Let (w∗,λ∗,µ∗) be a KKT
point of (1.6). If for an index i ∈ I it holds µi = 0 while the corresponding
constraints satisfies hi(w∗) = 0, we say that hi is weakly active. If alternatively
µi > 0, we say that hi is binding or strictly active. y

Definition 1.38 (Strict complementarity) Let (w∗,λ∗,µ∗) be a KKT
point of (1.6). If all active constraints are binding, i.e., if µi > 0 for all
i ∈ I ∩ A(w∗), we say that strict complementarity holds. y

Theorem 1.39 (Uniqueness of Lagrange Multipliers) Let (w∗,λ∗,µ∗)
be a KKT point of (1.6). If strict complementarity and LICQ hold, then the
dual variables (λ∗,µ∗) are unique.

Proof See [Bie10]. �

Theorem 1.35 only characterizes critical points. Second derivative information
allows us to further filter out undesirable candidates for local optimality (saddle
points, cf. [NW06]) and eventually can be used to state sufficient requirements
to a local solution. We have:
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Definition 1.40 (Reduced Hessian) Let (w,λ,µ) ∈ Rn×Rneq×Rnieq , and
let nact denote the number of constraints of (1.6) which are active at w. Let
Z(w) ∈ Rn×(n−nact) be a basis matrix for the nullspace of the active constraints
of (1.6) linearized at w. By reduced Hessian (or projected Hessian), we refer to
the projection of the Hessian of the Lagrangian onto the space of free variables,
formally defined by

HP(w,λ,µ) = Z(w)>∇2
wwL(w,λ,µ)Z(w). y

Remark 1.41 If LICQ holds atw, a nullspace basis matrix Z(w) as introduced
in Definition 1.40 can be constructed as

Z(w) :=
[
−B−1N

I

]
by partitioning the Jacobian matrix of active constraint rows in w, denoted by
Dact =:

[
B N

]
∈ Rnact×nz , into an invertible matrix B ∈ Rnact×nact (w.l.o.g.

the first nact columns by reordering) and a nact × (nz − nact) matrix N . We
refer to [GM78, NW06] for more details.

Theorem 1.42 (Second-order necessary optimality conditions) Let
(w∗,λ∗,µ∗) be a KKT point of (1.6) that satisfies the LICQ. Then the Hessian
of the Lagrangian is positive semidefinite on the nullspace of the strictly active
constraints, i.e.,

d>∇2
wwL(w∗,λ∗,µ∗)d ≥ 0 ∀ d ∈ {d ∈ Rn | Z(w∗)>d = 0}

Proof See [NW06]. �

Theorem 1.43 (Second-order sufficient optimality conditions) Let
(w∗,λ∗,µ∗) be a KKT point of (1.6). If the Hessian of the Lagrangian is
strictly positive definite on the nullspace of the strictly active constraints, i.e., if

d>∇2
wwL(w∗,λ∗,µ∗)d > 0 ∀ d ∈ {d ∈ Rn | Z(w∗)>d = 0} \ {0},

then w∗ is a local minimum of (1.6).

Proof See [NW06]. �

Remark 1.44 From Theorems 1.42 and 1.43 we can conclude that for a convex
NLP (1.6) every local minimizer is also a global minimizer. If the reduced
Hessian is even strictly positive definite, there exists a unique KKT point,
which is the unique global minimizer. Formal proofs can be found, e.g., in
[BV04, NW06]).
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In the convex case, we have the following useful relationships between the primal
and the dual problem.

Theorem 1.45 Let (1.6) be convex, and let (w∗,λ∗,µ∗) be a (not necessarily
unique) KKT point of (1.6). Then (λ∗,µ∗) solves the dual problem (1.7).

Proof See [NW06]. �

Theorem 1.46 Let (1.6) be convex, and let w∗ be a solution of (1.6) at which
LICQ holds. Let further be (λ̂, µ̂) a solution of the dual problem (1.7), and let
ŵ such that inf

w∈Rn
L(w, λ̂, µ̂) is attained at ŵ.

If the reduced Hessian HP(w, λ̂, µ̂) is strictly positive definite in (λ̂, µ̂) for all
w (e.g., if f is strictly convex), then ŵ = w∗ and strong duality holds and
equality of primal and dual objective function value is attained at (w∗, λ̂, µ̂).

Proof See [NW06]. �

1.4 Selected Methods for Nonlinear Programming

Nonlinear Optimization is a broad field that has sparked many researchers, who
have subsequently developed various concepts for solving (1.6) in one variant or
another. Again, we only briefly cover the algorithmic classes which are relevant
for this thesis; for a broader picture we kindly refer the interested reader to
[NW06] and the references therein.

1.4.1 Interior-point methods

Interior-point or Barrier methods are among the most popular classes of NLP
algorithms. The general idea is to treat the combinatorial complexity introduced
by the inequality constraints (1.6c) through smoothening and to obtain iterates
that remain in the strict interior of the feasible region. We only prototypically
state the concept of a primal-dual interior-point method here, therein following
[NW06]; a more comprehensive overview can, for example, be found in [Wri97].

Primal-dual methods operate by applying Newton’s method to a parametric
system of nonlinear equations, which originates in the KKT conditions of
(1.6) stated in Theorem 1.35. Introducing slack variables s ∈ Rnieq , the KKT
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conditions are restated as

∇wL(w,λ,µ) = 0 (1.8a)

g(w) = 0 (1.8b)

h(w) = −s (1.8c)

µ>s = 0 (1.8d)

µ ≥ 0 (1.8e)

s ≥ 0 (1.8f)

and, introducing the barrier parameter τ > 0, subsequently weakened5 to the
following system of equations:

∇wL(w,λ,µ) = 0 (1.9a)

g(w) = 0 (1.9b)

h(w) + s = 0 (1.9c)

µ>s = τ. (1.9d)

Primal-dual methods proceed by repeatedly solving approximations to system
(1.9) for a sequence of barrier parameters τ → 0. More precisely, stating from
an initial guess (w0,λ0,µ0, s0) that satisfies (µ0, s0) > 0 (component-wise),
we iterate

(wk+1,λk+1,µk+1, sk+1) := (wk,λk,µk, sk) + αk(∆wk,∆λk,∆µk,∆sk),

where (∆wk,∆λk,∆µk,∆sk) are solutions to the linear system of equations
Hk ∇g(wk) ∇h(wk) 0
∇g(wk) 0 0 0
∇h(wk) 0 0 I

0 0 Sk Mk




∆wk
∆λk
∆µk
∆sk

 =


−∇wL(wk,λk,µk)

−g(wk)
−h(wk)− sk
−SkMke+ τke

 .
Here, Hk ≈∇2

wwL(wk,λk,µk) is a suitable approximation to the Hessian of
the Lagrangian that is positive definite on the nullspace of the constraint matrix[

∇g(wk) 0
∇h(wk) I

]
,

5Precisely speaking, (1.9) only is a true relaxation of (1.8) for τ = 0.
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while Sk = diag(sk1 , . . . , sknieq
),Mk = diag(µk1 , . . . , µknieq

), and e = (1, . . . , 1) ∈
Rnieq .

Suitable initialization and choice of step sizes αk ∈ (0, 1] ensures that the
thus generated homotopy of iterates {(wk,λk,µk, sk)}k=1,2,... always satisfies
(µk, sk) > 0, i.e., always remains inside the feasible region and eventually
converges to a KKT point. We refer to [NW06] for an overview of specific
criteria.

1.4.2 Augmented Lagrangian methods

Augmented Lagrangian methods in their original form are not among the most
popular methods for nonlinear dynamic optimization problems of the here
considered kind. Some aspects of and ideas from augmented Lagrangian methods
have however made it into algorithms that are relevant for dynamic optimization;
in particular, the dual-decomposition based NLP algorithm presented in Section
5.2 exhibits flavors of an augmented Lagrangian method, which is why we
include a brief general introduction to this class of methods here, loosely
following [NW06]. We also refer to [NW06] and the references therein for a
more complete picture and further details.

For an introduction of the central idea of augmented Lagrangian methods, it is
helpful to consider the rewritten NLP formulation

min
w∈Rn

f(w) (1.10a)

s.t. gj(w) = 0 ∀ j ∈ E (1.10b)

w ≤ 0. (1.10c)

NLP (1.6) can be rewritten in the form of (1.10) by introducing slack variables,
similar to the reformulation in Section 1.4.1. The augmented Lagrangian
function LA(w,λ; ρ) for a positive penalty weight ρ > 0 is a combination of the
objective function, the linear Lagrangian penalty on the equality constraints, as
well as a quadratic penalty term of these constraints. We have

LA(w,λ; ρ) := f(w) + λ>g(w) + ρ

2
∑
j∈E

g2
j (w).

A basic augmented Lagrangian method solves (1.10) by iteratively minimizing
the augmented Lagrangian function (approximately) in w, subject to the bound
constraints (1.10c), for repeatedly updated guesses of multipliers λi and penalty
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weights ρi. The i-th subproblem therefore reads

min
w∈Rn

LA(w,λi; ρi) (1.11a)

s.t. w ≤ 0. (1.11b)

Due to the box-structure of the constraints, approximate solutions to (1.11) can
be computed rather efficiently, for example by gradient projection methods (cf.
[NW06]).

Denoting the approximate primal-dual minimizer of (1.11) by
(
wi,µi

)
, we can

see from the KKT optimality conditions of (1.11), that

0 ≈∇wLA(wi,λi; ρi) + µi

=∇f(wi) +
∑
j∈E

(
λij + ρi gj(wi)

)
∇gj(wi) + µi.

Comparing this to the KKT conditions for (1.10) gives rise to the multiplier
update rule

λi+1 := λi + ρi g(wi),
so as to have λi+1 ≈ λ∗, where λ∗ are the optimal dual variables associated
with the equality constraints of (1.10).

It can be established (under the typical regularity assumptions for nonlinear
programming) that a minimizer w∗ of (1.10) also solves (1.11) exactly if the
exact multipliers λ∗ are used and ρ is large enough; furthermore, it can be
shown that NLP solution and augmented Lagrangian subproblem solution
are close to one another already when either ρ is large enough or the used
multiplier vector λ is a sufficiently accurate guess. In contrast to a pure
quadratic penalty formulation, for example, augmented Lagrangian methods
ensure stricter satisfaction of constraints, and avoid ill-conditioning of the
subproblems at more or less the same computational expesenses, cf. [NW06].

1.4.3 Sequential quadratic programming

Somewhat similar to augmented Lagrangian methods, and in contrast to interior-
point methods, so called sequential quadratic programming (SQP) methods
(sometimes also referred to as successive quadratic programming strategies) pass
on the combinatorial complexity of determining the correct active set to a
simpler subproblem rather than smoothening it out. This simpler problem
typically is a convex quadratic programming problem (QP), but there are also
related methods that employ linear programming subproblems (sequential linear
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programming, SLP), or more general convex subproblems (sequential convex
programming, SCP). Still, QP subproblems have some very favorable properties
and characteristics, and SQP remains one of the most successful methods for
nonlinear programming to date. With respect to the repeated solution of similar
NLPs in the context of real-time optimization, some of these favorable features
have an even stronger effect. Due to this relevance, we focus on SQP in this
introduction. Complementary information and further references can be found
in [NW06], as well as in a recent PhD thesis on SCP, [TD12]. Our presentation
of SQP follows [NW06] and [Kir11].

Newton- and Newton-type methods rank among the highest performing
algorithms for unconstrained nonlinear optimization. SQP is motivated by
the observation that for a fixed active set, Newton iterations on the KKT
optimality conditions can be interpreted as repeatedly solving an equality-
constrained QP, whose data corresponds to a local quadratic approximation of
the NLP Lagrangian in the objective subject to a linearization of the active
constraints in the current primal-dual NLP iterate.

Passing on the active-/inactiveness decision in the constraints, SQP repeatedly
solves the following convex QP

min
∆wk∈Rn

∆wk>Hk∆wk +∇f(wk)>∆wk (1.12a)

s.t. g(wk) +∇g(wk)∆wk = 0 | λkQP (1.12b)

h(wk) +∇h(wk)∆wk ≤ 0 | µkQP , (1.12c)

updating the NLP primal-dual iterates by

wk+1 = wk + αk∆wk (1.13a)

λk+1 = λk + αk(λkQP − λ
k) (1.13b)

µk+1 = µk + αk(µkQP − µ
k) . (1.13c)

Here, Hk ≈ ∇2
wwL(wk,λk,µk) is again a suitable approximation to the

Hessian of the Lagrangian which is positive definite on the nullspace of the
equality constraints ∇gi(wk), i ∈ E and the active inequality constraints
∇hi(wk), i ∈ I ∩ A(wk). Regarding the QP Lagrangian it is easy to see that
by using ∇f(wk) in lieu of ∇wL(wk,λk,µk) as the linear QP objective term,
the QP multipliers λkQP and µkQP approximate their NLP counterparts λk+1

and µk+1, instead of just their increments, which, among other advantages,
avoids the necessity of a dual initial guess6, cf. [NW06]. It is easy to verify that

6In the first iteration, we can just use λ0 = λ1
QP and µ0 = µ1

QP.
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the Lagrangian of QP (1.12) is identical with the Lagrangian of NLP (1.6) up
to a second-order expansion for an exact Hessian Hk = ∇2

wwL(wk,λk,µk),
which is why regular minima of NLP (1.6) qualify as QP solutions for (1.12).

The step size αk ∈ (0, 1] damps the Newton-type step and, if chosen
appropriately, ensures globalized convergence to a KKT point under certain
conditions, regardless of the initial guess. In general, line search, trust-region,
or filter methods are commonly used to determine a desirable αk. Depending on
the method, the precise formulation of the subproblems (1.12) and the update
rules (1.13) may vary slightly (they are formulated from a line search viewpoint
here), but the big picture can be cast into the above form. Global convergence
proofs can be established for a large variety of in-detail step size rules under
some additional, typically rather mild assumptions. For an overview [Fle87]
and [NW06] may serve as a starting point.

1.4.4 Hessian approximations and convergence results

More than global convergence, local convergence results are of particular interest
in the context of real-time dynamic optimization, since one can, in general,
assume a good initial guess in the respective algorithm’s iterates which is close
to a desirable KKT point. A good indicator for the performance of the above
optimization algorithms, which belong the the class of iterative methods, is
given by the rate of convergence, which characterizes the progress made by an
algorithm towards a solution in each iteration. We have the following important
categories, where ‖·‖ denotes an appropriate norm. Classifications of convergence
rates using weaker criteria can be found, for example, in [NW06, OR70].
Definition 1.47 (q-sublinear convergence rate) Let {wk} ⊂ Rn with
wk → w∗ for k →∞. We say {wk} converges (q-)sublinearly if

‖wk+1 −w∗‖
‖wk −w∗‖

≤ 1 ∀ k ≥ k̄ ∈ N y

Definition 1.48 (q-linear convergence rate) Let {wk} ⊂ Rn with wk →
w∗ for k →∞. We say {wk} converges (q-)linearly if there is an r ∈ (0, 1) such
that

‖wk+1 −w∗‖
‖wk −w∗‖

≤ r ∀ k ≥ k̄ ∈ N y

Definition 1.49 (q-superlinear convergence rate) Let {wk} ⊂ Rn with
wk → w∗ for k →∞. We say {wk} converges (q-)superlinearly if

lim
k→∞

‖wk+1 −w∗‖
‖wk −w∗‖

= 0 y
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Definition 1.50 (q-quadratic convergence rate) Let {wk} ⊂ Rn with
wk → w∗ for k → ∞. We say {wk} converges (q-)quadratically if there
is a K ∈ (0,∞) such that

‖wk+1 −w∗‖
‖wk −w∗‖2

≤ K ∀ k ≥ k̄ ∈ N y

The convergence rate of the presented algorithms depends strongly on the chosen
approximation Hk ≈ ∇2

wwL(wk,λk,µk) to the Hessian of the Lagrangian.
In general, positive definiteness of Hk on the nullspace of the active (in-)
equality constraints is essentially sufficient to guarantee convergence inside a
small neighborhood of a KKT point. A variety of choices for Hk therefore
exists, including the identity matrix, approximations from the Broyden class
that includes the famous BFGS update Formula [Bro70, Fle70, Gol70, Sha70],
and the exact Hessian of the Lagrangian. Useful references to obtain an
overview can be found in classical textbooks on nonlinear optimization including
[Fle87, NW06, Bie10].

We present a rather abstract local convergence result in the following that
can be instantiated to a variety of Newton-type methods. In analyzing local
convergence rates of SQP methods it is common practice to assume that the
correct active set at a desirable solution w∗ is already identified [Rob74, NW06].
In a sufficiently small neighborhood of a local solution w∗, the following theorem
for root-finding problems is then applicable in a straight-forward manner to
optimization algorithms that follow the generic update rule

wk+1 = wk + ∆wk = wk −M(wk) q(wk). (1.14)

Here, wk ∈ Rm denote the primal-dual iterates of the respective algorithm, while
M : D → Rm×m and q : D → Rm for D ⊆ Rm denote the inverse Newton-like
matrix and residual vector7. Details can be found in [Boc87, Lei99, Die02].

Theorem 1.51 (Local contraction theorem) Let the sequence
{wk}k=1,2,... ⊂ Rm be generated by (1.14) and let M be such that

• a finite “nonlinearity bound” ω <∞ exists, satisfying

∥∥M(wk+1)
(
∇q(wk + t(wk+1 −wk))−∇q(wk)

) (
wk −wk+1)∥∥

≤ ω t
∥∥wk+1 −wk

∥∥2

for all t ∈ [0, 1] and (wk,wk+1) ∈ D ×D, and
7For illustration, just think of Newton’s method for unconstrained minimization, where

M(wk) = αk
(
∇2f(wk)

)−1
and q(wk) = ∇f(wk).
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• an “incompatibility constant” κ < 1 exists with∥∥M(wk+1)
(
I−∇q(wk)M(wk)

)
q(wk)

∥∥ ≤ κ∥∥wk+1 −wk
∥∥ .

Then, if w0 ∈ D such that the closed ball Bε(w0) is contained in D for ε :=
‖w1−w0‖/(1− c0), where we define ck := (κ+ ω

2 ‖w
k+1−wk‖), we have that

all wk ∈ Bε(w0) and wk → w∗ for a w∗ ∈ Bε(w0) with

‖wk+2 −wk+1‖ ≤ ck · ‖wk+1 −wk‖

and

‖wk+1 −w∗‖ ≤ ck

1− ck · ‖w
k+1 −wk‖. (1.15)

We further have
M(w∗) q(w∗) = 0

in the solution, and if M is additionally continuous and nonsingular, we have

q(w∗) = 0.

Proof See, e.g., [Boc87] or [Pot11a]. �

For our purposes, three categories of approximations Hk are of particular
interest. The first class are exact Hessian SQP methods, where Hk =
∇2
wwL(wk,λk,µk). If (w∗,λ∗,µ∗) is a KKT point that satisfies the LICQ

and the second-order sufficient optimality conditions of Theorem 1.43, then in
terms of Theorem 1.51 we have M(wk) =

(
∇q(wk)

)−1 in a sufficiently small
neighborhood of the KKT point, and we can choose κ = 0. Then (1.15) implies

‖wk+1 −w∗‖ ≤ ck

1− ck ·
(
‖wk+1 −w∗‖+ ‖wk −w∗‖

)
⇔ (1− 2 ck) · ‖wk+1 −w∗‖ ≤ ck · ‖wk −w∗‖. (1.16)

Plugging in the definition of ck and using the triangle inequality once more we
obtain(

1− ω ‖wk+1 −wk‖
)
‖wk+1 −w∗‖

≤ ω

2
(
‖wk+1 −w∗‖+ ‖wk −w∗‖

)
‖wk −w∗‖

⇔
(

1− ω ‖wk+1 −wk‖ − ω

2 ‖w
k −w∗‖

)
‖wk+1 −w∗‖ ≤ ω

2 ‖w
k −w∗‖2 .
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By Theorem 1.51 it holds
(
1− ω ‖wk+1 −wk‖ − ω

2 ‖w
k −w∗‖

)
> 0 for a

sufficiently large k, which means eventual quadratic convergence. An extended
proof under slightly more general assumptions can be found in [Fle87].

The second category is formed by the so-called Gauss-Newton Hessian
approximation, which is a particularly popular choice in the contexts of
estimation and real-time dynamic optimization. The resulting SQP method is
sometimes also referred to as Generalized Gauss-Newton Method [Boc83]. Here,
we assume that the NLP objective (1.6a) has the partially separable quadratic
structure

f(wk) = 1
2‖r(wk)‖22 ,

where r : Rn → Rnr . The Hessian of the Lagrangian is then given by

∇2
wwL(wk,λk,µk) =∇r(wk)∇r(wk)> +

nr∑
i=1

ri(wk)∇2ri(wk)

+
neq∑
i=1

λki∇2gi(wk) +
nieq∑
i=1

µki∇2hi(wk).

Assuming that r(·) will be small8 close to a desirable solution w∗ the Gauss-
Newton Hessian approximation takes

Hk =∇r(wk)∇r(wk)>.

One can indeed show that∥∥∇2
wwL(w∗,λ∗,µ∗)−∇r(w∗)∇r(w∗)>

∥∥ = O(‖r(w∗)‖) ,

cf. [Die02]. If r(w∗) = 0 we therefore can conclude a superlinear convergence
rate from (1.16) using Theorem 1.51, since we can choose κ→ 0 with increasing
k. In the general case of r(w∗) 6= 0 (but still small) one obtains that the
Gauss-Newton method converges only at a linear rate, cf. [Boc87]; however, the
practically observed rate is typically still fast. In the context of estimation, it
can further be shown that in the presence of multiple local minima a (full-step)
SQP method with a Gauss-Newton Hessian approximation is only attracted by
those minima which are stable under small data perturbations and therefore
more desirable and in particular meaningful from a statistical point of view, cf.
[BKS07].

Third, we briefly cover gradient methods with Hk = γk · I for γk ∈ R. In
this case, the Hessian compatibility is generally poor and typically prohibits

8Using the dual feasibility conditions one can show that also λ∗ and µ∗ are small in this
case, cf. [Die02].



40 NONLINEAR DYNAMIC OPTIMIZATION

Figure 1.3: Exact Hessian, Gauss-Newton-Hessian, and identity Hessian SQP
Method (from left to right) with a Dogleg trust-region globalization strategy on
the Rosenbrock problem. Green solid lines visualize the Newton path and red
dashed circles indicate the trust radius at each iterate. The minimum is found
on the right side of each figure.

vanishing sequences of κ → 0 in Theorem 1.51, which diminishes our hope
for fast local convergence. Indeed, it is well known that the gradient method
converges at a linear rate r, which cannot be bounded away from 1 with
increasing condition number of ∇2

wwL(w∗,λ∗,µ∗), where (w∗,λ∗,µ∗) is a
KKT point. In particular, if (w∗,λ∗,µ∗) does not satisfy the second-order
sufficient optimality conditions of Theorem 1.43, the asymptotic convergence
rate is in general not better than sublinear. We refer to [Nes04] and [NW06]
for details.

While these general results seem dissatisfying, gradient methods are still of
interest for the solution of convex problems in the area of model predictive
control (see also Section 1.5). The simple structure of the Hessian approximation
allows for methods that only require matrix-vector products (but no matrix
inversions) and therefore are particularly easy to implement on embedded
hardware; furthermore, rather tight hard runtime bounds can be established, cf.
[Ric12, PB14].

We include an illustrating example in the following. Figure 1.3 compares
the Newton path of three different SQP methods on the famous Rosenbrock
problem9. All three use the same Dogleg trust region method for globalization
(see [NW06] for details). Circles visualize the trust radius at each iteration,
which can be seen as an indicator for the compatibility between the respective
Hessian approximation and the actual Hessian of the Lagrangian at each iterate.
In particular, we can see from Figure 1.3 that the trust radius stays constant
towards the end of the Newton path while full Newton-type steps are taken,
both for the exact Hessian SQP methods and the Gauss-Newton method. The

9The problem description can be found, for example, in [NW06].
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fact, that the trust radius for the Gauss-Newton method is comparable to the
trust radius of the exact Hessian SQP method indicates the high quality of the
Gauss-Newton approximation for problems with small objective residuals in the
solution. In case of the gradient method, characteristic zigzagging behavior is
observed. In the considered example, the exact Hessian SQP method converged
within 28 iterations to a local solution with a moderate stationarity tolerance
of 10−4, while the Gauss-Newton method took 21 iterations, and the gradient
method took 10286 iterations.

1.4.5 Derivative generation

The algorithms presented throughout this section have in common that they
all require at least first-order derivatives of the NLP functions f , g, and h.
In the context of dynamic optimization problems, these functions depend on
the solution of IVPs. A closed-form representation of first- and second-order
derivatives is then typically impossible or at least computationally intractable
due to exploding size of the expressions involved when automatically generated,
e.g., by computer algebra systems.

Therefore, we typically rely on finite differences or algorithmic differentiation
(AD), which is sometimes also referred to as automatic differentiation, for the
computation of derivative information. The so-called complex-step derivative
approximation essentially falls in the category of AD [NAW98, MSA03].

Using finite differences is arguably the most straightforward way to obtain
derivative information. Therein, a directional derivative ν̇i ∈ Rm,

ν̇i =
∂Φ
∂w

(w) · ẇi , (1.17)

of a function Φ : Rn → Rm evaluated at w in direction ẇi, where i ∈
{1, . . . , p} ⊂ N, is approximated by the forward, backward, or central difference
quotient of the function perturbed in the desired direction. It is a well-known
fact that due to truncation errors on the one side and cancellation errors on the
other side, in general, a precision of not more than half the number of significant
digits (two thirds in the case of central differences) of the respective function
evaluation can be expected for this class of derivatives, cf. [Alb10b].

AD is essentially applicable when a source code representation of the function
by so-called elemental functions, like additions, multiplications, sines, etc., for
which simple closed-form derivative expressions exist, is available. Such functions
are called factorable functions (see [Alb10b] for a precise definition). AD is
essentially based on the chain rule of differentiation and proceeds by traversing
the source code propagating the perturbed elemental functions alongside the
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regular function evaluation. In so-called forward mode, the derivative evaluation
path follows the regular function evaluation path and obtains p directional
derivatives (1.17) of a function at the cost of no more than 1 + 1.5 p times
the cost of a function evaluation [Gri00], thus comparable to the cost of finite
differences. The advantage, however, is that derivatives are accurate up to
machine precision.

In reverse mode AD can be used to compute p so-called adjoint directional
derivatives w̄i ∈ Rn,

w̄i
> = ν̄i

>∂Φ
∂w

(w),

of Φ at w ∈ Rn in adjoint direction ν̄i ∈ Rm for i ∈ {1, . . . , p} at the cost10 of
no more than 1.5 + 2.5p times the cost of an evaluation of Φ [Gri00]. This is
particularly remarkable, since this factor is independent from the dimension
n of the input vector of Φ. We refer to [Gri00, GW08, And13, Alb10b] for an
in-detail reading on derivative generation in general, and AD in particular.

We will revisit the issue of sensitivity generation in the specific context of
dynamic optimization in Section 3.1, where we will also address solution methods
for the underlying IVPs.

1.5 Quadratic and Convex Programming

SQP methods require the solution of a convex quadratic subproblem in each
iteration. Even beyond SQP, QPs form a very important problem class that
appears frequently in real-time optimal control, most notably in the rather
large field of linear model predictive control (MPC) where one assumes linearity
of the state transition mapping, see Section 2.1.2. For this reason we will
consider the specific properties of QPs additionally to the characterizations of
the superordinate class of NLPs in Sections 1.3 and 1.4.

Formally, a QP is given by the standard form

min
z∈Rn

1
2 z
>H z +m>z (1.18a)

s.t. C z = c (1.18b)

Dz ≤ d , (1.18c)
10Here, we only concern ourselves with costs in terms of computation time and note that

AD in reverse mode may have additional, non-negligible memory requirements.
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where H ∈ Rn×n symmetric, m ∈ Rn, C ∈ Rneq×n, c ∈ Rneq , D ∈ Rnieq×n,
and d ∈ Rnieq . We generally assume that a QP is convex, i.e., that H � 0
holds, if not explicitly stated otherwise.

Convex QPs belong to the NLP subclass of so-called Convex Programming
Problems (CPs), which can be described by (1.6) under the additional
assumptions of Definition 1.19. Aside from QPs (at least) two other forms of
CPs are relevant in the context of real-time dynamic optimization.

The first class are so-called quadratically constrained quadratic programming
problems (QCQPs), which extend (1.18) by a set of convex quadratic constraints

z>Qiz + qi>z ≤ 0 ∀ i ∈ {1, . . . ,m} ,

where 0 � Qi ∈ Rn×n symmetric and qi ∈ Rn for all i ∈ {1, . . . ,m}. QCQPs
play a role in some linear MPC applications for example, where they can be
used to efficiently formulate terminal sets, cf., e.g., [BM99, McG00, ZJRM09,
DZZ+12].

The second class are Semidefinite Programming Problems (SDPs), which can,
for example, be used in robust (dynamic) optimization to guarantee worst-case
satisfaction of quadratic constraints over a set of uncertain inputs, cf., e.g.,
[BGFB94, KBM96, Löf03a, Löf03b]. A general form is given through (1.18),
extended by a so-called linear matrix inequality (LMI)

Q0 +
n∑
i=1

ziQi � 0,

where Qi ∈ Rn×n, i ∈ {0, . . . , n} are symmetric. We note that SDPs are the
most general class of CPs considered here, and we have the inclusions that every
QP is also a QCQP (trivial) and that every QCQP is an SDP (via a Schur
complement transformation, cf. [BV04])11.

We do not detail the theoretic properties of these CPs here, but refer to the
pertinent textbooks, e.g., [BV04]. It is sufficient for our purposes to merely
stress that

a) every local solution of a CP is also a global solution (cf. Remark 1.44),
and

b) CPs are generally considered significantly more tractable than (non-convex)
NLPs.

In the following, we introduce major classes of solution algorithms for CPs that
are relevant in the context of real-time dynamic optimization.

11A derivation that SDPs indeed are CPs can also be found in [BV04].
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1.5.1 Interior-point methods

Identically to Section 1.4.1 we can introduce slack variables s ∈ Rnieq to
transform (1.18)12 into an equality constrained problem with non-negativity
requirements on the slack variables s and the inequality multipliers µ ∈ Rnieq .

Just as in the generic nonlinear case, interior-point methods for convex problems
iteratively improve an initial primal-dual guess (z0,λ0,µ0, s0), that satisfies
(µ0, s0) > 0 component-wise, by the update rule

(zk+1,λk+1,µk+1, sk+1) := (zk,λk,µk, sk) + αk(∆zk,∆λk,∆µk,∆sk).

For convex QPs the step directions (∆zk,∆λk,∆µk,∆sk) are computed from
H C> D> 0
C 0 0 0
D 0 0 I
0 0 Sk Mk




∆zk
∆λk
∆µk
∆sk

 =


−rd
−req

−rieq − sk
−SkMke+ τke

 , (1.19)

with the dual and primal residual terms

rd = m+H zk +C>λk +D>µk

req = C zk − c

rieq = Dzk − d .

Here, S, M , and e are as defined in Section 1.4.1. The barrier parameter τk is
gradually driven to zero.

For more general convex Problems, step directions have to be computed from
a perturbed KKT system with H, C, and D contribution updated in each
iteration, as detailed in Section 1.4.1. Note however, that using the exact
Hessian of the CP Lagrangian is feasible in this case due to convexity.

The performance of an interior-point method of course depends crucially on
the applied solution method for the structured linear system and the step
size selections. Detailed insights can be found in [Wri97, NW06] as well as in
[Dom13] regarding the structure-exploiting solution of KKT systems arising in
the context of dynamic optimization.

12We specifically discuss the convex QP case here. It will become clear below that the
generic convex case is directly covered by Section 1.4.1.



QUADRATIC AND CONVEX PROGRAMMING 45

1.5.2 First-order methods

The solution of a KKT system similar to (1.19) by direct linear algebra routines
(possibly after structure-exploiting transformations and reorderings) generally
involves factorizations of the Hessian matrix H or of projections of it. In a
sense, methods requiring the solution of KKT-like systems can therefore be
seen as the analogy of Newton’s method in the unconstrained case and are
consequently often subsumed under the term second-order methods.

In some situations, it may be intractable, too expensive, or for other reasons
undesirable to factorize (or even to compute entirely) the second-order term
H. In analogy to the gradient method in unconstrained optimization one then
seeks to only use first-order information (i.e., gradients, or subgradients) of
the data of the convex problem, obtaining a first-order method. (In-) equality
constraints may be treated in this context by penalty terms, projection of the
computed descent direction onto a feasible set, or by dual decomposition (see
also Chapter 4).

A large variety of first-order methods exist. The major advantages of first-order
methods are that they are typically rather easy to implement, and that rather
tight upper bounds on the required number of iterations to achieve a solution
of a certain accuracy exist for several methods. These methods are, however,
most efficient when only a solution of low or medium accuracy is required, and
when the inequality constraint set is simple (e.g., consisting only of variable
bounds). We refer to [Nes04] for a deeper theoretical analysis, as well as to
[TD12, KCD13, Koz13] for an overview of existing first-order methods that are
relevant in the context of dynamic optimization.

1.5.3 Active-set methods

Our presentation is loosely based on [NW06] and [Fer11]. We adopt a primal
point of view in the following13 and briefly sketch the main concepts. A more
thorough and detailed discussion can be found, for example, in [Fle87, NW06].

The central idea behind active-set methods for quadratic programming is very
similar to the Simplex method for linear programming. A major difference,
however, is that, due to the curvature in the objective function, the optimal
QP solution does not necessarily need to be found in a corner, but may also lie
uniquely within a facet, or even completely in the interior of the feasible region.

13Note that a dual active-set method can, in essence, be identified with a primal active-set
method applied to the dual problem.
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The main procedure nevertheless is — identically to the Simplex method —
to iteratively improve an initial guess of the optimal active set by adding or
dropping individual inequality constraints j ∈ I given by

Dj,· z ≤ dj

in (1.18) until the correct active set is identified. For each fixed so-called working
set14 Wi ⊆ I we solve the associated equality-constrained QP

min
v∈Rn

1
2 v
>Hv +m>v (1.20a)

s.t. Cj,· v = cj ∀ j ∈ E (1.20b)

Dj,· v = dj | µij ∀ j ∈ Wi . (1.20c)

Since (1.20) does not feature any inequality constraints, its primal-dual solution
is directly given as the solution of the KKT system H C> DW

>

C 0 0
DW 0 0

  viλi
µiW

 =

−mc
dW

 . (1.21)

Here, DW and dW summarize the rows and entries of D and d corresponding
to indices in the working set. Conversely, the inequality multipliers µ of the
original problem (1.18) associated with the current subproblem are given by
a vector of all zeros except for those indices from the working set, where
the corresponding entry from µiW applies. The particular structure of (1.21)
can be exploited for an efficient solution. One can distinguish (at least) two
important classes of algorithms by the way (1.21) is solved. The first to be
mentioned here are so-called range-space methods (sometimes also referred to
as Schur-complement methods), where the Schur complement of the system
matrix is formed to the end of only solving a system in the size of the number of
multipliers. Range-space methods are most effective when only few inequality
constraints are in the working set. The second class we introduce here are
so-called null-space methods, which form a basis matrix for the null-space of the
fixed constraints, and use this to project the QP Hessian onto the free variables
in order to determine the step in the primal variables. The null-space basis
matrix may be expensive to form initially, but may be quite effective when the
number of the degrees of freedom of (1.21) is small. More details can be found
in [NW06].

14For notational simplicity we only consider inequality constraints for the working set; all
equality constraints are clearly active in any case.
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Let us return to our high-level presentation of the active-set algorithm. It is
clear that if we had identified the optimal active set, i.e., if Wi ∪ E ≡ A(z∗)15,
the solution vi of subproblem (1.20) would coincide with the optimal solution
of (1.18), z∗.

Assume now that Wi ∪ E 6≡ A(z∗), and let zi ∈ Rn be feasible for (1.18)
and such that (1.20b) and (1.20c) are fulfilled (details on a so-called Phase-I
procedure to obtain such an initial feasible solution can, for example, be found
in [NW06]). If vi 6= zi we can move along the direction vi − zi and set

zi+1 := zi + αi(vi − zi)

for a carefully chosen step-length parameter αi ∈ [0, 1]. Observe that zi+1

satisfies (1.20b) and (1.20c) for any αi. Analogously to the well-known Simplex
method, the step-length αi is chosen such that zi+1 remains feasible with
respect to all constraints of (1.18), i.e., as large as possible until the first
blocking constraint j̄ ∈ I\Wi is reached or αi = 1. If αi < 1 we add the
blocking constraint to the working set, i.e., we set16

Wi+1 :=Wi ∪ {j̄}.

The (primal) active-set method continues adding constraints until eventually an
iteration index i with vi = zi is reached. It can easily be verified that in this
case zi is a KKT point (and therefore the solution of (1.18)) if the inequality
multipliers µij for all constraints j ∈ Wi from the working set are non-negative.
If there is a multiplier associated with a constraint j̄ from the working set with
µi
j̄
< 0, we can simply drop this constraint from the working set, i.e., set

Wi+1 :=Wi\{j̄}

and continue to iterate.

It can be shown that the active-set method sketched here converges under
certain, mild assumptions if (1.18) is strictly convex. Care needs to be taken to
handle degeneracy (i.e., facets or corners defined by a linearly dependent subset
of constraints) and the resulting danger of cycling appropriately. Details can be
found in [Fle87, NW06] and the references therein.

It is crucial to note that, in contrast to interior-point methods for example,
the KKT systems (1.21) to be solved in subsequent iterations of the active-set
method only differ by one row and column (either a constraint is added or

15Recall that inequality constraints index set I and equality constraints index set E are
assumed to be disjoint.

16To be precise, particular care needs to be taken to ensure linear independence of the
constraint gradients in the working set. We refer to [NW06] for details.
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removed). The matrix factorizations required for the solution of theses systems
can therefore be reused and cheaply updated, alongside with the null-space
basis matrix (if a null-space method is used for the solution of the equality-
constrained subproblems); details of the updates are discussed, for example,
in [GMSW84, NW06]. These matrix updates are absolutely essential for the
efficiency and competitiveness of active-set methods.

1.5.4 Parametric active-set methods

Parametric active-set methods for quadratic programming have been proposed
and analyzed in [Bes96, Fer06, FBD08, Fer11, KPBS13, PKBS10]. We follow
[FBD08] in our presentation. The open-source implementation qpOASES
[FBD08] of a particular parametric active-set method, the so-called Online
Active-Set Strategy, is used and referred to occasionally throughout this thesis.

The motivation for parametric QP solvers, or parametric programming in
general, is to solve a sequence of related problems that only differ by some of
their data. In the context of dynamic optimization, such sequences of problems
may arise, for example, in SQP methods or even more so in model predictive
control (MPC) of linear time-invariant (LTI) systems (cf. Section 2.1.2), where
only the initial system state changes. Instead of solving a new problem with the
changed data, the idea of parametric active-set methods like the Online Active-
Set Strategy is to gradually “morph” a QP with known optimal solution (e.g.,
the previously solved QP) to the desired problem, maintaining primal and dual
optimality of the solution. The key observation behind this procedure is that
the primal and dual solution of Problem (1.18) depends piecewise affinely on
changes in the linear objective term coefficient m and the constraint right-hand
sides c and d, a fact that is well-known and heavily exploited, for example, in
the area of so-called explicit MPC, cf. [Zaf90, BMDP02]. Kinks in this solution
homotopy may occur exclusively (and generally do occur) at active-set changes.

To make this brief introduction slightly more formal, let us assume that we
have solved a QP

min
z∈Rn

1
2 z
>H z +m>z (1.22a)

s.t. C z = c (1.22b)

Dz ≤ d , (1.22c)
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i.e., that we have a primal-dual solution (z∗,0,λ∗,0,µ∗,0). With the aim of
finding the (yet unknown) solution (z∗,1,λ∗,1,µ∗,1) of the modified problem

min
z∈Rn

1
2 z
>H z + m̃>z (1.23a)

s.t. C z = c̃ (1.23b)

Dz ≤ d̃ , (1.23c)

we regard the solution homotopy (z∗(τ),λ∗(τ),µ∗(τ)) for a homotopy
parameter τ ∈ [0, 1] alongside the vector term parametrization

m(τ) := m+ τ∆m , where ∆m := m̃−m

c(τ) := c+ τ∆c , where ∆c := c̃− c

d(τ) := d+ τ∆d , where ∆d := d̃− d .

Denoting the constraints which are active in a solution (z∗(τ),λ∗(τ),µ∗(τ)) by
A(τ), we know that in each τ a solution is characterized by the KKT conditions H C> DA(τ)

>

C 0 0
DA(τ) 0 0

  z∗(τ)
λ∗(τ)

µ∗A(τ)(τ)

 =

 −m(τ)
c(τ)

dA(τ)(τ)

 .
Since the active set is constant in a small neighborhood of (z∗,0,λ∗,0,µ∗,0)
(which may actually be of diameter 0 in the degenerate case of weakly active
constraints), we have the local relationship z∗(τ)

λ∗(τ)
µ∗A(τ)(τ)

 =

 z∗,0λ∗,0

µ∗,0A(0

+ τ

 ∆z∗
∆λ∗

∆µ∗A(0)

 ,
where the increments satisfy H C> DA(0)

>

C 0 0
DA(0) 0 0

  ∆z∗(τ)
∆λ∗(τ)

∆µ∗A(0)(τ)

 =

 −∆m
∆c

∆dA(0)

 (1.24)

for all τ up to a certain τmax ≥ 0, which is determined by the first active-set
change. Analogously to regular active-set methods, τmax can be computed as
the point at which either a previously inactive constraint becomes active, or a
previously positive (inequality) multiplier vanishes (indicating the removal of
a constraint from the active set/working set). Just as in a regular active-set
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method, the auxiliary system (1.24) can be solved in a structure-exploiting
fashion by a null-space or a range-space approach and the factorizations can be
updated cheaply. We refer to [Fer11] for details.

With the updated active set, we continue following the solution homotopy until
eventually τ = 1, which means that (1.23) is solved. Details on how to handle
degeneracy in this context can be found in [Fer11].

Regarding the issue of how to find an initial optimal solution, we note that
(0,0,0) is trivially optimal if we start with m = 0, c = 0, d = 0. This starting
point could, in principle, also be used whenever matrix data changes and the
factorizations need to be updated. In [Fer11], however, more sophisticated
approaches to warm-start parametric active-set methods from an initial guess
of the active set or the primal-dual solution are detailed.



Chapter 2

Dynamic Optimization in
Real-time

This chapter introduces dynamic estimation and optimal control problems in
the light of online process surveillance and control, where new measurements
arrive periodically, and state and parameter estimates as well as the applied
control law need to be updated based on these observations. First, the control
theoretic frameworks of model predictive control (MPC) and moving horizon
estimation (MHE) are introduced. At its core, this chapter focuses on algorithmic
developments that are tailored to the online solution of the arising dynamic
optimization problems. Important developments from the last 15 years, such as
the Real-Time Iteration scheme, are put into context, and some new extensions
are presented. A parallelization scheme for the proposed algorithm class is
given, and the prototyping software implementation CHUCS1 is presented. The
effectiveness of the proposed algorithms is demonstrated at the example of a
benchmark problem from the area of autonomous driving at the end of the
chapter.

Acknowledgement Parts of this chapter have been published in the paper
“Mixed-Level Iteration Schemes for Nonlinear Model Predictive Control” by
Janick Frasch, Leonard Wirsching, Sebastian Sager, and Hans Georg Bock
[FWSB12]. Janick Frasch and Leonard Wirsching are the main authors of
this paper. Janick Frasch contributed the original conception and software
design, while Leonard Wirsching contributed the formalization. The adapted

1CHUCS stands for Concurrently H ierarchically Updating Controller Schemes.
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Figure 2.1: The principle of model predictive control: Based on an online
state estimate and a model prediction, the control signal is reoptimized; this
procedure is repeated periodically.

condensing algorithm from the original paper was conceived in joint discussions.
Sebastian Sager and Hans Georg Bock served as advisors and vital discussion
partners.

2.1 Model Predictive Control

For any real-world dynamic system, process model (1.1) is, in general, only
an approximate description. Systematic modeling errors and unforeseen
external influences may therefore cause the system to miss the desired optimal
performance when applying a precomputed input signal u ∈ U open-loop; even
significantly more severe consequences may arise, e.g., when the real-world
system, referred to as plant2, exceeds a desired limitation (constraint), or is not
stabilized at the desired reference.

In general one can deal with this challenge in two ways. On the one hand, we can
include safety margins of various kinds into the optimal control problem and/or
the resulting NLP. The research areas of robust optimal control and robust
optimization, as well as stochastic optimal control investigate such approaches.
For an introduction to robust control and optimization, we refer to [Hou11],
[BTEGN09], and the references therein; for further reading on stochastic control
we recommend [Ber95].

In this thesis, on the other hand, we focus on feedback approaches that operate
a dynamic system in closed-loop. Among feedback control approaches, model

2We adopt a very generic understanding of plant here, meaning any realization of system
(1.1).
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predictive control (MPC) is a rather generic principle and therefore one of the
most powerful concepts3. MPC generates a regulating system input online,
i.e., while the plant is running, by repeatedly solving a dynamic optimization
problem, therein minimizing an optimal control objective. Figure 2.1 visualizes
the essential concept. Applying the control signal ū ∈ U , the dynamic system
x is observed at time4 Ti, where i ∈ N, to be in state x̂(Ti) instead of the
planned/desired state x̄(Ti) due to unmodeled dynamics or perturbations. The
MPC approach is to re-solve an optimal control problem on the (typically
finite) prediction horizon [Ti, Ti+N ] ≡ [t0, tf ] = T , yielding an updated optimal
predicted state trajectory x∗ that is to be realized by applying the updated
control signal u∗. After a certain period of time ∆Ti := Ti+1 − Ti, the so-called
sampling period, this procedure is repeated for a new state observation x̂(Ti+1).
In general, the sampling grid T0, T1, . . . does not need to be equidistant; however,
aligning it with the discretization grid of a direct method to be applied to the
problem may facilitate algorithm warmstarting, cf. Section 2.3.1.

Depending on the problem, the prediction horizon at each sampling time may
either always end at the same fixed time Tend, i.e., be of shrinking length
Tend − Ti, i = 0, 1, . . . , N , or may be infinitely receding, i.e., Ti ≡ [Ti, Ti+N ] is
used at each sampling time T0, T1, . . .. Shrinking horizon problems may appear,
for example, in batch operation of certain processes in chemical engineering,
while classical receding horizon problems may appear in systems that are
intended to be operated for time periods significantly longer than the length of
the prediction horizon (or even of indetermined length), like, for example, the
operation of a power plant.

We note that in the receding horizon context the finiteness of the prediction
horizon length in combination with the MPC feedback strategy of only applying
part of the computed control signal may actually result in unexpected and
undesirable system behavior, even in the nominal case, where we assume perfect
knowledge of the system dynamics. Such effects, among other things, are
a strong motivation for stability investigations of MPC schemes, which are,
however, in their full spectrum beyond the scope of this thesis.

Still, to give only a very brief summary, it is often possible to establish stability
guarantees, which can be seen as a kind of “well-behavedness” guarantees on
the system-MPC interaction, if suitable terminal constraints or penalties are
formulated in the MPC scheme, or if the prediction horizon is sufficiently long.
We refer to [RM09, GP11, Grü12] for more details.

3For a more general introduction and an overview of other feedback concepts, we kindly
refer the reader to standard textbooks, like[FPEN09].

4Note, also for future reference, that in the context of online computations we use upper
case Ti, i ∈ N to denote time in a global frame, while lower case ti, i ∈ N denote time in a
local, i.e., algorithm- or prediction-centered frame.



54 DYNAMIC OPTIMIZATION IN REAL-TIME

2.1.1 MPC problem formulations

In a generic form, the MPC problem to be solved at each sampling time Ti is
summarized by

min
x,u

N−1∑
k=0

`k(xk,uk) + `N (xN ) (MPC1)

s.t. xk+1 = Fk(xk,uk) ∀ k ∈ SN (MPC2)

0 ≥ dk(xk,uk) ∀ k ∈ S (MPC3)

x0 = x̂0. (MPC4)

Here, we follow the presentation commonly adopted in the literature (cf., e.g.,
[CB07, RM09, GP11]) and introduce (MPC) as a discretized variant of (DOP),
anticipating the solution by a direct method, cf. Section 1.2. This means in
particular that the continuous time control functions u(t) are parameterized
on each stage k ∈ SN by a finite dimensional vector uk; w.l.o.g. we assume
uk ∈ Rnu ∀ k ∈ SN . The (fully determined) discretized state variables xk :=
x(tk) ∈ Rnx , where {tk}k∈S defines a grid on T , are kept for clarity of the
presentation and for algorithmic exploitation. Since we are only going to
consider discretized optimization variables for the remainder of this section, we
introduce the shorthands x := (x0,x1, . . . ,xN ) and u := (u0,u1, . . . ,uN−1)
in this context. The initial value of the system, x̂0 := x̂(t0) = x̂(Ti), is assumed
to be fully known, for example through an MHE, cf. Section 2.2; (partially) free
initial conditions are not considered here, even though the presented algorithms
would, in principle, support it. State constraints dk : Rnx ×Rnu → Rnd , k ∈ S
are only enforced on a finite grid; we refer to the discussion in Section 1.2.1.
The separable objective function contributions `k : Rnx × Rnu → R, k ∈ SN
and `N : Rnx → R are referred to as stage costs; `N is in particular also known
as terminal cost. W.l.o.g. we assume an identical grid for control and constraint
(and objective) discretization here, but stress that, in principle, these grids may
be chosen independently from one another.

Classically, MPC is particularly concerned with so-called tracking objectives,
which are generally considered computationally more tractable, and for which
considerable theoretical foundations exist, cf. [RM09, GP11]. In tracking MPC,
one tries to minimize the deviation of the actual system state x(·) from a desired
reference state x̄(·) and the deviation of the control input u(·) from a reference
input signal ū(·) over the prediction horizon T . The corresponding stage costs
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are of least-squares form and read

`k(xk,uk) = 1
2
(
‖xk − x̄k‖2Q + ‖uk − ūk‖2R

)
∀ k ∈ SN

and

`N (xN ) = 1
2‖xN − x̄N‖

2
P ,

where the weighting matrices Q ∈ Rnx×nx , R ∈ Rnu×nu , and P ∈ Rnx×nx are
tuning parameters of the respective MPC scheme that are typically chosen
positive semidefinite or positive definite. In this context, P is sometimes also
referred to as terminal cost. The tracking reference signals x̄(·) and ū(·) are
often equilibria of the considered dynamic system given through Fk, k ∈ SN ,
but also precomputed, optimized trajectories or other setpoints are used.

Particularly in tracking MPC of equilibria the notion of stability is an important
concept. A large variety of stability definitions exists, each with its own
quantification of data and model uncertainty and corresponding concepts for
establishing the respective stability guarantees for a certain MPC scheme. As
investigations from this rather large research area are beyond the scope of
this thesis, we kindly refer to the textbooks [RM09, GP11] and the references
therein for complementary reading. For completeness, we only establish two
concepts which very often are the key ingredient to establish stability guarantees
for certain MPC schemes, the notion of a terminal (point) constraint and its
generalization to a terminal set constraint. A terminal constraint is simply
established by demanding the state x to attain a certain fixed value (often the
origin of a suitably shifted system) at the end of the prediction horizon through

xN = x̄,

which obviously can be expressed by (MPC3). A terminal set constraint

xN ∈ X̄ ,

which demands the system state to attain a value from the terminal set X̄ ⊂ Rnx
at the end of the prediction horizon, can, in priciple, also be expressed by
(MPC3), under the assumption that a suitable representation of X̄ by a finite
number of inequalities exists.

Besides tracking objective function formulations also economic objectives are of
interest in MPC. Here, instead of following a precomputed reference, one aims to
achieve a more sophisticated, direct goal such as maximizing yield, minimizing
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time, minimizing operational costs, etc. by minimizing arbitrary5 stage costs
`k, k ∈ S that are not restricted to a least-squares form. Nonwithstanding this,
certain conditions may permit a positive definite reformulation of economic
objectives, which can then in turn be approximated by a least-squares form
(see for example [ARA11, ZGD14]).

2.1.2 Linear MPC

Instances of MPC where Fk and dk are linear, and `k are quadratic functions
in xk and uk for all k ∈ S and k ∈ SN , respectively, are called linear MPC. In
its canonical form, a linear MPC problem is given by

min
x,u

N−1∑
k=0

(
1
2

[
xk
uk

]> [
Qk Sk
Sk
> Rk

] [
xk
uk

]
+
[
qk
rk

]> [
xk
uk

])
(LMPC1)

+ 1
2xN

>P xN + qN>xN

s.t. xk+1 = Akxk +Bkuk + ck ∀ k ∈ SN (LMPC2)

dk ≤Dk
[
xk
uk

]
≤ dk ∀ k ∈ SN (LMPC3)

dN ≤DNxN ≤ dN (LMPC4)

x0 = x̂0, (LMPC5)

where Qk ∈ Rnx×nx , Sk ∈ Rnx×nu , Rk ∈ Rnu×nu , Ak ∈ Rnx×nx , Bk ∈
Rnx×nu , Dk ∈ R(nx+nu)×nd for all k ∈ SN , and P ∈ Rnx×nx , DN ∈ Rnx×nd .
We further have qk ∈ Rnx , dk ∈ Rnd , and dk ∈ Rnd for all k ∈ S, as well as
rk ∈ Rnu and ck ∈ Rnx for all k ∈ SN .

Often, one additionally assumes Rk � 0 ∀ k ∈ SN in linear MPC, which is
sufficient to render the solution of (LMPC) unique (recall that only uk, k ∈ S

are true degrees of freedom), as well as
[
Qk Sk
Sk
> Rk

]
� 0 and P � 0 for

algorithmic purposes.

If the problem data is independent of the time discretization index k we call
(LMPC) a linear time-invariant (LTI) MPC problem. Otherwise (LMPC) is
called linear time-varying (LTV).

5Assumption 1.18 remains unaffected.
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If no stage constraints are present, i.e., if nd = 0, the solution of (LMPC) via
dynamic programming is tractable, since the exact solution of the dynamic
programming recursion step, the so-called cost to go function, can be stated as
a closed quadratic form in the state, cf. [RM09].

If (LMPC) additionally is an LTI problem, also the infinite horizon problem6

min
x,u

1
2

∞∑
k=0

[
xk
uk

]> [
Q S

S> R

] [
xk
uk

]
(LQR1)

s.t. xk+1 = Axk +Buk ∀ k ∈ S∞ (LQR2)

x0 = x̂0, (LQR3)

which is often referred to as linear quadratic regulator (LQR), is tractable, and
its feedback law is given by u∗(x) = −Kx, with the so-called LQR gain

K =
(
R+B>PB

)−1 (
S +B>PA

)
.

In this context, P denotes the (positive definite) solution to the discrete time
algebraic Riccati equation of the underlying system,

P = Q−A>PA−
(
S> +A>PB

) (
R+B>PB

)−1 (
S +B>PA

)
.

2.2 Moving Horizon Estimation

In (MPC), we assumed a fully known initial condition of the dynamic system,
x̂0 ∈ Rnx , as well as a known parameter vector p ∈ Rnp . Full state observation,
however, can in general not be guaranteed in real-world systems, and parameters
may actually vary during operation.

Moving horizon estimation (MHE) is a technique to recover x̂0 and p from a
series of measurements {yj}k=1,2,... ⊂ Rny , taking the system dynamics and
possibly physical limitations (in form of constraints) into account. In contrast to
a generic full information estimator which considers all available measurements
(cf. Section 1.1.3), MHE only considers the M most recent measurements
(w.l.o.g. denoted by {y1, . . . ,yM}) explicitly in the dynamic optimization
problem, while all earlier measurements are either simply ignored, or considered
through a statistic, the so-called prior terms x̄0 ∈ Rnx and p̄ ∈ Rnp . Figure

6We drop the first-order objective terms in this context only for notational convenience;
formally correct, this may be obtained, e.g., by a translation of the optimization variables.



58 DYNAMIC OPTIMIZATION IN REAL-TIME

tTi−M

full information
moving horizon

Ti

future

x̂(t)

y1

y2

yM

x̂(Ti)

Ti+1

tTi−M
Ti+1−M

full information
moving horizon

Ti
Ti+1

future

x̂(t)
y1

y2 yM

x̂(Ti)

Figure 2.2: Sliding time window in moving horizon estimation at two subsequent
sampling times. Green dots show explicitly considered measurements y·, while
a red x visualizes the estimated current state x̂(·). Inspired by [RM09].

2.2 visualizes this principle. The motivation for only considering a sliding
window of the time horizon containing a fixed (sufficiently large) number of
measurements is mainly to render the estimation problem computationally
tractable. As the amount of measurements increases while the plant is evolving,
the dynamic optimization problem to be solved for the full state estimator
becomes increasingly challenging.

One notable exception however is the so-called Kalman filter, a pair of one-step
recursion formulae for the state/parameter estimate and their corresponding
covariance estimate, that solve the dynamic programming problem of a least-
squares full information estimator with linear dynamics and without path
constraints exactly7. The details of this rather well-known algorithm can be
found, for example, in [Ste94, RM09].

7In some sense, the Kalman filter can be seen as the analogy of the explicit LQR solution
for estimation (see [RM09] for details).
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2.2.1 MHE problem formulation

In a generic mathematical form, the estimation problem to be solved in an
MHE scheme at each sampling time reads

min
x,u,p

`0(x0,p,x̄, p̄) +
M∑
j=1

`j(x(tj),u(tj),p,yj) (MHE1)

s.t. xk+1 = Fk(xk,uk,p) ∀ k ∈ SN (MHE2)

0 ≥ dk(xk,uk,p). ∀ k ∈ S (MHE3)

Analogously to (MPC), we present (MHE) as a discretized instance of (DOP)
in anticipation of the solution using direct simultaneous methods. This
presentation is consistent with standard literature, e.g., [RM09]. Again,
we group the optimization variables introducing x := (x0,x1, . . . ,xN ) and
u := (u0,u1, . . . ,uN−1) for notational convenience. As in the context of MPC,
xk ∈ Rnx , k ∈ S denote the discretized state variables, and uk, k ∈ SN (w.l.o.g.
uk ∈ Rnu ∀ k ∈ SN ) denote the control parameterization variables. In the
interplay with MPC (or another control scheme), the (optimal or approximately
optimal) terminal state vector xN (MHE), which is the estimate of the current
state of the system, x̂(Ti), at sampling time Ti, serves as initial condition
x̂0

(MPC) for the prediction of the controller.

As in (MPC), transition functions Fk : Rnx × Rnu × Rnp → Rnx model the
system dynamics, and discretized path constraints dk : Rnx ×Rnu ×Rnp → Rnc
contain physical limitations of the system that guide the estimator.

In general, the evaluation of the objective function terms `j : Rnx×Rnu×Rnp×
Rny → R, j ∈ {1, . . . ,M} (more precisely the evaluation of x(tj)) requires the
use of numerical integration routines that return a continuous representation
of the system dynamics (see also Section 3.1). Efficient implementations of
such methods have been described, e.g., in [Alb10a] and [QGD13]. While using
coarser grids for control/state discretization can be useful in case of multi-
rate measurements, where some measurements {yij}j=1,2,..., i ∈ {1, . . . ny} are
available at higher rates than others, we note that theoretically, measurement
and algorithmic grid could be aligned, i.e., we could choose N := M .

In the context of MHE, the deviations of the system’s initial state x0 and the
parameter vector p from the priors x̄ and p̄, respectively, are penalized by a
so-called arrival cost `0 : Rnx ×Rnp ×Rnx ×Rnp → R. Section 2.2.2 will outline
ideas for subsuming the not explicitly considered measurement history into the
prior information terms.
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The stage costs `j , j ∈ {0, . . .M} are typically convex in MHE. In particular, a
very common choice is simply the least-squares form

`j(x(tj),u(tj),p,yj) = ‖yj − hj(x(tj),u(tj),p)‖2Vj
(2.5)

for k ∈ {1, . . . ,M}, and

`0(x0,p, x̄, p̄) =
∥∥∥∥[x0 − x̄
p− p̄

]∥∥∥∥2

P

(2.6)

for the arrival cost, where Vj ∈ Rny×ny , j ∈ {1, . . . ,M} and P ∈
R(nx+np)×(nx+np) are appropriately chosen weighting matrices, and hj :
Rnx × Rnu × Rnp → Rny is a suitable output function, cf. Section 1.1.3.
We will shed light on appropriate choices of the weighting matrices in Section
2.2.3.

Some MHE problem formulations assume the presence of so-called state noise.
Formally, this corresponds to having system dynamics

xk+1 = Fk(xk,uk,p) + ζk+1 ∀ k ∈ SN

in lieu of (MHE2), where ζk : Ω → Rnx , k ∈ S1 are independent random
variables on a suitably chosen probability space8 (Ω,F ,P). While generally
the state noise formulation of the system dynamics can simply be cast in form
(MHE) by introducing auxiliary variables (e.g., in form of additional discretized
controls)9, the corresponding least-squares stage cost (2.5) becomes

`j(x(tj),u(tj), ζj ,p,yj) = ‖yj − hj(x(tj),u(tj),p)‖2Vj
+ ‖ζj‖2Wj

. (2.7)

Here, we assumed M = N for notational convenience.

While (2.5)/(2.7) negotiate a (weighted) “mean” fit of the state trajectory to the
measurements that is rather stable (i.e., shows little sensitivity towards small
data changes), it tends to get influenced strongly by outliers. In an attempt to
increase robustness against measurement outliers, the so-called Huber penalty
function10 [Hub81] is occasionally used as a robust alternative in praxis. The
Huber penalty Hσ : R→ R0+ combines the local “smoothness” of the `2 norm

8We omit details here, but refer the reader to introductory literature on statistics, like
[KCM05], for complementary reading.

9An efficient implementation may need, of course, to exploit the specific structures of these
controls, e.g., during the derivative generation.

10The Huber penalty is sometimes also known as Huber norm; since, mathematically
speaking, this measure however only switches between two norms, but itself lacks the positive
homogeneity requirement of a norm, we stick to the term penalty here.
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with the robustness of the `1 norm in a convex, continuously differentiable
function given by

Hσ(a) :=
{

1
2a

2 |a| ≤ σ
σ (|a| − 1

2σ) |a| > σ
.

A visualization and further interpretations can be found, e.g., in [BV04]. We
also refer to [BV04, GD13] for details regarding the efficient implementation of
Huber penalties in optimization problems.

For MHE based on M measurements of the dynamic system defined by Fk, k ∈
SN with the output function hj , j ∈ {1, . . . ,M} we can instantiate Definition
1.15 to an easier to handle criterion, cf. [Fia83, MG95, SJ11]. For notational
convenience we again assume M = N here.
Lemma 2.1 Let (T ,X ,U ,f) be a system that implicitly defines Fk, k ∈ SN ,
and let hj , j ∈ S0 be the corresponding output function. Further let Fuk :
Rnx × Rnp → Rnx be given by Fuk (x,p) := Fk(x,u,p). Now, let us consider
the mapping Φ : Rnx × Rnp × RN nu → RN ny given by

Φ(x0,p,u) :=

 h1 ◦ Fu0
0

...

hN ◦ F
uN−1
N−1 ◦ · · · ◦ F

u0
0

 (x0,p).

If there is a u ∈ U such that for all x ∈ X the Jacobian ∂Φ
∂(x,p) (x,u,p) has

full column rank (equal to nx + np), then the system is N -observable. In
particular, all distinct pairs of events (x(tf ) = xf ,p1) and (x(tf ) = x2,p2)
are distinguishable.

Proof See, e.g., [SJ11]. �

We can therefore use Lemma 2.1 to characterize when the current state and
parameter vector is recoverable by an MHE scheme using a limited number of
measurements.

In our basic setting, we assumed that the implemented control actions u are
known exactly. We note that some practical applications may require to also
treat u as additional degrees of freedom (that are fitted to corresponding
“measurements”) in the optimization problem (MHE) to account for actuator
uncertainty.

2.2.2 Arrival cost updates

The conceptual idea behind the arrival cost `0 : Rnx ×Rnp ×Rnx ×Rnp → R is
to summarize (filter) all prior information that cannot be considered explicitly
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in (MHE) for computational reasons. In principle, zero prior weighting, i.e.,
completely discounting all a priori information, e.g., by choosing P ≡ 0 in
Equation (2.6) as proposed in [MM95] would be possible, and existence and
stability proofs can be established also for this case under some additional,
rather restrictive assumptions, cf. [MM95, RM09]. However, doing so may
render the horizon lengths of the MHE problem required to recover the true
system state overly long in practice.

A more common choice is to use Kalman-Filter-based updates on P and/or x̄ and
p̄, which can be motivated by dynamic programming arguments [MRL93, Mus95,
RL95, RLR96, RRL01]. If the underlying system dynamics are nonlinear, a
natural choice for updating the arrival cost are variants of the so-called extended
Kalman filter (EKF), which essentially is a Kalman filter that utilizes a system
linearization at the most recent estimate for state and covariance prediction (see,
e.g., [RM09] for details). A smoothed variant of the EKF, which chooses the
most recent MHE estimate for x0 and p as linearization point, appears to have
particularly favorable properties, cf. [RL95, RLR96, Fin97, RRL01, KKWB08,
KDK+11a]. Further details and update formulae tailored to Multiple-Shooting-
style methods can be found in [Kra07, KDK+11a]. It should be stressed at
this point that, in contrast to its linear variant, the EKF does, in general, not
obtain the full information estimates if the system dynamics are nonlinear —
even in the absence of path constraints. MHE with EKF-based updates of
its arrival cost therefore tends to be seen as superior to a single EKF as it
considers more measurements explicitly and chooses a possibly more accurate
linearization point before the information is filtered into the arrival cost terms.
In fact, by choosing an estimation history of only M = 1, a MHE scheme with
suitably chosen weighting matrices and Gauss-Newton Hessian approximation
is identical to the EKF, cf., e.g., [Rob96, KDK+11a].

2.2.3 Choice of weighting matrices

Even though MHE is a deterministic method for minimizing measurement
residuals, the probabilistic insight can be very helpful for choosing suitable
penalty terms. Here, we particularly focus on the choice of weighting matrices
Vj ∈ Rny×ny , j ∈ S0 and P ∈ R(nx+np)×(nx+np) for least-squares fitting
objective functions. Some further aspects in the discussion on the implications
of a probabilistic versus a deterministic perspective on MHE can be found, e.g.,
in [RLR96, RM09, KDK+11b].

Under the assumption that the sensor noise perturbing the observation of
the system outputs follows independent normal distributions, i.e., yj :=
hj(x#(tj),u(tj),p#) + ηj for all j ∈ S0, where x#(tj) and p# denote the
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true system state and parameter vector at time tj , and ηj ∼ N (0,Σyj ) with
Σyj � 0, it can be shown that choosing Vj := (Σyj )−1 ensures the equivalence
of the solution of MHE and the maximum-likelihood estimator (MLE) in
the unconstrained case, cf. [RLR96, KDK+11b]. This result holds either
for zero prior weighting, i.e., if P ≡ 0, or under the assumptions that the
sliding window’s initial value x0 and p are independently normally distributed
with x0 ∼ N (x̄,Σx0) and p ∼ N (p̄,Σp) if P = block diag((Σx0)−1, (Σp)−1).
If the presence of state noise is assumed, additionally ζj ∼ N (0,Σxj ) and
Wj = (Σxk)−1, j ∈ S0 is required for the MLE property to hold. A discussion
on conditions under which the MLE property is preserved if stage constraints
(in particular on states and parameters) become active in the MHE solution
can be found in [Rob96].

2.3 Real-time Dynamic Optimization Algorithms

The online re-computation of solutions of the dynamic optimization problems
(MPC) and (MHE) at each sampling time permits to react to consequences
from unmodeled influences in an attempt to operate the dynamic system at
hand in an optimal fashion. For this to be successful, however, the challenge of
actuation delays introduced by the online feedback computations needs to be
overcome.

Applying one of the nonlinear programming algorithms mentioned in Section
1.4 will typically require a significant share of each sampling period (or even
exceed it). This has several implications. First of all, the computational
delay introduced by solving (MHE) with a standard method for nonlinear
programming, ∆tMHE−NLP, will cause the estimate of the “current” state x̂(Ti)
to only be available at time Ti+∆tMHE−NLP. A control scheme for computing a
feedback law at sampling time Ti can therefore either choose to use a prediction
x̃(Ti), which in particular does not yet employ the most recent observation y(Ti)
(we can however expect a control action computed based on this prediction to
be almost identical11 with the control action computed at sample time Ti−1 for
time Ti), or to wait for a more accurate estimate x̂(Ti), which however only
becomes available with a delay of ∆tMHE−NLP. Additionally, the solution of
(MPC) by a standard NLP algorithm will introduce a delay of ∆tMPC−NLP

itself. This means that the updated control action u∗0 will only become available
at time Ti + ∆tMHE−NLP + ∆tMPC−NLP. In the meantime, however, the system
state of the plant may have changed, and internal as well as external unmodeled
influences may have caused additional deviations of the actual system state from

11If the prediction horizon is chosen sufficiently long, we can expect the effect from the
shifted horizon to be rather small.
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its predicted value. On top of this, the control performance may be suboptimal
if it bases on the assumption that the optimized control law is implemented
immediately, i.e., if the optimal control problem did not account for its own
computational dead-time (which often can only be estimated in an extremely
conservative fashion if iterative algorithms are used for the NLP solution, and
therefore lead itself to a significant delay in the control law).

A variety of algorithmic ideas has been proposed to overcome these challenges.
To speed up computations beyond the regular algorithmic and computational
advancement, essentially one can either aim to precompute certain results, or
to compute approximate solutions. Explicit MPC largely falls in the former
category. The main idea of explicit MPC is to precompute (approximations
to) the solution manifold12 of (MPC) for variable initial conditions x̂0 offline
and to to store it for online retrieval based on the observed/estimated system
state. We refer, e.g., to [BMDP02, BBM03, Bor03, PRW07, BBM14] and the
references therein for an introduction to explicit MPC. Despite the fact that
the algorithmic ideas are typically presented from the MPC viewpoint, we note
that the main algorithmic concepts are, in principle, also applicable to other
dynamic optimization problems, like MHE.

Particularly for linear MPC the explicit approach can be very efficient in terms
of online computation time. The main disadvantage, however, is that offline
computation time and storage requirements typically grow exponentially in the
dimension of the initial state (or, more general, in the number of parameters
the solution depends upon), which limits the applicability of explicit MPC to
rather small-scale systems for which all data is known offline (i.e., no online
changing references, etc.).

Other popular methods that aim specifically at a particularly short feedback
delay are the so-called Advanced Step controller, see [ZB09], and the so-called
Real-Time Iteration (RTI) scheme, see [DBS+02]. Both exploit the similarity
between subsequent dynamic optimization problems to be solved in the online
context for a prediction of the following initial condition, at the aim of preparing
significant parts of the NLP solution even before the initial condition is known.

This thesis is particularly focused on variants of the RTI scheme, which
has proven to be computationally very efficient, in particular in combination
with automatic code generation, while retaining sufficient accuracy (see, e.g.,
[HFD11b, FHGD11b, VLH+12, FKV+12, FGZ+13]). A detailed comparison
between the Advanced Step controller and the RTI scheme, as well as a broader
overview of other initial value embeddings and the resulting first-order predictors
can be found in the survey [DFH09].

12To be precise, only the first control action u∗0(x̂0) of each solution needs to be computed
and stored.
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2.3.1 The Real-Time Iteration scheme

The Real-Time Iteration (RTI) scheme is an algorithmic concept that is
specifically designed to reduce the computation time delay between observation
of a measurement y(Ti) and implementation of the re-optimized control law u∗0.
It goes back to [DBS+02, Die02] and was originally introduced as an adaptation
of the SQP procedure within Bock’s direct multiple shooting method. Our
presentation is loosely based on [Die02, Kir11].

The essential idea of the RTI scheme is that, instead of doing SQP iterations
until convergence, only one QP solution is performed at each sampling time
(each in MHE and in MPC) based on a linearization computed before observation
of the measurement y(Ti). This way, the sampling period can be reduced to
roughly the computational cost of two full SQP iterations13 (one each for MHE
and MPC), consisting each of a linearization procedure and a subsequent QP
solution. Furthermore, the feedback delay reduces to the time required for two
QP solutions (which may, depending on the problem, be significantly shorter
than the computation time required for linearization), since the full QP, except
for the initial value/measurement embedding, can already be set up beforehand.
Convergence guarantees to an optimal solution can be retained in the real-time
notion of contractivity, cf. Section 2.3.3 and [Die02, DBS+02, DFA07].

Figure 2.3 summarizes the RTI scheme. Therein, the shift step prepares a good
initial guess for linearization of the nonlinear components at the next sampling
time. We will give details in Section 2.3.2. It is important to observe that
both, shifting and linearization for the DOP solution at sampling time Ti+1 are
performed at sampling time Ti only after the updated control strategy/state
estimate has been sent to the plant/the controller, but finish before the new
state estimate/observation is received from the estimator/the plant. These two
steps together form the so-called preparation phase of the RTI scheme. The
second, so-called feedback phase, which essentially is the only source of feedback
delay, consists solely of the initial value/measurement embedding and the QP
solution.

In detail, the RTI scheme computes an (approximate) solution of the discretized
dynamic optimization problem (i.e., the MPC/MHE NLP) based on a primal-
dual initial guess (w,λ,µ) as

(w+,λ+,µ+) := (w + z∗,λ∗QP,µ
∗
QP),

where (z∗,λ∗QP,µ
∗
QP) is the primal-dual QP subproblem solution, cf. Section

1.4.3. Note that typically no globalization strategy is employed in the RTI
scheme to determine the step size of the update to the primal-dual NLP variables.

13on a sequential computational architecture
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Figure 2.3: Sketch of the real-time iteration scheme.

Instead, full steps are taken, i.e., αk := 1 is chosen constantly in (1.13). The
motivation behind this approach is two-fold. One the one hand, the RTI scheme
is designed to provide very fast feedback under the assumption that a very
good initialization (i.e., close to a regular KKT point) of the NLP variables is
available, e.g., by a shift of the previous optimal solution (assuming a not too
inaccurate system model). One in particular assumes that the initialization is
good enough to still be in the region of attraction of a full-step SQP method,
cf. Section 1.4.4. On the other hand, performing a full SQP-type step is the
only possibility to ensure that the initial value embedding constraint (MPC4)
is satisfied already after only one SQP-type iteration14.

For both, MPC and MHE, we have the observation that the instance of QP
(1.12) to be solved in each iteration of an SQP method applied to an MPC/MHE
problem structurally resembles (LMPC)15. Therefore, the RTI scheme can be

14Note that (MPC4) is identical to its linearized variant (LMPC5).
15Here, the only significant difference between (LMPC) and its MHE counterpart is the

initial value embedding (LMPC5), which is replaced by an embedding of the terminal
measurement yM in MHE. For clarity of the presentation we therefore restrict ourselves to
the MPC-centered viewpoint.
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seen as a linear MPC controller, whose data is updated in each iteration based on
a re-linearization of the nonlinear dynamics and constraints, and a new (possibly
inexact) quadratic fit to the NLP Lagrangian. To reflect this in notation, we will
stick to the convention in the following, that NLP stage variables are denoted
by wk := (sk, qk), k ∈ S and that QP/LMPC stage variables (particularly in
Part II) are denoted by zk := (xk,uk), k ∈ S. W.l.o.g., we assume parameters
p hidden in the state vector, cf. Section 1.1.1, and, for notational convenience,
redundant optimization vectors for control parameterization on the final stage,
qN ∈ R0 and uN ∈ R0, are introduced.

2.3.2 Initialization in the Real-Time Iteration scheme

Since the RTI feedback at each sampling time is computed based on only a
single QP approximation, a sensible choice of the linearization point is crucial
for the RTI scheme’s performance. Usually, the RTI scheme prepares the initial
guess for the NLP variables at a subsequent sampling time by performing a
time shift that corresponds to one sampling period. This means, if the NLP
iterates at sampling time Ti (after the feedback phase) were

w|Ti = (s0, q0, s1, . . . , qN−1, sN ),

the linearization for the LMPC problem to be solved at sampling time Ti+1
is, assuming that the sampling grid is identical with the discretization grid,
performed at the initial guess

w|Ti+1
:= (s1, q1, s2, . . . , qN−1, sN , q

new
N−1, s

new
N ).

Several possibilities exist for choosing the linearization points qnew
N−1 and snew

N

on the last shooting interval, cf. [Die02, Kir11]:

Extrapolation The control law qN−1 is kept on the last control interval, and
the new terminal value snew

N is obtained by forward simulation, i.e.,

qnew
N−1 := qN−1, and snew

N := FN (sN , qnew
N−1),

where FN denotes the state transition mapping from sampling time Ti+N
to Ti+N+1. This rule leads to a continuous trajectory initialization on
the last stage, but path, and particularly terminal constraints (in case of
MPC) may be violated by this initialization.

Nominal extrapolation Similarly to the extrapolation initialization, snew
N

is obtained by forward simulation; however, instead of repeating the
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terminal control action from the previous sampling time, a (possibly time
dependent) nominal control law q̄(T(i+1)+(N−1), sN ) is applied. We have

qnew
N−1 := q̄(Ti+N , sN ), and snew

N := FN (sN , qnew
N−1).

Again, we obtain a continuous trajectory initialization on the last stage,
but may violate path constraints.

State feedback extrapolation Instead of applying a fixed nominal control
law, we may adapt this law depending on the terminal value sN , e.g., by
using a precomputed gain matrix (or one that is based on the most recent
QP subproblem solution) K. We then have

qnew
N−1 := KsN , and snew

N := FN (sN , qnew
N−1).

If MPC and MHE are deeply interleaved, we may also use the control
signal computed in MPC and sent to the plant for extrapolation in MHE
(or even use the MPC prediction of the resulting state for snew

N ). Once
more, a continuous trajectory initialization on the last stage and violated
path constraints are possible consequences from such choices.

Duplication Both, terminal control law and terminal state are kept from the
previous sampling time, i.e., we have

qnew
N−1 := qN−1, and snew

N := sN .

This way, time constant path and terminal constraints are fulfilled, but
continuity of the initialization will, in general, be violated.

Independently of the primal initialization strategy for the terminal stage, the
dual variables (if required) are typically shifted alongside the primal variables,
and simply kept on the terminal stage. This means, if

λ|Ti = (λ0, . . . ,λN−1)

denotes the dual variables of the coupling constraints (MPC2), and

µ|Ti = (µ0, . . . ,µN )

denotes the dual variables of the stage constraints (MPC3), we use

λ|Ti+1
:= (λ1, . . . ,λN−1,λN−1)

and

µ|Ti+1
:= (µ1, . . . ,µN ,µN ).
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Depending on the problem at hand, the solution of the dynamic optimization
problem solved at time Ti+1 may also resemble the solution of the dynamic
optimization problem solved at time Ti, rather than its shifted version16. Then,
a simple warm-start may be performed instead of the shift, i.e., the linearization
for the setup of the linear MPC problem to be solved at time Ti+1 is performed
directly based on the primal-dual solution of the dynamic optimization problem
at time Ti.

2.3.3 Contractivity of the Real-Time Iteration scheme

The RTI scheme, in general, does not solve nonlinear dynamic optimization
problems exactly. We state, however, central important results (due to [Die02,
DFA+05, DFA07]) that link the solutions computed by the RTI scheme to the
exact solutions of the series of dynamic optimization problems in the following.

The analysis is based on local convergence theory for Newton’s method,
in particular Theorem 1.51. The general assumption is that the dynamic
optimization problem to be solved is initialized sufficiently close to a KKT point
such that the combinatorics of the active set selection can be neglected17 for
the analysis, i.e., we only have to consider an equality constrained NLP

min
w∈Rn

f(w) s.t. g(w) = 0. (2.8)

The first-order optimality conditions then read, cf. Theorem 1.35,

r(w,λ) :=
[
∇f(w) +∇g(w)>λ

g(w)

]
= 0 (2.9)

and an approximate solution is computed by the RTI scheme — based on an
initial guess (w(i),λ(i)) — by performing one Newton-type iteration[

w(i+1)

λ(i+1)

]
=
[
w(i)

λ(i)

]
− J

(
w(i),λ(i))−1

r
(
w(i),λ(i)), (2.10)

where J(w,λ) ≈ ∂r
∂(w,λ) (w,λ) is an invertible approximation of the derivative

of the KKT residual (also known as KKT matrix), that depends on the chosen
Hessian approximation, cf. Section 1.4.4.

16This may, e.g., be the case in MPC with rather short prediction horizons, cf. [Die02], or
when sampling periods are significantly shorter than the control discretization time step.

17Nevertheless it can be shown that the RTI scheme employs generalized tangential predictors
that incorporate the effects from active-set changes at least in an approximate fashion, cf.
[Die02, DFH09].
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The first statements here address feasibility and suboptimality of the solutions
computed by the RTI scheme in comparison with an exact solution algorithm.
Since the problems to be solved in MPC and MHE change from iteration to
iteration, we quantify suboptimality in a per-interval notion in the following.
The technique to do this is to consider real-time iterations on a shrinking
horizon. Based on the discretized DOP (2.8) we derive a series of reduced
horizon problems P (i) by incrementally fixing the controls on the first i − 1
stages. Formally, we therefore have18

P (i) : min
w∈Rn

f(w)

s.t. g(w) = 0

qj = q̄j , ∀ j ∈ {0, . . . , i− 1}

where q̄j are some fixed (in terms of the optimization) control parameterizations,
which are defined successively with q̄i being the solution computed for qi by
the RTI scheme applied to problem P (i), cf. [Die02]. When i > N exceeds the
horizon length, we define P (i) := P (N).

We use the shorthands p(i) :=
[
w(i)

λ(i)

]
to denote the primal-dual RTI solutions

for problem P (i). The RTI updates ∆p(i) are, in analogy to (2.9) and (2.10),
defined by

∆p(i) := J(i)
(
w(i),λ(i)

)−1
r(i)

(
w(i),λ(i)

)
,

where

r(i)(w,λ) :=


Π(i) (∇f(w) +∇g(w)>λ

)
g(w)
q0 − q̄0

...
qi−1 − q̄i−1

 = 0

and
J(i)(w,λ) ≈ ∂r(i)

∂(w,λ) (w,λ)

are invertible approximations. Here, Π(i) ∈ R(n−mi)×n, where mi is the
dimension of (q0, . . . , qi−1), are suitable projection matrices to eliminate the
rows of the Lagrange gradient corresponding to fixed controls. We refer to [Die02]
for further details. Note that it holds in particular that r(i)(w,λ) ∈ Rn+l,

18Recall that w is the vector of stacked state and control variables, i.e., it contains
qj , j ∈ {0, . . . , i− 1}.
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where l is the number of rows of g, is for all i = 1, 2, . . . of fixed dimension, and
we have r(0)(w,λ) = r(w,λ) and accordingly J(0)(w,λ) = J(w,λ).

We have now set the stage to address (fast) asymptotic feasibility of the RTI
iterates19.
Theorem 2.2 Let p(0) ∈ D ⊆ Rn, let J(p) be invertible with a bounded inverse
on D, i.e., ‖J(p)−1‖ ≤ β for all p ∈ D. Assume further, that J(p) is Lipschitz-
continuous on D with Lipschitz constant ω/β , and that the incompatibility of the
KKT matrix approximation is sufficiently bounded on D, i.e., ‖J(p)− ∂r

∂p‖ ≤ κ/β
with κ < 1. If the initial guess p(0) is sufficiently good, such that

δ(0) := κ+ ω

2 ‖ − J(p(0))−1 r(p(0))‖ < 1, (2.11)

and

D(0) :=
{
p ∈ Rn | ‖p− p(0)‖ ≤ ‖ − J(p(0))−1 r(p(0))‖

1− δ(0)

}
⊆ D,

then the sequence of RTI iterates {p(i)}0,1,... converges towards a feasible point
p∗1 ∈ D(0). In particular, the contraction property of Theorem 1.51 holds, i.e.,

‖∆p(i+1)‖ ≤
(
κ+ ω

2 ‖∆p
(i)‖

)
‖∆p(i)‖.

Proof See [Die02]. �

Theorem 2.2 indicates in particular that we can expect the RTI scheme to
produce iterates that are nonlinearly feasible both with respect to the stage
constraints (MPC3)/(MHE3) and with respect to the continuity constraints
(MPC2)/(MHE2) on stages that are sufficiently far from the end of the prediction
horizon (back in the receding horizon setting), i.e., stages whose stage variables
have already been improved by several Newton-type iterations.

Next we give a quantification of suboptimality of the RTI scheme with respect
to the fully converged solution, again in the setting of shrinking horizons. To
this end, we introduce p∗∞i , the fully converged solution of P (i) computed by
applying sufficiently many Newton-type steps.
Theorem 2.3 Let the conditions of Theorem 2.2 be satisfied. Then, the distance
between the limit point of the RTI scheme, p∗1 , and the rigorous solution p∗∞i
of the i-th reduced horizon dynamic optimization problem P (i) can be bounded
by

‖p∗1 − p∗∞i ‖ ≤
2(δ0)i+1 ‖∆p0‖

1− δ0
,

19Note that in the following we switch from (w,λ) to the notationally more convenient
argument representation p for J and r.
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where δ0 is defined in Equation (2.11).

Proof See [Die02]. �

Theorem 2.3 gives a handle on how fast the solutions computed by the RTI
scheme approach the fully converged solutions. While this observation is trivial
for i ≥ N , we still can conclude from this result that the RTI limit solution p∗1

is close to the rigorous solutions of problems with a reduced horizon; in fact the
distance between the two solutions shrinks with the reduction of the horizon
length at rates similar to the convergence rates of Newton-type methods, cf.
Theorem 1.51.

If we assume that the RTI scheme is initialized in a KKT point (that is, e.g.,
precomputed offline), we can quantify how fast a perturbation of the initial
state x̂0 (with respect to the assumed initial state) is rejected in comparison
with a fully converged nonlinear MPC controller. Recall to this end, that
P (0) =: P (x̂0) implicitly depends on x̂0 via the initial value embedding, which
is part of g. Note that a similar disturbance rejection result can be established
for the MHE context.

Theorem 2.4 Let p̄∗ be an initialization of P (x̂0) that is a KKT point. Let us
assume that the true initial value x̂0 deviates (slightly) from this initialization,
i.e., we have a disturbance of size ε := ‖x̂0 − x̄∗0‖ of the parametric dependency
of P (x̂0), where x̄∗0 are the first nx variables of p̄∗. Then, the distance between
the limit point of the RTI scheme applied to the disturbed problem, p∗1 , and the
rigorous solution p∗∞0 of the disturbed dynamic optimization problem is of first
order in ε,

‖p∗1 − p∗∞‖ ≤ 2
κ+ ω

2 βε

1− (κ+ ω
2 βε)

βε

for general Newton-type methods, and even of second order for an exact Newton
method:

‖p∗1 − p∗∞‖ ≤ ω

1− ω
2 βε

β2ε2.

The loss of optimality is of second order in ε for a general Newton method:

f(p∗1)− f(p∗∞) ≤ 2Br
(

κ+ ω
2 βε

1− (κ+ ω
2 βε)

β

)2
ε2,

and fourth order for an exact Newton method:

f(p∗1)− f(p∗∞) ≤ Brω
2

2 (1− ω
2 βε)2 β

4ε4.
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Here, β, ω, and κ are defined as in Theorem 2.2, and Br is a bound on the
norm of the exact derivative of the KKT residual function which satisfies∥∥∥∥∂r∂p (p)

∥∥∥∥ ≤ Br ∀ p ∈ D(0).

Proof See [Die02]. �

In the remainder of this section, we briefly address the question of MPC stability
under application of the RTI scheme. Since the RTI scheme does not solve each
dynamic optimization problem exactly, the standard proofs of nominal stability
for nonlinear MPC are not applicable here. In [DFA+05] and [DFA07] stability
proofs for the RTI scheme are given, which rely on a series of rather technical
assumptions. We give a characteristic summary of the central results here, and
refer to the original papers for the technical details.

The general setting assumed for the stability considerations is a dynamic system

xi+1 = F (xi,u(xi)) (2.12)
with shifted coordinates such that (w.l.o.g.) the origin is a steady state, i.e.,
F (0,0) = 0.

The RTI scheme is applied to the following nonlinear MPC problems without
stage constraints:

min
x,u

N∑
k=0

`k(xk,uk) (2.13a)

s.t. xk+1 = F (xk,uk) ∀ k ∈ SN (2.13b)

x0 = x̂0 (2.13c)

where the cost function V (x̂0) :=
∑N
k=0 `k(x∗k(x̂0),u∗k(x̂0)) is assumed to

feature a unique optimal solution (which is also assumed to be the only KKT
point) for all initial values in a neighborhood of the origin 0 ∈ Rnx . Furthermore,
V (x̂0) is assumed to be bounded from below and from above by quadratic
functions in the initial value m‖x‖2 ≤ V (x̂0) ≤M‖x‖2.

Again, regarding regularity of the Newton-type iterations, an incompatibility
bound of the used Hessian approximation as in Theorem 2.2 is assumed, as
well as a nonlinearity bound like the one from Theorem 1.51. Both bounds
are assumed to hold also under shifting and under reduction of the horizon
length20.

20These assumptions are rather mild, if the prediction horizon is long enough, and the
sampling periods are short enough.
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Proposition 2.5 (Nominal stability of the shifted RTI scheme) There
exists an environment Ξ ⊆ Rnx around the origin such that the RTI feedback
with shift computed from MPC problem (2.13) with the terminal constraint
F (xN ,uN ) = 0 drives the closed loop system (2.12) to the origin for all
x0 ∈ Ξ, if the sampling period is sufficiently short, the prediction horizon is
sufficiently long, and the objective and the dynamics are sufficiently aligned21.

We refer to [DFA+05] for the precise technical assumptions and a formal proof.

To establish nominal stability of the RTI scheme without shifting, additionally
a joint Lipschitz continuity condition in x and u on F (x,u)− x featuring not
too big Lipschitz constants needs to be assumed (see [DFA07] for details). We
then have the following result:

Proposition 2.6 (Nominal stability of the RTI scheme without shift)
There exist environments Ξ and Ξ̄ ⊇ Ξ around the origin such that the RTI
feedback without shift computed from MPC problem (2.13) with a sufficiently
strong terminal penalty on F (xN ,uN ) drives the closed loop system (2.12) to
the origin for all x0 ∈ Ξ, while the state remains in the bounded region Ξ̄, if the
sampling period is sufficiently short and the prediction horizon is sufficiently
long.

We refer to [DFA07] for further details and a formal proof.

2.4 Hierarchical QP Updates

The key advantage of the RTI scheme is the reduction of the feedback delay from
the solution time of a full NLP to essentially the solution time of a single QP.
However, the computational effort for the preparation phase may, depending on
the problem, still be significantly larger than the effort for the feedback phase
and therefore limit the feedback rate decisively. On the other hand, linear MPC
— whose feedback rate is only limited by the solution time of one QP — is known
to often work well in praxis even if the plant dynamics are inherently nonlinear.
We present an approach that closes the gap between nonlinear MPC and linear
MPC in the following. The central idea of this approach is to limit the effort per
iteration of the RTI scheme by permitting inexact first-order approximations
in the linear MPC problem. The considerations are mainly due to [BDKS07],
where the ideas were introduced in form of so-called Multi-Level Real-Time

21By sufficiently aligned we essentially mean that the Lagrange multipliers of steady state
dynamics in the solution of the dynamic optimization problem do vanish with increasing
horizon length, cf. [DFA+05].
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Iteration schemes. We adopt a slightly different presentation here, that stresses
the flexibility of this idea and eventually leads to the concept of Mixed-Level
Iteration schemes coined in [FWSB12].

For notational convenience we represent the data of real-time dynamic
optimization problems (MPC) and (MHE) in a more compact fashion by
introducing

`(w) :=
N∑
k=0

`k(sk, qk),

c(w) :=

 F0(s0, q0)− s1
...

FN−1(sN−1, qN−1)− sN

 ,

d(w) :=

 d0(s0, q0)
...

dN (sN , qN )

 ,
and

L(w,λ,µ) := `(w) + λ>c(w) + µ>d(w).

In the following we regard for each time index i = 0, 1, . . . the linear MPC
problem given by

min
z

1
2z
>H(i)z +m(i)>z (2.14a)

s.t. 0 = C(i) z + c(i) (2.14b)

0 ≥D(i) z − d(i) , (2.14c)

which needs to be solved at each sampling time Ti to obtain an update of the
feedback law. Here, we assume the linear initial value embedding (in MPC)

Lz = s
(i)
0 − x̂(Ti),

where L =
[
I 0

]
∈ Rnx×Nnz+nx , to be hidden in the remaining constraints

for notational convenience only.

The standard RTI scheme does a full update of the QP’s data in each iteration,
i.e., chooses

H(i) ≈∇2
wwL(w(i),λ(i),µ(i)),
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where the kind of approximation is typically one from the categories of Section
1.4.4, alongside

m(i) :=∇w`(w(i))

=∇wL(w(i),λ(i),µ(i))−C(i)>λ(i) −D(i)>µ(i),

c(i) := c(w(i)),

C(i) :=∇wc(w(i)),

d(i) := d(w(i)),

and

D(i) :=∇wd(w(i)).

The remainder of this section is dedicated to developing a more flexible concept
for choosing H(i),m(i),C(i), c(i),D(i), and d(i).

2.4.1 Linear MPC/MHE with hierarchical updates

Even for systems with inherently nonlinear dynamics the feedback law computed
by solving the linear MPC problem (2.14) repeatedly with fixed problem data
(except for the initial value embedding x̂(Ti)) may still be sufficient to reject
smaller disturbances and to cope well with small model uncertainties. This is
particularly observed when H(i),m(i),C(i), c(i),D(i), and d(i) correspond to
a linearization in a steady state; but also on an arbitrary trajectory path, a
fixed linearization may suffice to yield a good control/estimation performance
for a certain period, if the sampling rate is sufficiently high. In particular, the
tangential predictor corresponding to the linear MPC law may still approximate
the nonlinear problem reasonably well, even if active-set changes occur, cf.
[DFH09], and perturbations in the initial value are rejected up to first or even
second order (depending on the chosen Hessian matrix approximation), cf.
Theorem 2.4.

The idea of partial QP data updates is to have a linear MPC controller running
at a certain (high) sampling rate whose data is updated cascadingly. The most
rigorous update is a full re-linearization, as it is done in the preparation phase
of the original RTI scheme. However, we also may perform only partial updates
of the QP data, which then may be performed at a higher rate. We motivate
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this idea by regarding the KKT conditions of (2.14) for a fixed (i.e., known)
optimal active set, which implicitly defines D(i)

act and d(i)
act:H(i) C(i)> D

(i)
act
>

C(i)

D
(i)
act


 z
λ
µact

 =

−m(i)

−c(i)

−d(i)
act

 (2.15)

From the perspective of (2.15), the RTI scheme corresponds to solving this
linear system once per sampling time (i.e., performing one Newton-type iteration
on the KKT conditions of the NLP). Note, however, that the row configuration
of D(i)

act and d(i)
act may be altered by active set changes during the QP solution

process.

Partial QP updates originate in the observation that the left-hand side matrix
of (2.15) is rather expensive to evaluate, and updating it typically makes up for
the larger share of the computational effort of the preparation phase. On the
other hand, Newton’s method is known to converge also for perturbed choices
of the left-hand side matrix in the linear system22. Inspired by this, we may
use adaptations of the RTI scheme that work with inexact derivatives and only
perform updates of the right-hand side vector of the objective and constraint
residuals.

We remark that feedback can be obtained with an even shorter delay than the
solution time of a QP by fixing the active set in (2.15) and only performing
one linear system solution (which may even be prepared before a new x̂(Ti) is
obtained). This feedback policy is referred to as local feedback law in [KWSB10].
It may however lead to an arbitrary violation of path constraints, as constraints
which are not binding at sampling time Ti−1 are simply disregarded at time
Ti. Also, if a parametric active set strategy (cf. Section 1.5.4) is employed for
the solution of the linear MPC problem, the feedback delay caused by the QP
solution is typically not drastically longer than the delay caused by the local
feedback law under the assumption that no active set changes occur.

We propose to consider the following partial updates, cf. [BDKS07]:

Feasibility-improving updates The cost of a nonlinear function evaluation
corresponds roughly to the cost of one forward simulation of the nonlinear
dynamic system (over the full prediction horizon), which is still significantly
cheaper than performing a full re-linearization. The data obtained from a

22In a sufficiently small neighborhood of a solution, such that we can ignore step size
considerations.
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forward simulation can be used to update

c
(i)
k := s

(i)
k+1 − Fk(s(i)

k , q
(i)
k ) (2.16a)

d
(i)
k := dk(s(i)

k , q
(i)
k ). (2.16b)

Alongside the nonlinear constraint residuals, we correct the quadratic model of
the NLP Lagrangian by the shift in the nonlinear variables, using

m(i) := m(i−1) +H(i−1)(w(i) −w(i−1)). (2.17)

Matrix-vector products and the forward simulation step are the most expensive
operations of this update.

In the particular case where we choose a Gauss-Newton approximation of the
Hessian matrix of the Lagrangian function, we can even use a slightly better
correction of the QP objective at roughly the same computational costs. If the
nonlinear MPC/MHE objective function is given by

f(w) = 1
2‖r(w)‖22,

we have that (2.17) corresponds to

m(i) :=∇r(i−1)
(
r(i−1) −∇r(i−1)(w(i) −w(i−1))

)
,

where ∇r(i−1) =∇r(w(i−1)) and r(i−1) = r(w(i−1)) if a full Gauss-Newton
re-linearization was performed in iteration i − 1, and recursively ∇r(i−1) =
∇r(i−2) and r(i−1) = r(i−2), and so on, if the objective was not updated.
Instead of using this correction term for an extrapolation of the expected change
in the objective’s least-squares residuals, we can directly reevaluate the least
squares residuals and use

m(i) :=∇r(i−1)r(w(i)), (2.18)

as we expect the cost for evaluating the objective residuals to be rather negligible
when performed alongside the dynamic system simulation.

Optimality-improving updates In addition to a correction of the nonlinear
constraint residuals through (2.16) we may also make use of the exact gradient
of the NLP Lagrangian at little extra cost. Instead of using (2.17) or (2.18),
the update rule

m(i) :=∇`(w) +
(
C(i) −C(i−1)

)>
λ

(i−1)
QP +

(
D(i) −D(i−1)

)>
µ

(i−1)
QP

=∇wL(w(i),λ(i),µ(i))−C(i−1)>λ
(i−1)
QP −D(i−1)>µ

(i−1)
QP (2.19)
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is applied23. It is important to observe here that the matrices C(i) and D(i)

are never formed explicitly in an efficient implementation. Instead, we rely on
the adjoint mode of automatic differentiation to compute ∇wL(w(i),λ(i),µ(i))
at the cost of a small constant multiple of a forward simulation, cf. Section
1.4.5. Since the matrices C(i−1) and D(i−1) are already known at sampling
time Ti, C(i−1)>λ

(i−1)
QP and D(i−1)>µ

(i−1)
QP are also rather cheap to evaluate

by simple matrix-vector products.

2.4.2 Convergence guarantees

With inexact and incomplete data updates, we have the following convergence
results due to [BDKS07].

Theorem 2.7 (Limit of feasibility-improving updates) Consider QP
(2.14), with initial data H(0) := ∇2

wwL(w̄, λ̄, µ̄), m(0) := ∇w`(w̄), C(0) :=
∇wc(w̄), c(0) := c(w̄), D(0) :=∇wd(w̄), and d(0) := d(w̄), where (w̄, λ̄, µ̄)
is a primal-dual reference point24. Let the QP data be updated inexactly by
(2.16) and (2.17) in each iteration on all stages k ∈ S. Assume that x̂(Ti) := x̃
is constant for all i ≥ 0. Then, every limit (w∗,λ∗QP,µ

∗
QP ) (if existing) of

the implicitly defined nonlinear iterates (w(i),λ(i),µ(i)) is a KKT point of the
perturbed, but nonlinearly feasible problem

min
w

1
2(w − w̄)>H(0)(w − w̄) + (m(0) + e)>w (2.20a)

s.t. 0 = c(w) (2.20b)

0 ≥ d(w) (2.20c)

Lw = x̃, (2.20d)

where e :=
(
C(0) −∇c(w∗)

)>
λ∗QP +

(
D(0) −∇d(w∗)

)>
µ∗QP.

Proof See [BDKS07]. �

Corollary 2.8 (Limit of Gauss-Newton feasibility-improving updates)
Let the objective of the nonlinear MPC/MHE problem be of least-squares
type `(w) = 1

2‖r(w)‖22. Consider QP (2.14) with the initial data H(0) :=
R(0)>R(0), where R(0) := ∇r(w̄), m(0) := R(0)>r(w̄), C(0) := ∇wc(w̄),

23Recall that λ(i−1)
QP = λ

(i)
NLP and µ(i−1)

QP = µ
(i)
NLP, cf. Section 1.4.3.

24(w̄, λ̄, µ̄) could, for example (but not necessarily), be a KKT point corresponding to an
equlibrium.
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c(0) := c(w̄), D(0) :=∇wd(w̄), and d(0) := d(w̄), where (w̄, λ̄, µ̄) is a primal-
dual reference point. Let the QP data be updated inexactly by (2.16) and (2.18)
in each iteration on all stages k ∈ S. Assume that x̂(Ti) := x̃ is constant
for all i ≥ 0. Then, every limit (w∗,λ∗QP,µ

∗
QP ) (if existing) of the implicitly

defined nonlinear iterates (w(i),λ(i),µ(i)) is a KKT point of the perturbed, but
nonlinearly feasible problem

min
w

1
2‖r(w)‖22 + e>w (2.21a)

s.t. 0 = c(w) (2.21b)

0 ≥ d(w) (2.21c)

Lw = x̃, (2.21d)

where

e :=
(
C(0) −∇c(w∗)

)>
λ∗QP +

(
D(0) −∇d(w∗)

)>
µ∗QP

+
(
R(0) −∇r(w∗)

)>
r(w∗).

Proof See [BDKS07]. �

Theorem 2.9 (Limit of optimality-improving updates) Consider QP
(2.14) with the initial data H(0) := ∇2

wwL(w̄, λ̄, µ̄), m(0) := ∇w`(w̄),
C(0) := ∇wc(w̄), c(0) := c(w̄), D(0) := ∇wd(w̄), and d(0) := d(w̄), where
(w̄, λ̄, µ̄) is a primal-dual reference point. Let the QP data be updated inexactly
by (2.16) and (2.19) in each iteration on all stages k ∈ S. Assume that
x̂(Ti) := x̃ is constant for all i ≥ 0. Then, every limit (w∗,λ∗QP,µ

∗
QP ) (if

existing) of the implicitly defined nonlinear iterates (w(i),λ(i),µ(i)) is a KKT
point of the original MPC/MHE problem.

Proof See [BDKS07]. �

With the limits of the different update rules in place, we can establish conditions,
under which we achieve convergence in analogy to Section 2.3.3. To this end,
we reduce the nonlinear optimization problem — under the assumption of an
already identified optimal active set — to the root finding problem

F (y) = 0.

Here, y = (w,λ,µact) summarize the relevant primal-dual iterates for a fixed
active set. Since, depending on whether we perform updates in the sense of
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Theorem 2.7, Corollary 2.8, or Theorem 2.9, the nonlinear problems which are
solved by the limit solutions are different, the nonlinear system F takes one of
the three instantiations

FB(y) :=

H(0)(w − w̄) +m(0) +C(0)>λ+D(0)
act
>
µact

c(w)
dact(w)

 ,

FBGN :=

R(0)>r(w) +C(0)>λ+D(0)
act
>
µact

c(w)
dact(w)

 ,

FC :=

∇wL(w,λ,µact)
c(w)
dact(w)

 .
Note that we have implicitly defined L(w,λ,µact) as the variant of L(w,λ,µ)
where all multipliers of inactive constraints are fixed to 0. The indexing of F·
refers to the fact that in [BDKS07] updates in the sense of Theorem 2.7 or
Corollary 2.8 followed by a feedback-generating QP solution are referred to as
Level B iterations, whereas updates in the sense of Theorem 2.9 followed by a
feedback-generating QP solution are referred to as Level C iterations.

The inexact RTI variants defined by Theorem 2.7, Corollary 2.8, and Theorem
2.9 are, for a fixed active set, given by the Newton-type iterations

J∆y(i) = F·(y(i))

and y(i+1) = y(i) +∆y(i). For all considered variants, the Newton-type matrix
J (again assuming the active set does not change) is identically given by:

J :=

H(0) C(0)> D
(0)
act
>

C(0)

D
(0)
act


We assume in the following that the constraint matrix

[
C(0)

D
(0)
act

]
is of full row rank

and thatH(0) is positive definite on the nullspace of these (active) constraints25.
This allows us to state the following theorem on convergence:

Theorem 2.10 (Convergence of inexact RTI) Let y∗ :≡ (w∗,λ∗,µ∗) be
a regular KKT point of (MPC)/ (MHE) (or, respectively, (2.20) or (2.21)) that

25Note that J is therefore invertible.
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fulfills the strict complementarity condition. Then there is a neighborhood U of
y∗ such that the optimal active set is constant. If we can furthermore choose U
such that a compatibility condition in the form of∥∥∥∥I− J−1∂F·

∂y
(y)
∥∥∥∥ ≤ κ

for κ < 1 is fulfilled for all y ∈ U , we have that the iterations defined by
Theorem 2.9 (or, respectively, by Theorem 2.7 or Corollary 2.8) converge to the
optimal solution y∗ of (MPC)/ (MHE) (or, respectively, (2.20) or (2.21)) for
all initial guesses y(0) that satisfy

‖y∗ − y(0)‖+ ‖J
−1F·(y(0))‖

1− κ ∈ U .

Proof See [BDKS07]. �

2.4.3 Assembly of Multi- and Mixed-Level Iteration schemes

In [BDKS07] it was proposed to assemble the different update rules for the
linear MPC problem (2.14), namely the feasibility-improving, the optimality-
improving, and the full re-linearization updates to fixed schemes. In doing
so, feedback-generating solutions of the linear MPC problem with a simple
initial value embedding were referred to as level A iterations, while feasibility-
improving updates followed by a feedback-generating QP solution were labeled
level B iterations, optimality-improving updates with a subsequent QP solution
level C iterations, and full RTI scheme iterations level D iterations.

A Multi-Level Iteration (MLI) scheme can be assembled from these components
by specifying rates (through multiples of the sampling time) at which the
individual levels are executed. For example, an D6C∞B2A1 scheme would
correspond to solve a feedback-generating linear MPC problem at each sampling
time, whose data is updated according to the appropriate feasibility improving
update rules every second sampling time, and by a full re-linearization every
six sampling times. Optimality-improving data updates are not performed in
this case.

The principle of MLI schemes can be carried further, as proposed in [FWSB12],
by using different update rules for each individual stage at each sampling time.
This approach is motivated by the observation that we essentially solve an
open-loop OCP at each sampling time in MPC. It therefore can be expected
that the (optimal) controls computed for a certain stage become more and more
outdated as the process evolves, since disturbances or measurement errors add
up and therefore require a re-optimization at later sampling times. Hence, when
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solving a single instance of OCP in an MPC loop, it is more important to model
the process well in earlier parts of the prediction horizon than in later parts,
where predictions are less accurate and the computed controls can be refined
at a later point in time. We therefore propose two modifications to the MLI
approach:

Fractional-level iterations Apply one of the update levels described above
only to the first Nfrac < N stages. For example, a fractional-D (or D′) iteration
performs a full re-linearization only on the first Nfrac stages and reuses the old
data for the remaining intervals.

Mixed-level iterations Apply one of the update levels D or C to the first
Nfrac stages and another (computationally less expensive) update level for the
other intervals. For example, a D/B iteration computes full re-linearization
information on the first Nfrac stages, but only evaluates constraint residuals
(and approximates the objective function gradient accordingly) on the remaining
stages.

Analogously, we can argue in MHE that the estimate a state on an earlier stage
is initialized with is already close to its true value. Therefore, an update of the
full derivative information on an earlier stage may lead to little additional quality
in the most recent state and parameter estimate, particularly in comparison to
an update of the derivative information on a later (i.e., more recent) stage. We
therefore define fractional-level iterations for MHE as applying a certain update
level only to the last Nfrac stages; mixed-level iterations for MHE consequently
are the mixture of applying a certain higher-fidelity update level to the last
Nfrac stages and a lower-complexity one to the remaining stages.

All in all, by using the more flexible concept of multi-, fractional-, and mixed-
level iteration schemes in the just outlined fashion, we may obtain a significant
reduction of the preparation phase, as costly full derivative evaluations can be
avoided to a smaller or larger extent, depending on the specific scheme. Still,
as long as higher-fidelity updates are performed at a sufficiently high rate, we
can expect a satisfactory control or estimation performance.

2.4.4 Parallelization of feedback and data updates

On a parallel, multi-threaded computing architecture, we can even avoid the
rigid concept of fixing a specific scheme (as in the notion of multi- or mixed-
level iteration schemes) beforehand. We observe that the feedback-generating
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Figure 2.4: Communication diagram for a concurrent implementation of an RTI
scheme with hierarchical data updates.

linear MPC iterations and the different QP data updates can be run largely
independently from one another in separated-memory processes on different
computational threads, only updating their information at the start of each
respective iteration. In particular, the different update schemes proposed in
Section 2.4.1 can be run concurrently. As optimality-improving updates come
at significantly smaller computational costs than full re-linearizations26, we can,
for example, improve the feedback-generating linear MPC problem already by
using the updates computed from (2.16) and (2.17)/(2.18) on a separate thread,
before a full re-linearization is available; while the full re-linearization update
is still being computed, system disturbances can already be rejected with the
guarantees of Theorems 2.4 and 2.9.

We essentially propose to orchestrate the feedback-generating linear MPC and
the hierarchical data updates as sketched in Figure 2.4. We have a main
process that acts as scheduler for the desired scheme, triggering feedback and
update iterations as needed. After a state measurement is observed from
the dynamic system, a feedback iteration is triggered using the most recent

26For identical problem data, linearization points, and integrator error control (in case of
adaptive integrators).
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quadratic approximation of the nonlinear problem which is available. While
the QP is solved by the linear MPC process, update iterations are triggered in
accordance with the specified MLI scheme and available computational power,
which limits the number of update processes to be run in parallel by (at most)
the number of available threads. Also, quality criteria measuring the accuracy
of the current quadratic model may be used to trigger the appropriate data
update routine. Such criteria may be estimates of the incompatibility factor κ,
as introduced in Theorem 1.51, which is, however, typically difficult to achieve
in practical real-time computations, cf. [Pot11b]. Alternatively, a comparison
between predicted and actually observed system states may indicate when an
update of the linearization information is beneficial. We may even use feasibility-
improving updates for probing of the accuracy of the current quadratic model
after a larger step in the nonlinear variables is performed, e.g., to figure out
which stages require an update of the linearization information most urgently
in situations where the available computational power is limited and the cost of
a full re-linearization is high.

For (partial) re-linearization, the current set of NLP variables is sent to a
triggered update process in order to be used as reference point. Meanwhile,
after the feedback-generating QP solution is completed, the first (nonlinear)
control action q0 is immediately sent to the controlled system. At the next
sampling time, after observing a new measurement, QP data updates are received
— if available. Only if the respective data updates are needed in compliance
with the specified MLI scheme the updates are waited for. A feedback iteration
is triggered, computing a solution to a potentially updated QP. Again update
iterations are triggered as needed and after completion of the feedback iteration
the first control action is immediately returned.

2.4.5 The controller package CHUCS

The flexible mixed-level and multi-level iteration framework as sketched in
Figure 2.4 has been implemented in the CasADi-based (see [AÅD12]) Python
code CHUCS27. This implementation is MPC-centered and allows for the flexible
assembly of feedback-generating and data-updating routines. MPC problems
can be specified in the CasADi syntax. Function evaluations and sensitivities are
computed in CHUCS using CVODES from the SUNDIALS integrator suite, see
[HBG+05]. The repeated solution of quadratic programs is performed using the
Online Active Set Strategy implemented in qpOASES (see [FBD08, FKP+13]).
For sparsity exploitation a condensing procedure based on [Lei95, Lei99] is

27CHUCS stands for Concurrently Hierarchically Updating Controller Schemes.
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Figure 2.5: Coordinates and considered forces of the single-track vehicle model.
The figure is aligned with the vehicle’s local coordinate system, while the
dashed pair of vectors (x,y) depicts the global coordinate system. Taken from
[KSBS10, FWSB12].

available. The concurrent computational threads are managed using Python’s
multiprocessing package.

2.4.6 Numerical case study

We demonstrate the capabilities of the flexible mixed-level concept in the
following in a disturbance rejection scenario for a ground vehicle traveling at
high speed. This case study is essentially identical to the one from [ABK+09],
where the effectiveness of the standard MLI framework from [BDKS07] was
demonstrated. The nonlinear single-track car model from [Ger05, KSBS10],
featuring a Pacejka-type tire model, is used to characterize the vehicle dynamics.
It is governed by an ODE system in seven states x = (cx, cy, ψ, v, β, wz, δ)
describing the position, orientation, velocities, and the steering angle of the
vehicle. Three control inputs u = (wδ, FB, φ) are available, manipulating the
steering rate, deceleration force, and throttle. The model is nonlinear in the
states as well as in the control φ. Coordinates, angles, and forces are visualized
in Figure 2.5. We refer to Chapter 7 for an in-depth discussion of the dynamic
equations of ground vehicles.

We consider a scenario, where a vehicle with a mass of 1.300 kg is driving on a
straight lane at a speed of 30 m/s. An impulse of magnitude 2 · 104 N is acting
on the rear axle perpendicular to the driving direction for 0.05 s. In open loop
control, the impact is strong enough to make the car spin multiple times and
push it off the lane. It is the aim of the controller to keep the vehicle on the
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Figure 2.6: Disturbance rejection scenario with a D6A1 controller. The vehicle
strays disastrously from its lane and the controller crashes after roughly 5 s.

lane while retaining a speed of 30 m/s. To this end, we use a least-squares
objective formulation, minimizing the deviation from the track reference (i.e.,
the center line) and the cruising speed, and regularizing the controls wδ, FB, φ.
All states and controls have two-sided physical limits. The full system state
information is available at a resolution of 50ms and we use a prediction horizon
length of 16 sampling times.

We demonstrate the effectiveness of fractional full re-linearizations by comparing
two different controllers. Both solve a feedback QP at every sampling time
and in parallel compute a full re-linearization update over the whole prediction
horizon every 6 samples. Additionally, the second controller features full re-
linearization updates on the first Nfrac = 2 stages every two samples. As can
be seen from Figure 2.6, the first controller without fractional updates fails
to stabilize the car, but crashes after roughly 5 s of simulation. The second
controller stabilizes the vehicle after roughly 5 s, cf. Figure 2.7. The maximum
deviation is less than 0.5m from the desired straight driving line and less than
1.2m/s from the reference velocity.

We obtained the following computational results on a standard computer
featuring a dual-core Intel i7 CPU at 2.7 GHz clock speed and 8 GB of RAM.
We stress that these computation times only serve the purpose of permitting
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Figure 2.7: Disturbance rejection scenario with a D6D′2A1 controller. The
controller is able to reject the shock, and stabilizes the vehicle at its reference
after roughly 5 s.

a relative comparison of the costs for the different computations. Using a
lower-level programming language such as C/C++ would, most certainly, lead
to significant improvements in the absolute time scales. The average clock
time for one feedback-generating QP solution was 1.8 ms, while an average
full re-linearization update took 117.7 ms (thereof condensing 20.6 ms). The
average clock time for one D′ update iteration was 27.1 ms (thereof condensing
12.8 ms).

In a second comparison, we analyze the effect of a concurrent execution of data
updates and feedback-generating linear MPC solutions. We regard a D4A1

controller in sequential and in parallel execution on the same vehicle benchmark
problem. Observe that the control performance of a parallel MLI controller may
be worse than the performance of a sequential MLI controller (at least from
the viewpoint of this non-real-time, simulation-based analysis), as the nonlinear
iterate on which a full re-linearization is based in the parallel execution may
correspond to an older sampling time compared to the sequential execution,
where the re-linearization is only triggered when requested by the chosen scheme
and based on the most-recent nonlinear iterate.

On the positive side, however, we can see from Figures 2.8 and 2.9 that the
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(a) Sequential controller performance.

(b) Sequential execution time diagram.

Figure 2.8: Controller performance and computation time diagram of a D4A1

scheme in squential execution.

difference between the sequential and parallel controller execution in terms of
control performance is rather small. Considering the execution time diagrams28,
we observe a roughly 60% parallel efficiency of the parallel controller. A slightly
higher parallel efficiency would have been possible by switching from a blocking
to a non-blocking QP data update reception strategy, i.e., by not forcing the

28The diagrams show time on the horizontal axis. Red means the corresponding
computational process is computing, while white means it is idle.
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(a) Parallel controller performance.

(b) Parallel execution time diagram.

Figure 2.9: Controller performance and computation time diagram of a D4A1

scheme in parallel execution.

linear MPC to wait for a data update when specified by the MLI scheme. This
would, however, come at the cost of a deteriorated control performance.

In practice, a tradeoff needs to be found on this scale between feedback rate
and control performance. A more sophisticated scheduling routine, which takes
into account a prediction of the execution times of each routine on a real-time
platform, may help in this respect.
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Chapter 3

Distinctive Structures in
Dynamic Optimization

It is clear from Chapter 2 that both (MHE) and (MPC) are structurally
equivalent to (MS-NLP). In the following, we analyze the characteristic
structures of these dynamic optimization NLPs in detail. Specifically, we
focus on the QP subproblems, which appear when applying based SQP methods
in general or the RTI scheme in particular, and which inherit the distinctive
dynamic optimization sparsity patterns from their NLP origins.

To this end, let us consider a generic quadratic subproblem of the form

min
z∈Rn

1
2z
>Hz +m>z (3.1a)

s.t. 0 = Cz + c (3.1b)

Dz ≤ d . (3.1c)

We assume that parametric dependencies, like initial value embedding
constraints (MPC4) for example, are hidden in the stage constraints (3.1c).

Independently of whether QP (3.1) stems from an online or an offline dynamic
optimization problem, a control or an estimation problem, it exhibits the

93
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following characteristic matrix sparsity patterns:

H =


H0

H1
. . .

HN

 C =


C0 −E0

C1 −E1
. . .

. . .

CN−1 −EN−1



D =


D0

D1
. . .

DN

 .
Matching these patterns, we have

m = (m0,m1, . . . ,mN ) ,

c = (c0, c1, . . . , cN−1) ,

and

d = (d0,d1, . . . ,dN ) .

The block entries are, for nz := nx + nu, Hk ∈ Rnz×nz , Ck ∈ Rnx×nz , Ek :=[
I 0

]
, Dk ∈ Rnd×nz (w.l.o.g. the numbers of affine constraints are identical

on all QP stages), mk ∈ Rnz , ck ∈ Rnx , and dk ∈ Rnd (again without loss of
generality) for all k ∈ SN . We further have HN ∈ Rnx×nx , DN ∈ Rnd×nx , and
dN ∈ Rnd . We assume that parameters are hidden in the state vector in this
context, cf. Section 1.1.1.

Particularly for long horizon lengths N (relative to the number of states and
controls, nx, and nu) the involved matrices obviously are very sparse. It is
therefore crucial for the performance of any optimization algorithm to exploit
this sparsity in the best possible way. In the SQP-type frameworks central to
this thesis, each iteration can be divided in two parts: a setup phase, where
the quadratic problem data is generated, and a solution phase, where QP (3.1)
is solved. We analyze in the following, how each phase can benefit from the
existing sparsity patterns. Section 3.1 covers the setup phase, while Section
3.2 presents a new, computationally more efficient algorithm for the classical
problem dimension reduction technique commonly referred to as condensing
[BP84, Lei99]. In Section 3.3, we adapt this algorithm to suit partial QP data
updates in the spirit of Section 2.4.1. Additionally, we present a whole new
sparse QP algorithm in Chapter 4.
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On a side note we remark that also direct collocation methods lead to structurally
similar sparsity patterns to the ones seen above. In particular, the utilization
of an SQP framework with a block-structured QP solution method such as the
one to be presented in Chapter 4 is conceivable. Care must be taken however in
the collocation context to exploit the specific internal sparsity patterns of the
matrix blocks Hk, Ck, Ek, and Dk, which become slightly more pronounced
in this context, cf., e.g., [SBS98, Bie10, And13].

Acknowledgement Section 3.2 of this chapter is partly based on the paper
“A Condensing Algorithm for Nonlinear MPC with a Quadratic Runtime in
Horizon Length” by Joel Andersson, Janick Frasch, Milan Vukov, and Moritz
Diehl [AFVD13]. Joel Andersson contributed the central idea that lead to the
lower complexity condensing algorithm. Janick Frasch helped formalize the
algorithmic idea, while Milan Vukov contributed a prototypic implementation
for numerical testing (not part of this thesis). Moritz Diehl served as a vital
discussion partner. This thesis features a revised and more detailed description
of the algorithm, and gives details to its applicability in the real-time context.

The algorithmic extensions for Mixed-Level Iterations Schemes in Section 3.3
are new, previously unpublished results, but we acknowledge that a similar
analysis of the classical condensing algorithm has been performed for the paper
“Mixed-Level Iteration Schemes for Nonlinear Model Predictive Control” by
Janick Frasch, Leonard Wirsching, Sebastian Sager, and Hans Georg Bock
[FWSB12]. For that publication, the analysis has been carried out jointly by
Janick Frasch and Leonard Wirsching.

3.1 IVP Solution and Sensitivity Generation

By definition of the SQP method in Section 1.4.3, the data of QP (3.1) is
obtained by (possibly inexact) linearization of the NLP constraint functions and
a (possibly inexact) quadratic approximation of the NLP Lagrangian. In case of
the dynamic optimization problems (MS-NLP), (MPC), and (MHE) however,
the original NLP data is not available in closed form, but rather depends on
the solution of IVPs in the form of

x(t0) = s ; ẋ(t) = f(t,x(t),p) ∀ t ∈ T , (3.2)

cf. Equation (1.4). Here, we subsume all parametric dependencies of the
IVP (3.2), i.e., the control discretization variables as well as the actual system
parameters, into one vector p for notational convenience.
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Only for ODE systems of special structure a compact closed-form analytic
solution representation is available. Therefore one relies on numerical
integration routines to compute an approximate solution for the state trajectories
x(t; s,p), t ∈ T with given initial value s, and parametric dependency
p. Depending on the chosen method, the solution may be a continuous
representation of the (approximate) state trajectory, or simply the (approximate)
trajectory value at some desired point tj , j ∈ N. Among numerical integration
routines one typically distinguishes between explicit methods, such as the popular
family of explicit Runge-Kutta methods, and implicit methods, such as collocation
integration methods or backwards differentiation formulae (BDF). Explicit
methods are typically employed for non-stiff1 ODE systems, while implicit
methods often have a more desirable region of absolute stability and hence are
better suited for stiff ODE systems. We omit further details here, and refer
the reader to [SB08, Alb10b] and the references therein for a more thorough
analysis.

As mentioned in Section 1.2.1, both adaptive and fixed-stepsize integration
schemes are being used in the context of real-time estimation and control.
The essential difference is that the latter class of methods fixes the integrator
discretization grid beforehand, e.g., by user specifications and/or semi-automatic
heuristics, while the former class uses error estimates (typically derived from
a comparison with an increased-order method) to refine the initially coarse
integrator discretization grid where needed. We refer to [SB08, Alb10b] for
details, but note that the adaptivity of the integrator discretization grid has
severe consequences when it comes to the calculation of derivatives, as we will
see further below.

The evaluation of the integrals of the DOP objective can be performed alongside
the trajectory integration, cf. [Lei95, Lei99]. Besides function evaluations, the
data setup of QP (3.1) requires the computation of sensitivity information of the
IVP solution with respect to the system’s initial value as well as its parametric
dependency in form of the variational trajectories

∂x

∂s
(t; s,p) and

∂x

∂p
(t; s,p)

of System (3.2). Also, second-order derivatives may be required, if an exact
Hessian approximation is chosen, cf. Section 1.4.4.

Clearly, sensitivity information can be computed by applying the method of finite
differences to the IVP solutions x(t; s,p). It is well-known, however, that this

1There is no generally agreed upon unique system-based characterization of stiffness, but a
system linearization featuring both fast and slow modes, i.e., a large ratio of the smallest and
largest negative Eigenvalue, is often a good indicator for a stiff system, see also [HNW96].
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approach, which is sometimes referred to as external numerical differentiation
(END)2, is generally inferior to the so-called approach of internal numerical
differentiation (IND)3, where one solves perturbed IVPs alongside the nominal
IVP using an identical integrator discretization grid, cf. [Boc81]. In fact, one
can in general expect the accuracy of derivatives computed by END to be at
most in the order of the square-root of the accuracy of the IVP solution, while
the (local) approximation error of derivatives computed by the IND approach
initially improves at the same rate as the (local) approximation error of the
original IVP solution. Even with a frozen integrator discretization grid, a finite
differences derivative approximation still suffers from cancellation errors, which
limit the accuracy of the obtained derivatives to roughly the square-root of
machine precision, cf. Section 1.4.5. To overcome these shortcomings, one often
formulates the IVP sensitivities as variational differential equations

x(t0) =
∂s

∂d

∂

∂t

∂x

∂d
(t) =

∂f(t, x(t), p)
∂x

∂x

∂d
(t) +

∂f(t, x(t), p)
∂p

∂p

∂d
∀ t ∈ T ,

which are derived by differentiating IVP (3.2) with respect to a direction d and
interchanging the differentiation order on the left-hand side of the differential
equation. If the variational differential equations are solved alongside the
nominal IVP (3.2) using the same integrator discretization grid, the principle
of IND is again satisfied and the accuracy of the sensitivity information is only
limited by the accuracy of the IVP solver whenever exact derivatives of the
system model f with respect to x and p are available, e.g., through algorithmic
differentiation. We refer to [MP96, Alb10b, Qui12, And13] and the references
therein for a more thorough discussion. There, also the computation of adjoint
sensitivities is covered, and insights for a white-box integration of AD and IVP
solver can be found.

It is important to observe that, while it is advantageous to compute trajectories
and sensitivities alongside, these computations can be performed independently
from one another over all discretization stages k ∈ S. In particular, we can
execute fixed-stepsize integrators fully parallel on N computational nodes
with an efficiency of 1 if an identical number of integrator steps is used on
each stage. For adaptive integrators it is straightforward to construct worst-
case counterexamples, where an arbitrarily large number of integrator steps is

2The name external numerical differentiation stems from the fact that the finite difference
approximation is taken outside the integrator discretization grid.

3The name internal numerical differentiation refers to the fact that freezing the integrator
grid can be seen as differentiating the components of the integration algorithm itself with
respect to the initial perturbations.
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required on one stage, while the required accuracy on all other stages is satisfied
already with one step of the respective method.

Nonetheless, by sensibly choosing the discretization grid, the resulting stage
IVPs can become quite linear (i.e., require few integrator steps per stage problem)
and a very high parallel efficiency can be obtained. This comes, of course, at the
price of larger NLPs and ultimately QPs, which then become the computational
bottleneck. Motivated by this, we focus on the structure-exploiting solution of
the resulting QPs and parallel solution methods therefor in the remainder of
this part.

3.2 Dimension Reduction by Condensing

The main idea of condensing, which was established in the context of direct
multiple shooting mainly through [BP84], is to use the stage coupling (equality)
constraints (3.1b) of the dynamic optimization QP subproblem for an elimination
of the dependent state variables from the vector of optimization variables. This
leads to dense QPs of a significantly reduced dimensionality if the number of
states nx is rather large compared to the horizon lengthN and the dimensionality
of control parameterization nu.

Details of the original condensing algorithm from [BP84] can be found, e.g., in
[Lei95, Lei99]. The computational complexity of this established algorithm is
O(N3 nx n

2
u +N2 n2

x nu) and therefore in particular cubic in the horizon length
(cf. [BNS95, Lei95, Lei99, CWTB00, LBS+03, DFH09, FWSB12, KWBS12,
VDF+13]). Only very recently a Riccati recursion point of view (adopted in
[FJ13], based on observations in [AM12]), and, independently, an algorithmic
differentiation point of view ([AFVD13, And13], inspired by [AD10b]) lead to
a faster condensing algorithm with a quadratic runtime in horizon length. We
base our presentation on [AFVD13] in the following.

Recalling that the stage variable vectors are given by zk = (xk,uk) for each
k ∈ SN , and zN = xN , we can regroup the vector of optimization variables
into x̄ := (x1,x2, . . . ,xN ), u := (u0,u1, . . . ,uN ), and x0. Accordingly, (3.1b)
can equivalently be written as

Ax̄+Bu+ c+Lx0 = 0,
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where

A =


−I
A1 −I

. . .
. . .

AN−1 −I

 , B =


B0

B1
. . .

BN−1

 ,

L =


A0
0
...
0

 , and c̃ =


c0
c1
...

cN−1

 .
We have

Ak =
∂Fk

∂sk
(sk,νk)

and
Bk =

∂Fk

∂νk
(sk,νk),

where the linearization points sk and νk depend on the specific SQP-type
method. Based on this separation of variables, we first rewrite the objective
(3.1a) as

1
2

(
x>Qx+ u>Sx+ x>S>u+ u>Ru

)
+ q>x+ r>u,

where x = (x0, x̄). The block matrices Q ∈ R(N+1)nx×(N+1)nx , S ∈
RNnu×(N+1)nx , and R ∈ RNnu×Nnu are given by

Q =


Q0

Q1
. . .

QN

 , S =


S0

S1
. . .

SN−1 0

 ,

R =


R0

R1
. . .

RN−1

 .

The stage constraints (3.1c) accordingly become

Dxx+Duu ≤ d,
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where

Dx =


Dx

0
Dx

1
. . .

Dx
N

 and Du =


Du

0
Du

1
. . .

Du
N−1
0

 .

Since, by inspection, A is invertible, we can use

x̄ = −A−1 (Bu+ c+Lx0)

to eliminate the dependent state vector from the QP optimization variables.
We introduce the transition matrix G ∈ R(N+1)nx×Nnu and the transition
vector g ∈ R(N+1)nx , as well as the condensed embedding of x0, denoted by
Ge ∈ R(N+1)nx×nx :

G =


0

G1,0
G2,0 G2,1
...

...
. . .

GN,0 GN,1 · · · GN,N−1

 , Ge =


I
Ge1
Ge2
...
GeN

 , and g =


0
g1
g2
...
gN

 ,

where the nonzero blocks from G and g are given by −A−1B and −A−1c,
respectively, and the non-trivial blocks of Ge are given by −A−1L.

We then yield a condensed QP4

min
u,(x0)

1
2 u
>R̄ u+ r̄>u+ e(x0,u) (3.3a)

s.t. D̄ u+ D̄ex0 ≤ d̄ , (3.3b)

where

r̄ := r +G>(q +Qg) + S g ,

R̄ := R+G>QG+ SG+G>S> ,

D̄ := Du +DxG ,

d̄ := d−Dx g .

4Whether x0 is an optimization variable or not depends on the specific problem; essentially
it is one for MHE, but in MPC it is often fully determined.
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The initial value embedding is given by

D̄e := DxGe

and

e(x0,u) := 1
2 x0 Q̄

e x0 + u>S̄e x0 + q̄e>x0 , (3.4)

where

Q̄e := Ge>QGe

S̄e := G>QGe + SGe

q̄e := Ge>Qg +Ge>q .

We initially consider the MPC case with fully determined initial value, where
the initial value embedding e(x0,u) reduces to

e(x0,u) ≡ u>S̄e x0 ,

as the remaining terms are constant. Note that here only u are optimization
variables, while x0 is a fixed parameter after the initial value embedding.

The essential idea of the N2 complexity condensing algorithm is to compute
G>QG exploiting the banded structure of A and B separately. The
computational order can be seen as B>(−A−>(ΠQG)), rather than the
order G>(QG) from the classical condensing algorithm. Here,

Π :=

0 I
. . .

. . .

0 I

 ∈ RNnx×(N+1)nx

is only needed to formally eliminate the first block row of zeros from QG for a
dimension-consistent multiplication. In an analogous fashion, the computational
complexity for obtaining r̄ can be reduced by one order of magnitude in N .

In detail, we suggest the following algorithms for computing r̄, R̄, D̄, and d̄.
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Algorithm 3.1: Computation of nonzero blocks of g
1 g1 := c0
2 for i = 1 : N − 1 do
3 gi+1 := ci +Ai gi

Algorithm 3.2: Computation of nonzero blocks of G
1 for j = 0 : N − 1 do
2 Gj+1,j := Bj
3 for i = j + 1 : N − 1 do
4 Gi+1,j := AiGi,j

Algorithm 3.3: Blockwise computation of r̄
1 w̃ := qN +QN gN
2 for i = N − 1 : 1 do
3 r̄i := ri +Bi>w̃ + Si gi
4 w̃ := A>i w̃ + (qi +Qi gi)
5 r̄0 := r0 +B>0 w̃

3.2.1 Condensed QP objective

First, the nonzero blocks of the transition matrix G and the transition vector g
are computed by block-forward substitution from Algorithms 3.1 and 3.2. The
computational costs can be seen from Table 3.1 in Section 3.2.65.

In computing r̄ and R̄, we make use of the intermediate results w := −A−>(q+
Qg) and W := −A−>(QG), respectively. Note, however, that these results
do not need to be stored completely, but only one vector block w̃ ∈ Rnx
and one matrix block W̃ ∈ Rnx×nu of memory are sufficient in a sequential
implementation6.

Both, w and W are computed by blockwise backwards substitution in
Algorithms 3.3 and 3.4, respectively. The desired QP data, r̄ and R̄, is computed
alongside by a premultiplication with the correspondingB· block and an addition
of the corresponding R· (r· in case of r̄) and S· components, where applicable.

5We note, also for future reference, that we only count additions and multiplications or
copy operations in this context.

6In a parallel implementation, this becomes one vector and one matrix block each per
computational thread.
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Algorithm 3.4: Blockwise computation of R̄
1 for j = 0 : N − 1 do
2 W̃ := QN GN,j
3 for i = N − 1 : j + 1 do
4 R̄i,j := B>i W̃ + SiGi,j
5 W̃ := A>i W̃ +QiGi,j
6 R̄j,j := Rj,j +B>j W̃

Algorithm 3.5: Blockwise computation of D̄
1 D̄0,0 := Du

0
2 for i = 1 : N − 1 do
3 for j = 0 : i− 1 do
4 D̄i,j := Dx

i Gi,j

5 D̄i,i := Du
i +Dx

i Gi,j

6 for j = 0 : N − 1 do
7 D̄N,j := Dx

N GN,j

3.2.2 Condensing of affine stage constraints

The condensed matrix of path constraints D̄ can be computed in a
straightforward manner as given by Algorithm 3.5. Analogously, d̄ can be
computed as suggested by Algorithm 3.6.

3.2.3 Initial value embedding in MPC

Algorithm 3.3 only computes the “offline” part of r̄ (essentially assuming
x0 = 0). Once the true value for x0 is known, the result from Algorithm 3.3
needs to be corrected by r̄e := S̄ex0 = (G>QGe + SGe)x0.

Depending on whether the focus lies on an algorithm with minimal feedback
delay or on a minimal overall computational effort, we propose to use either
Algorithms 3.7 and 3.8 or Algorithms 3.9 and 3.10. Algorithm 3.8 precomputes
an Nnu by nx matrix S̄e, based on the influence matrix of x0, Ge, which has
to be computed before, e.g., by Algorithm 3.7. The overall computational cost
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Algorithm 3.6: Blockwise computation of d̄
1 d̄0 := d0
2 for i = 1 : N do
3 d̄i := di −Dx

i gi

Algorithm 3.7: Blockwise computation of Ge

1 Ge0 := I
2 for i = 0 : N − 1 do
3 Gei+1 := AiG

e
i

of Algorithms 3.7 and 3.8 is

nx + n2
x + (N − 1) · 2n3

x + 2n3
x + (N − 1) · (4n2

x nu + 4n3
x) + 2n2

x nu

= (6N − 4)n3
x + (4N − 2)n2

x nu + n2
x + nx

FLOPs. In an online context, these computations can, however, be performed
in the preparation phase before x0 is known. The cost of the operations in
the feedback phase then reduces to N nu nx FLOPs for the addition of the
matrix-vector product r̄e = S̄ex0 to the precomputed linear objective term r̄.

Algorithm 3.10 directly computes r̄e as (G>Q+S)ve based on the propagation
of x0, ve := Gex0, which is computed by Algorithm 3.9. The total
computational costs of Algorithms 3.9 and 3.10 add up to

N · 2n2
x + nx + 2n2

x + (N − 1) · (4nx nu + 4n2
x) + 4nx nu

= 4N nx nu + (6N − 2)n2
x + nx

FLOPs. Here, however, all operations can only be performed after x0 is known,
therefore slightly increasing the feedback delay at the gain of reduced overall
computational costs.

Like for the objective terms, two possibilities exist for embedding the initial
value into the path constraints:

Algorithm 3.11 directly computes d̄e := D̄ex0 at an overall computational cost
of 2 (N + 1)nx nd FLOPS. However, Algorithm 3.11 requires the execution of
Algorithm 3.9 during the feedback phase, which comes at the cost of N ·2n2

x+nx
FLOPs, as outlined above.

Algorithm 3.12 on the other hand prepares the embedding D̄e at the cost of
nx nd + 2N n2

x nd FLOPS, but can directly be executed during the preparation
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Algorithm 3.8: Blockwise computation of S̄e

1 W̃ := QN G
e
N

2 for i = N − 1 : 1 do
3 S̄ei := B>i W̃ + SiGei
4 W̃ := A>i W̃ +QiGei
5 S̄e0 := B>0 W̃ + S0

Algorithm 3.9: Blockwise computation of ve

1 ve0 := x0
2 for i = 0 : N − 1 do
3 vei+1 := Ai v

e
i

phase. The computational cost of the subtraction d̄− d̄e = d̄−D̄ex0 during the
feedback phase again sum up to 2 (N + 1)nx nd FLOPs. Note that Algorithm
3.11 requires a previous execution of Algorithm 3.9, while Algorithm 3.12
requires a previous execution of Algorithm 3.7.

3.2.4 Online measurement embedding in MHE

If the dynamic real-time optimization problem at hand is of MHE origin, x0
remains an optimization variable. Accordingly, Algorithms 3.8 and 3.12 need to
be employed to compute S̄e and D̄e explicitly (both relying on a precomputed
Ge by Algorithm 3.7). Furthermore, the u-free terms in (3.4) are no longer
negligible for the condensed QP (3.3). We therefore have Algorithms 3.13
and 3.14 to compute q̃e = g>QGe + q>Ge and Q̄e = Ge>QGe. Note that
GeN

>qN is omitted in Algorithm 3.13 on purpose, since it is not yet determined
during the preparation phase.

It is easy to verify that the final measurement yN , which is still unknown during
the preparation phase, only enters in the last block component of the linear QP
objective term, qN (cf., e.g., [KDK+11a]). Therefore, the result of Algorithm
3.13 (which is only correct if the new measurement yN is identical with the
model prediction, i.e., if qN = 0) needs to be corrected during the feedback
phase by q̄e := q̃e +GeN

>qN at the computational cost of 2n2
x. Furthermore,

Algorithm 3.3 as well needs to be performed in the feedback phase, as all
its computations are dependent on qN . The overall computational costs of
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Algorithm 3.10: Blockwise direct computation of r̄e

1 w̃ := QN v
e
N

2 for i = N − 1 : 1 do
3 r̄ei := B>i w̃ + Si vei
4 w̃ := A>i w̃ +Qi vei
5 r̄e0 := B>0 w̃ + S0v

e
0

Algorithm 3.11: Blockwise direct computation of d̄e

1 for i = 0 : N do
2 d̄ei := Dx

i v
e
i

Algorithm 3.12: Blockwise computation of D̄e

1 D̄e
0 := Dx

0
2 for i = 1 : N do
3 D̄e

i := Dx
i G

e
i

Algorithm 3.3 sum up to

2n2
x + (N − 1) · (4nx nu + 4n2

x) + 2nx nu

= (4N − 2) · (n2
x + nx nu).

3.2.5 Recovery of the full-space primal-dual solution

Since the condensed QP (3.3) was obtained from (3.1) by propagation of the
equality constraints (3.1b), both solutions are equivalent. In particular, the
primal-dual solution of (3.3), (u∗,x∗0,µ∗) corresponds to the optimal state,
initial value and stage constraint multipliers of (3.1)7. To recover the full state
vector x∗ ∈ R(N+1)nx , a simple forward simulation, as given by Algorithm
3.15, is sufficient. To recover the multipliers of the coupling constraints
λ∗ := (λ∗1,λ∗2, . . . ,λ∗N ) ∈ RNnx we make use of the fact that the gradient
of the Lagrangian of (3.1) is stationary in an optimal primal-dual solution

7W.l.o.g., we assume that x∗0 is a (possibly fixed) optimization variable here.



DIMENSION REDUCTION BY CONDENSING 107

Algorithm 3.13: Additive computation of q̃e

1 q̃e := q0
2 for i = 1 : N − 1 do
3 q̃e := q̃e +Gei

>(qi +Qi gi)
4 q̃e := q̃e +GeN

>(QN gN )

Algorithm 3.14: Additive computation of Q̄e

1 Q̄e := Q0
2 for i = 1 : N do
3 Q̄e := Q̄e +Gei

>QiG
e
i

(x∗,u∗,λ∗,µ∗). Since the Lagrangian of (3.1) is given by

L(x,u,λ,µ) = 1
2

(
x>Qx+ u>S x+ x>S>u+ u>Ru

)
+ q>x+ r>u

+ λ>
([
L A

]
x+Bu+ c

)
+ µ> (Dx x+Du u− d) ,

we have

∇xL(x∗,u∗,λ∗,µ∗) = Qx∗+2S>u∗+q+
[
L A

]>
λ∗+Dx>µ∗ = 0. (3.5)

The block-banded structure of L and A in Equation (3.5) can be used to obtain
λ∗ from the known vectors x∗, u∗, and µ∗ by the block-backwards substitution
given in Algorithm 3.168.

3.2.6 Computational complexity analysis

The number of floating point operations required by each of the condensing
algorithms detailed here can be seen from Table 3.1. As mentioned before, we
only count additions, multiplications and copy operations. Particular structures,
such as, e.g., multiplication with an identity matrix, are exploited. We assume
an optimized order of operations, which means, for example, that an addition
and a matrix-vector multiplication c := Aa+ b are assumed to be performed
jointly at the cost of 2n2 FLOPs, if all dimensions are n.

For clarity, we summarize the asembly choices of the individual algorithms for
MPC and MHE in Table 3.2. We can conclude that in MPC the computational

8To be precise, only the last N block rows of (3.5) are used for recovering λ.
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Algorithm 3.15: Recovery of x∗

1 for i = 1 : N do
2 x∗i := Ai−1 x

∗
i−1 +Bi−1 u

∗
i−1 + ci−1

Algorithm 3.16: Recovery of λ∗

1 λ∗N := QN x
∗
N + qN +Dx

N
>µ∗N

2 for i = N − 1 : 1 do
3 λ∗i := Qi x

∗
i + S>i u∗i + qi +A>i λi+1 +Dx

i
>µ∗i

complexity of the condensing procedure on a sequential computational
architecture ranges between

O
(
N2 (n2

x nu + nx n
2
u + nx nu nd) +N (n3

x + n2
x nd)

)
and

O
(
N2 (n2

x nu + nx n
2
u + nx nu nd)

)
in the preparation phase, and between

O (N (nx nu + nx nd))

and
O
(
N (n2

x + nx nu + nx nd)
)

in the feedback phase9, depending on whether the feedback delay minimizing
or the overall-effort minimizing implementation is chosen. In MHE, the
computational complexity is

O
(
N2 (n2

x nu + nx n
2
u + nx nu nd) +N (n3

x + n2
x nd)

)
in the preparation phase and

O
(
N (n2

x + nx nu)
)

in the feedback phase, due to the additional degree of freedom in the condensed
QP.

On a parallel computational architecture with at least
⌈
N
2
⌉
threads10, the

computational complexity of the preparation phase reduces to

O
(
N (n2

xnu + nxn
2
u + nxnund)

)
9We assume that the expansion step for recovering the full-space solution is performed

during the subsequent preparation phase.
10Taking advantage of the block-triangular shape of the critical result matrices we specifically

discuss the use of
⌈
N
2

⌉
threads here for a high parallel efficiency, although O(N) threads

would be a sufficient requirement to uphold our complexity results.
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Algorithm Result Number of FLOPs

Algorithm 3.1 g 2 (N − 1)n2
x + nx

Algorithm 3.2 G N2 n2
x nu −N n2

x nu +N nx nu

Algorithm 3.3 r̄ 4N (n2
x + nx nu)− 2n2

x − 2nx nu
Algorithm 3.4 R̄ 2N2 (n2

x nu + nx n
2
u)

Algorithm 3.5 D̄ (N2 + 3N − 2)nx nu nd + nu nd

Algorithm 3.6 d̄ 2N nx nd + nd

Algorithm 3.7 Ge 2 (N − 1)n3
x + n2

x + nx

Algorithm 3.8 S̄e 4N(n3
x + n2

x nu)− 2n3
x − 2n2

x nu

Algorithm 3.9 ve 2N n2
x + nx

Algorithm 3.10 r̄e 4N(n2
x + nx nu)− 2n2

x

Algorithm 3.11 d̄e 2 (N + 1)nx nd
Algorithm 3.12 D̄e 2N n2

x nd + nx nd

Algorithm 3.13 q̃e 4N n2
x

Algorithm 3.14 Q̄e 4N n3
x

Algorithm 3.15 x∗ 2N (n2
x + nx nu)

Algorithm 3.16 λ∗ N (4n2
x + 2nx nu + 2nx nd)− 2 (n2

x − nx nu)

Table 3.1: Computational complexities (FLOPs) of the condensing algorithms.

in MPC when choosing the overall-effort minimizing implementation, and

O
(
N (n3

x + n2
xnu + nxn

2
u + nxnund) + n2

xnd
)

in the feedback delay minimizing implementation or in MHE. The complexity
of the operations of the feedback phase reduces to

O (nxnu + nxnd)

in the feedback delay minimizing implementation of condensing in MPC, while
it reduces only slightly to

O
(
N (n2

x + nxnu) + nxnd
)

in the overall-effort minimizing implementation. In MHE, the complexity of
the condensing operations of the the feedback phase remains

O
(
N (n2

x + nxnu)
)
.
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MPC with minimal
feedback delay

MPC with minimal
overall effort

MHE

Algorithm 3.1 Algorithm 3.1 Algorithm 3.1
Algorithm 3.2 Algorithm 3.2 Algorithm 3.2
Algorithm 3.3 Algorithm 3.3 Algorithm 3.4
Algorithm 3.4 Algorithm 3.4 Algorithm 3.5
Algorithm 3.5 Algorithm 3.5 Algorithm 3.6
Algorithm 3.6 Algorithm 3.6 Algorithm 3.7
Algorithm 3.7 Algorithm 3.8
Algorithm 3.8 Algorithm 3.12
Algorithm 3.12 Algorithm 3.13

Preparation
phase

Algorithm 3.14
r̄ := r̄ + S̄e x̂0 Algorithm 3.9 Algorithm 3.3
d̄ := d̄− D̄e x̂0 Algorithm 3.10 q̄e := q̃e +Ge

N
>qN

Algorithm 3.11
r̄ := r̄ + r̄e

Feedback
phase

d̄ := d̄− d̄e

Algorithm 3.15 Algorithm 3.15 Algorithm 3.15Expansion
Algorithm 3.16 Algorithm 3.16 Algorithm 3.16

Table 3.2: Condensing schemes for MPC and MHE.

3.3 Re-Condensing for Partial QP Data Updates

The whole condensing procedure, as detailed in Section 3.2, only needs to be
executed if all QP data was updated by a re-linearization, i.e., during a standard
RTI. In the following, we analyze the effect of partial and inexact QP data
updates, as introduced in Chapter 2.4, on the condensing procedure. We are
in particular interested in the consequences arising from “vector updates”, like
the feasibility-improving and the optimality improving updates, as well as in
the consequences from updating only the data on the first Nfrac stages (dubbed
Mixed-Level Iterations in [FWSB12]).

It should be noted that obviously, if no re-linearization is performed, all QP data
remains unchanged except for the parametric embedding (x0 in the MPC case,
and qN in the MHE case). Then, only the matrix-vector product r̄e = S̄ex0
needs to be recomputed to prepare the feedback-generating QP in MPC; in
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MHE, only r̄ needs to be recomputed from Algorithm 3.3 and q̃e needs to be
corrected by q̄e = q̃e +GeN

>qN .

3.3.1 Complete and partial inexact re-linearizations

If an optimality-improving update or an feasibility-improving update is
performed on a stage k ∈ S, only the vectors qk, rk, ck, and dk change,
while all QP matrix data (of the uncondensed problem) remains. Consequently,
R̄, S̄e, D̄, D̄e, and Q̄e (if appearing at all) in (3.3), as well as the auxiliary
matrices G and Ge do not need to be recomputed, as it was already observed
in [KWBS12].

Only Algorithms 3.1, 3.3, and 3.6 need to be executed during the preparation
phase11 to update r̄ and d̄ in the condensed QP (3.3). The overall computational
complexity of the condensing step in the preparation phase then reduces from

O
(
N2 (n2

x nu + nx n
2
u + nx nu nd)

)
or even

O
(
N2 (n2

x nu + nx n
2
u + nx nu nd) +N (n3

x + n2
x nd)

)
to

O
(
N (n2

x + nx nu + nx nd)
)

in MPC, and
O
(
N (n2

x + nx nd)
)

in MHE. The complexity of the operations performed in the feedback phase of
course remain unaffected. In a parallel implementation on O(N) threads, the
time complexities reduce only slightly further to

O
(
N (n2

x + nx nu) + nx nd
)

in MPC, and
O
(
N n2

x + nx nd
)

in MHE, since the main loops of Algorithms 3.1 and 3.3 cannot be parallelized
due to the recursive dependency in g and w, respectively.

If, in the spirit of mixed-level iterations, only the first Nfrac stages are updated
in their vector data, while the remaining stages remain unchanged, no further
significant computational savings are possible in the proposed condensing
algorithm. This can easily be seen by observing from Algorithm 3.1 that
already an update in c0 causes an update to all blocks of g, which in turn

11Algorithm 3.3 again moves to the feedback phase if the QP is of MHE origin.
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induces an update to all block components of r̄ and d̄. If, on the other hand, only
the last Nfrac stages receive an update in their vector data, the computational
complexity reduces slightly to

O
(
N (n2

x + nx nu) +Nfrac (nx nd)
)

in MPC, as only the last Nfrac block components of d̄ change (but r̄, however,
needs to be recomputed entirely), and to

O
(
Nfrac (n2

x + nx nd)
)

in MHE. The latter however relies on the assumption, that the intermediate
sum of the first N − Nfrac terms that add to q̄e in Algorithm 3.13 is saved
separately for warmstarting the summation loop.

3.3.2 Partial exact re-linearizations

If a full re-linearization is performed on a stage k ∈ S, all12 data matrices and
vectors of this stage are recomputed, i.e., Qk, Rk, Sk, qk, rk, Ak, Bk, ck, Dx

k ,
Du
k , and dk.

From the discussion in Section 3.3.1 it is clear that no computational savings
arise in the vector data for a re-condensing step after an update to only the first
Nfrac stages. Savings are however possible in Algorithms 3.2, 3.4, and 3.5, since
only the first Nfrac block columns of G, R̄, and D̄ depend on updated data13.
The overall computational complexity of re-condensing in the preparation phase
therefore reduces from

O
(
N2 (n2

x nu + nx n
2
u + nx nu nd)

)
to

O
(
N Nfrac (n2

x nu + nx n
2
u + nx nu nd)

)
in MPC, when no preparatory computations for the initial value embedding are
performed, and from

O
(
N2 (n2

x nu + nx n
2
u + nx nu nd) +N (n3

x + n2
x nd)

)
to

O
(
N Nfrac (n2

x nu + nx n
2
u + nx nu nd) +N (n3

x + n2
x nd)

)
12W.l.o.g. we assume that redundant matrices RN , SN , AN , BN , DuN , and vectors rN ,

cN are defined for notational convenience.
13In case of Algorithm 3.5 this means the inner loop may be aborted after at most Nfrac

iterations.
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when the initial value embedding is prepared by Algorithms 3.7, 3.8, and 3.12
in the preparation phase, or in MHE. Here, bear in mind that Ge, S̄e, and D̄e

need to be recomputed completely as soon as A0 changes.

In a parallel implementation, only little savings are possible in the time
complexity of the condensing algorithms compared to a full exact re-linearization.
The time complexity becomes

O
(
N (n2

x nu + nx n
2
u) +Nfrac nx nu nd

)
in MPC without preparatory computations for the initial value embedding, and

O
(
N (n3

x + n2
x nu + nx n

2
u) +Nfrac nx nu nd + n2

x nd
)

in MPC, when preparing S̄e and D̄e during the preparation phase, as well as
in MHE.

If, conversely, only the data of the last Nfrac stages is updated by exact re-
linearization, the computational savings are significantly smaller. The overall
computational complexity reduces only slightly (compared to a full condensing
step) to

O
(
N2 (n2

x nu + nx n
2
u) +N Nfrac nd nx nu

)
for the overall-effort minimizing implementation, and to

O
(
N2 (n2

x nu + nx n
2
u) +N Nfrac nd nx nu +N n3

x +Nfrac n
2
x nd

)
in the feedback delay minimizing implementation. This is due to the fact that
Algorithm 3.4 needs to be executed completely due to its backwards substitution
order; Algorithms 3.5, 3.7, and 3.12 however can be executed at lower cost, as
only the respective last block components change.

In a parallel implementation, the time complexity of the overall-effort minimizing
condensing algorithm assembly becomes

O
(
N (n2

x nu + nx n
2
u) +Nfrac nd nx nu

)
,

and the time complexity of the feedback delay minimizing approach becomes

O
(
N (n3

x + n2
x nu + nx n

2
u) +Nfrac nd nx nu + n2

x nd
)
.





Chapter 4

Block-Banded Quadratic
Programming

In Section 3.2 we reviewed the classical approach to solving the band-structured
quadratic programming problems arising in dynamic optimization. We observed
that even in its new, more efficient implementation, the computational
effort scales quadratically in the horizon length. These complexity theoretic
considerations also reflect in practice. Particularly when using fixed-stepsize
integrators that permit a well-distributed sharing of the workload among up to
N + 1 computational threads, the bottleneck shifts towards the QP solution
step with increasing horizon length and parallelization. Motivated by the fact
that efficient solvers for the condensed dynamic optimization QPs, such as the
Online Active Set Strategy, are in general not well suited for parallelization,
we investigate alternatives to the condensing-based QP solution approach in
this section. In particular, we present a novel algorithm, dubbed dual Newton
strategy, that aims at overcoming shortcomings of the condensing-based approach
for long-horizon problems.

Acknowledgement This Chapter is largely based based on the paper “A
Parallel Quadratic Programming Method for Dynamic Optimization Problems”
by Janick Frasch, Sebastian Sager, and Moritz Diehl [FSD13]. Moritz Diehl
initiated the project that lead to this paper and contributed fundamental
ideas. Janick Frasch is the main author of this paper and contributed the
algorithmic design as well as the theoretical foundations and the open-source
software implementation. Sebastian Sager served as a vital discussion partner,
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in particular with respect to the convergence proofs. The extensions presented
in Sections 4.6 and 4.7 are mostly unpublished work.

4.1 Dense vs. Sparse Solution

Historically, the application of a condensing procedure seemed highly beneficial.
In linear time-invariant MPC, the costly condensing operations could be
performed offline, and with sparse QP solvers still being in their early stages,
the dimensionality reduction mattered significantly. Among the early nonlinear
MPC problems were many from chemical engineering that often feature a
significantly larger number of states nx compared to the number of controls nu
and the horizon length N . There, the computational savings resulting from the
reduced size of the condensed QP often exceeded the costs for the additional
condensing step drastically.

When considering different applications, such as mechanical systems or systems
with integer controls1, as well as generally problems on long prediction horizons,
this assumption often does not hold anymore, and the fact that the condensed
problem is still (at least) of size Nnu, cf. Section 3.2, may jeopardize the
benefits from condensing.

A particular drawback of the condensing approach is that the reduced-size
problem is entirely dense. Applying a second-order method for the solution
of the condensed problem will therefore require the factorization of a dense
matrix of size O(N) every time a re-linearization is performed on the NLP level.
Using updates to the stored factors, some QP algorithms such as the Online
Active Set Strategy may not require additional re-factorizations throughout their
iterations. Still, these updates may become expensive themselves; in case of the
Online Active Set Strategy the computational effort scales quadratically with the
number of optimization variables for dense problems, cf. [Fer06, FBD08]. The
effort of the initial factorization is generally even cubic in the number of variables,
although it has been indicated in [AM12, FJ13] that, taking advantage of the
dynamic origin, a symmetric factor of the condensed Hessian R̄ (cf. Problem
(3.3)) can, in principle, be obtained at the cost of O(N2) operations.

As an alternative, an active-set method with sparsity exploitation based on
a complementary condensing approach was proposed in [KBSS11]. Here, the
essential idea is to make use of the discretized dynamic coupling constraints

1Using an outer convexification approach in combinatation with integrality relaxation
forms the basis of a very successful class of methods for tackling mixed-integer OCPs. This
however comes at the price of additional artificial control variables, such that often nu � nx.
We refer to [Sag05, Kir11] for details and complementary reading.
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to eliminate the controls as degrees of freedom, as opposed to the classical
condensing algorithm, where overparameterized states are eliminated. This
makes the algorithm naturally well suited for applications that feature many
controls, such as problems that stem from outer convexification treatment of
integer control variables, cf. [Sag05, Kir11]. Due to the fact that each active set
change calls for a new sparse matrix factorization the complementary condensing
approach is however most useful only when few active set changes occur.

Even without major preprocessing steps, the block-banded structure that is
exhibited by dynamic optimization QP subproblems is typically exploited well
by tailored interior-point (e.g., [RWR98, MB09, DZZ+12]) and fast-gradient
methods (e.g., [RJM09, BP12]) after a suitable reordering (cf. [RWR98, Dom13,
Le14]). However, a well-known drawback of both classes of methods is their
limited warm-starting capability to exploit the knowledge of similarity between
the solutions of subsequently solved QPs, which is often critical in dynamic
optimization in general, and even more so in algorithms from the family of the
Real-Time Iteration scheme, where strong similarity links between the solutions
of subsequently solved QPs exist.

Applying classical active set-methods, including parametric ones such as [FBD08,
FKP+13], to the sparse (uncondensed) problem direction would leverage this
similarity for higher efficiency. These methods, however, typically do not benefit
from the problem-inherent sparsity as much as interior-point methods, and can
generally be expected to perform much worse than on a condensed problem of
reduced size.

In the following, we pursue a new idea for a QP algorithm based on a dual
decomposition approach, that was introduced for linear MPC problems in
[FKD12]. This method aims at combining the benefits of interior-point methods
in terms of structure exploitation with the warm-starting capabilities of active-
set methods, and comes at only a linear runtime complexity in the horizon
length. Based on ideas from [LS97] and [DF06] the stage coupling constraints
are dualized and the resulting QP is solved in a two level approach, using a
non-smooth/semismooth Newton method in the multipliers of the stage coupling
constraints on the higher level, and a primal active-set method in the decoupled
parametric QPs of each stage on the lower level. Note that in contrast to
classical active-set methods, this approach permits several active-set changes at
the cost of one block-banded matrix factorization. Hereinafter, we refer to this
procedure as a dual Newton strategy.

We give details for this method regarding the efficient numerical implementation
in general, and in the online context in particular. Theoretical properties of
the algorithm are investigated. Furthermore, we introduce a parallel algorithm
for the solution of the structured Newton system, that reduces the runtime
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complexity of the dual Newton strategy even further to O(logN) per iteration
in a sufficiently parallel computing environment.

4.2 The Dual Newton Strategy

For the presentation of our method, we adopt the following, rather generic
band-structured QP setting:

min
z

N∑
k=0

(
1
2zk

>Hk zk + gk>zk
)

(PQP1)

s.t. Ek+1 zk+1 = Ck zk + ck ∀ k ∈ SN (PQP2)

dk ≤Dk zk ≤ dk ∀ k ∈ S. (PQP3)

The cost function on each stage consists of a positive definite second-order
term 0 ≺ Hk ∈ Rnz×nz and a first-order term gk ∈ Rnz for each k ∈ S. Two
subsequent stages k ∈ SN and k + 1 ∈ S0 are coupled by first-order terms
Ck,Ek+1 ∈ Rnx×nz and a constant term ck. We assume that all Ck have
full row rank, i.e., rk(Ck) = nx, ∀ k ∈ SN , and that all Ek have the special
structure Ek =

[
I 0

]
, where I ∈ Rnx×nx is an identity matrix and 0 is a

zero matrix of appropriate dimensions. Vectors dk,dk ∈ Rnd , and a matrix
Dk ∈ Rnd×nz of full row rank denote affine stage constraints.

If the origin of (PQP) is, for example, an MPC problem, this setting could be
achieved by grouping system states xk ∈ Rnx and control inputs uk ∈ Rnu
in stage variables zk = (xk,uk) ∈ Rnz for each stage k ∈ SN , and zN =
(xN ,0) ∈ Rnz for the terminal stage.

It is important to stress that we assume strict positive definiteness of the
stage costs terms, which is slightly stronger than the typical requirement of
positive semidefiniteness in quadratic programming and model predictive control.
Still, for practical applications this can easily be achieved by a small primal
regularization term added to the objective’s second-order term. We investigate
the effect of different primal regularization terms in Section 6.2.1.

If not stated differently, we assume in the following that a solution z∗ :=(
z∗0 , . . ., z

∗
N

)
of (PQP) exists and fulfills the LICQ, cf. Definition 1.27. Section

4.5 discusses the consequences resulting from infeasibility of (PQP) and states
how infeasible instances can be detected.



THE DUAL NEWTON STRATEGY 119

4.2.1 Dual decomposition

We decouple the QP stages by dualizing constraints (PQP2). Introducing

λ := (λ1,λ2, . . . ,λN ) ∈ RNnx (4.2)

we can express (PQP1) and (PQP2) by the partial Lagrangian function

L(z,λ) :=
N∑
k=0

(
1
2 zk

>Hk zk + gk>zk
)

+
N−1∑
k=0

λk+1
> (−Ek+1zk+1 +Ckzk + ck)

=
N∑
k=0

(
1
2 zk

>Hk zk + gk>zk +
[
λk
λk+1

]> [−Ek
Ck

]
zk + λk+1

>ck

)
,

where we define zero matrices E0 = CN = 0 ∈ Rnx×nz and redundant
multipliers λ0 = λN+1 := 0 ∈ Rnx only for notational convenience in this
context (note that they are not among the optimization variables of the dual
problem defined below).

By Lagrangian duality, the solution of (PQP) can therefore be computed as

max
λ

min
z

N∑
k=0

(
1
2zk

>Hk zk + gk>zk +
[
λk
λk+1

]> [−Ek
Ck

]
zk + λk+1

>ck

)

s.t. dk ≤Dk zk ≤ dk ∀k = 0, . . . , N.

As this problem is separable in the stage variables zk, minimization and
summation can be interchanged, and a solution to (PQP) is obtained by solving

max
λ

f∗(λ) := max
λ

N∑
k=0

f∗k (λ), (DQP)

where

f∗k (λ) := min
zk

1
2zk

>Hk zk +
(
gk
> +

[
λk
λk+1

]> [−Ek
Ck

])
zk + λk+1

>ck

s.t. dk ≤Dk zk ≤ dk. (QPk)
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We refer to (QPk) as stage QP. Note that each (QPk) depends on at most two
block components of the vector of dual optimization variables λ defined in (4.2).
Remark 4.1 Since λ only enters in the objective of each (QPk), feasibility of
(QPk), and thus existence of f∗k (λ) is independent of the choice of λ ∈ RNnx .
In particular, since the constraints of (QPk) are a subset of (PQP3), feasibility
of (PQP) implies feasibility of (QPk).

Remark 4.2 Each f∗k (λ) implicitly defines a z∗k(λ), the solution of (QPk).

4.2.2 Characterization of the dual function

It was shown in [FKD12] (based on results from [Fia83, Zaf90, BRT97]) that
f∗(λ) is concave, piecewise quadratic, and once continuously differentiable. We
establish relevant findings in the following.

We begin by instantiating the definition of an active set in our specific context.
Definition 4.3 For a stage k ∈ S, the optimal active set at λ is given by

A∗k(z∗k(λ)) :=
{

1 ≤ i ≤ nd | (Dk)i,·z
∗
k(λ) = (dk)i ∨ (Dk)i,·z

∗
k(λ) =

(
dk
)
i

}
,

i.e., the set of row indices of the constraints of (QPk) that are fulfilled with
equality. y

Definition 4.3 naturally extends to a definition of the active set in the full space
of primal variables by A∗(z∗(λ)) := A∗0(z∗0(λ))× . . .×A∗N (z∗N (λ)). The finite
number of disjoint active sets further induces a subdivision of the dual λ space:
Definition 4.4 Each active set defines a region A ⊆ RNnx in the dual λ space.
For a representative λ(j) ∈ RNnx we have

A(j) := {λ ∈ RNnx | A∗(z∗(λ)) = A∗(z∗(λ(j)))}.

By choosing representatives of pairwise distinct regions we can define an
arbitrary, but fixed ordering that allows us to uniquely identify each region
A(j). y

The name region is anticipatory, but it will become clear from Corollary 4.7
that each set A(j) is indeed connected. The number of regions nr clearly is
finite, as there is only a finite number of distinct active sets. From Remark 4.1
we can conclude that each λ ∈ RNnx is contained in a region A(j), and thus⋃

1≤j≤nr

A(j) = RNnx .
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Remark 4.5 Two distinct regions A(j1) and A(j2) do not need to be disjoint.
Values of λ that lead to weakly active stage constraints are contained in two or
more regions. These values of λ form the seams of the regions.

Next, we substantiate Remark 4.2 by characterizing the nature of the dependency
of z∗k on the dual variables λ in the stage problems (QPk).

Lemma 4.6 Let (QPk) be feasible. Then, the optimal solution of (QPk),
z∗k(λ), is a piecewise affine and continuous function in λ. In particular, the
dependency is affine within each region A(j), 1 ≤ j ≤ nr.

Proof (cf. [FKD12], Lem. 2; [Zaf90]) For stage Lagrange multipliers µk ∈
R2nd the solution of (PQP) is given by (see, e.g., [Fle87])

Hk −D∗k
>

D
∗
k

>

−D∗k 0 0

D
∗
k 0 0


[
z∗k

µ∗k

]
=


−

(
gk
> +

[
λk
λk+1

]> [−Ek
Ck

])
d∗k
−d∗k

 , (4.3)

whereD∗k, d
∗
k andD∗k, d

∗
k consist of the rows ofDk, dk, and dk that correspond

to the constraints that are active (i.e., fulfilled with equality) at the lower
or, respectively, the upper bound in the solution z∗k, and µ∗k is the vector of
consistent dimension that contains the corresponding multipliers. The remaining
stage multiplier entries are 0 in the solution of (PQP). As λ enters affinely only
on the right-hand side, it is clear that for identical active sets it holds that z∗k
depends affinely on λ. Continuity has been shown in [Fia83]. �

Corollary 4.7 Each region A(j), 1 ≤ j ≤ nr, of the dual space is convex and
polyhedral.

Proof Each stage problem (QPk) is constrained by affine constraints. For a
given representative λ(j) the set Fk := {zk ∈ Rnz | Ak(zk) = A∗k(z∗k(λ(j)))} is
therefore convex and polyhedral. From Lemma 4.6 we have that z∗k is affine in
λ for a certain (fixed) active set. A region A(j) is therefore the intersection of
N + 1 (i.e., a finite number) preimages of convex sets, and therefore convex.�

Lemma 4.6 is the basis for the following exhaustive characterization of the dual
function f∗(λ), which we take from [FKD12] without proof.

Lemma 4.8 ([FKD12], Lem. 3) If all stage QPs (QPk) are feasible, then
the dual function f∗(λ) exists and is described by a concave, continuously
differentiable, and piecewise quadratic spline in λ space.

Remark 4.9 In particular f∗(λ) is quadratic on each region A(j).
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4.2.3 Solution by a (non-smooth) Newton method

Dual decomposition by itself is of course a rather well-known technique. It’s
early roots in the area of convex optimization go back to [Eve63]. More
recent literature reviews can be found in [Ber99, NS08]. In the area of
optimal control and particularly model predictive control, dual decomposition
techniques have been employed, for example, in [GR10, GDK+13, NDS08,
Ran09, RMJ11]. These works propose algorithms that exclusively make use of
gradient information to maximize the continuously differentiable, but not twice
continuously differentiable dual function f∗(λ). Alternatively, works like [NS09]
and [TDNSD12] employ a smoothed dual function to the end of applying an
interior-point framework to the dual decomposition reformulation. A major
drawback of these methods, however, is that typically a rather large number
of iterations is required to achieve medium accuracy in the solution. This
characteristic is fundamental to first-order and overly perturbed second-order
methods, cf. Section 1.4.4.

In an attempt to overcome these shortcomings, our approach is to tackle (DQP)
as an unconstrained optimization problem of a piecewise quadratic spline f∗(λ),
and to employ a non-smooth Newton method2 to it, as originally proposed in
[LS97], and also used in [FKD12]. We iterate

λi+1 := λi + α∆λ (4.4)

(the Newton iterates λi are not to be confused with the region representatives
λ(j) from Section 4.2.2) for an initial guess λ0 and a suitably chosen step size
α until f∗(λi) is stationary. The step direction ∆λ is computed from

M(λi) ∆λ = G(λi), (4.5)

whereM(λi) := −∂
2f∗

∂λ2 (λi) and G(λi) := ∂f∗

∂λ
(λi). By Remarks 4.9 and 4.5,

M(λ) is unique everywhere but on the seams of f∗ (a null set), where an
arbitrary, but fixed second derivative from the finite number of possible choices
is used, ensuring well-definedness ofM(λ).

Clearly, stationarity of f∗(λi) is equivalent to optimality of (DQP). Observe
that by definition of (DQP), z∗(λi) is always optimal and (PQP3) are always
fulfilled in the spirit of an active-set method. Lemma 4.10 will show that
feasibility of (PQP2) is identical with stationarity of G(λi).

The complete QP solution method is given in Algorithm 4.1, where we denote
the Lagrange multipliers of the stage constraints (PQP3) by µk ∈ R2nd for each

2More specifically, our problem fulfills the requirements for semismoothness, a term that
was coined in the domain of optimization by [Mif77] and specifically in the context of Newton’s
method by [QS93].
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Algorithm 4.1: Dual Newton Strategy
Input: Initial guess λ0, termination criteria nmaxIt, ελ
Output: Optimal solution (z∗,λ∗,µ∗)

1 for i = 0 : (nmaxIt − 1) do
2 Solve all QPk(λi) to obtain [z∗k(λi),µ∗k(λi)]
3 Set up gradient G(λi)
4 if

∥∥G(λi)
∥∥ ≤ ελ then

5 return [z∗k(λi),λi,µ∗k(λi)]
6 Set up Newton matrixM(λi)
7 Solve Newton system (4.5)
8 Compute appropriate step size α
9 Update current iterate λi+1 := λi + α∆λ

stage k ∈ S. Note that the parametric solution of the stage problems (QPk) for
the current iterate λi in Step 2, as well as the setup of G(λi) andM(λi) in
Steps 3 and 6 permits an independent, concurrent execution on all stages (see
also Section 4.6). A convergence proof for Algorithm 4.1 is given in Section 4.4.

4.2.4 Characterization of the dual Newton iterations

A full QP solution by Algorithm 4.1 can be visualized as in Figure 4.1. Each
cell corresponds to a region A(j) in λ-space, for which the primal active set
is constant. Starting from an initial guess λ0, a Newton step direction is
computed from Equation (4.5) that leads to λ1

FS. Using a globalization strategy
(see Section 4.3.6), a suitable step size λ1

ᾱ is found. In contrast to classical
active-set methods, multiple active set changes are possible in one iteration.
For future reference we also indicate a minimum guaranteed step λ1

αmin
. In the

second iteration, λ2
FS already provides sufficient progress, thus no globalization

is applied. In the following iteration λ∗ is found. We will proof in Lemma 4.19
that a one-step terminal convergence is guaranteed, once the correct region is
identified.

4.3 Algorithmic Details

The dynamic optimization origin induces a specific structure in Problem (DQP),
that we strive to exploit in the following.
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ᾱ

λ
1

αmin

λ
2

FS

λ
2

αmin

λ
∗λ

0

λ
1

FS

λ
1

ᾱ
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Figure 4.1: Steps of the dual Newton strategy in the λ-space.

4.3.1 Solution of decoupled parametric stage QPs

On each stage k ∈ S we have to repeatedly solve a QP of size (nz, nd) that
only changes in the first-order term (and the negligible constant term) with the
current guess of λ. We have QPk given by

min
zk

1
2zk

>Hk zk +mk(λ)>zk + pk(λ)

s.t. dk ≤Dk zk ≤ dk,

withmk(λ)> := gk
>−λk>Ek+λk+1

>Ck, pk(λ) := λk+1
>ck, and, in general,

Hk and Dk dense. Such QPs can be solved efficiently (see [FBD08, Bes96]),
by employing a parametric QP solver such as the Online Active Set Strategy,
cf. Section 1.5.4, which is implemented in the open-source QP solver qpOASES
[FKP+13].

In the special, yet practically relevant, case where Hk is a diagonal matrix and
Dk is an identity matrix (i.e., only bounds on states and controls exist) the
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optimal solution z∗k can conveniently be computed by component-wise “clipping”
of the unconstrained solution as it was presented in [FKD12]:

z∗k = max(dk,min(Hk
−1mk,dk)). (4.6)

4.3.2 Structure of the Newton system

The right hand side vector G : RNnx → RNnx of Newton system (4.5) is easily
seen to only depend on two neighboring stages in each block λk. It holds that

G(λ) :=
∂f∗

∂λ
(λ)
>

=



∂f∗0
∂λ1

>
+ ∂f∗1
∂λ1

>

∂f∗1
∂λ2

>
+ ∂f∗2
∂λ2

>

...

∂f∗N−1
∂λN

>
+ ∂f∗N
∂λN

>


(λ). (4.7)

The left-hand side Newton matrixM : RNnx → RNnx×Nnx has a block tri-
diagonal structure, as only neighboring multipliers λk,λk+1 can have a joint
contribution to f∗. At a fixed λ it holds

M(λ) := −
∂2f∗

∂λ2 (λ) =


W1 U1

U1
> W2

. . .

. . .
. . . UN−1

UN−1
> WN

 (λ), (4.8)

where the diagonal and off-diagonal block components are given by

Wk(λ) := −
∂2f∗

∂λk
2 (λ) and Uk(λ) := −

∂2f∗

∂λkλk+1
(λ). (4.9)

4.3.3 Gradient and Hessian computation

Lemma 4.10 (cf. [BT89, App. C]) Let all (QPk) be feasible. Then the
derivative of f∗k with respect to the dual variables λ exists and is given by

[
∂f∗k
∂λk

∂f∗k
∂λk+1

]
= z∗k

>
[
−Ek
Ck

]>
+
[

0
ck

]>
. (4.10)
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Proof The derivative ∂f∗k
∂λ

exists by Lemma 4.8. We derive a closed form by
regarding the stage QP Lagrangian

Lk(zk,µk;λ) := 1
2zk

>Hkzk +mk(λ)>zk + pk(λ) + µk>
[
Dkzk − dk
dk −Dkzk

]
.

Since Hk � 0 and (QPk) is feasible by assumption, it holds that (QPk) has a
(finite) optimal primal and dual solution (z∗k,µ∗k), and, by Danskin’s Theorem
[Dan67], we can interchange optimization and derivation in the sense that

∂f∗k
∂λ

=
∂

∂λ
Lk(z∗k,µ

∗
k;λ)

holds. We then have

∂f∗k
∂λ

=
∂Lk(z∗k, µ∗k;λ)

∂λ
+
∂Lk(z∗k, µ∗k;λ)

∂z∗k
·
∂z∗k
∂λ

+
∂Lk(z∗k, µ∗k;λ)

∂µ∗k
·
∂µ∗k
∂λ

=
∂Lk(z∗k, µ∗k;λ)

∂λ
+
∂Lk(z∗k, µ∗k;λ)

∂z∗k
·
∂z∗k
∂λ

+
[
Dkzk − dk
dk −Dkzk

]>
·
∂µ∗k
∂λ

=
(
z∗k
>
[
−Ek
Ck

]>
+
[

0
ck

]>)
+ 0 ·

∂z∗k
∂λ

+ 0,

where the second and the third term vanish due to the stationarity and,
respectively, the complementarity requirement of the optimal stage solution
(z∗k,µ∗k). �

Remark 4.11 We can see from Lemma 4.10 that ‖G(λ) ‖ is indeed a measure
for both stationarity of f∗(λ) and infeasibility of (PQP2), as claimed in Section
4.2.3.

The second derivative of f∗ can be computed as follows:

Lemma 4.12 Let Z∗k ∈ Rnz×(nz−nact
k ), k ∈ S (where nact

k denotes the number
of active constraints) be a basis matrix for the nullspace of A∗k(z∗k(λ)), the
optimal active set of (QPk) at λ, and let P ∗k := Z∗k(Z∗k

>HkZ
∗
k)−1

Z∗k
> ∈

Rnz×nz denote the elimination matrix for this nullspace. ThenM(λ) is given
by

M(λ) = CPC>,
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where P := block diag(P ∗0 ,P ∗1 , . . . ,P ∗N ) and

C :=


C0 −E1

C1 −E2
. . .

. . .

CN−1 −EN

 ∈ RNnx×(N+1)nz .

Proof We compute the Hessian blocks in (4.8) explicitly. Differentiating (4.10)
once more with respect to λ, we obtain

∂2f∗

∂λkλk+1
=

∂

∂λk

(
∂f∗k
∂λk+1

+
∂f∗k+1

∂λk+1

)
=

∂z∗k
∂λk

Ck
> −

∂z∗k+1

∂λk︸ ︷︷ ︸
=0

Ek+1
>

and

∂2f∗

∂λkλk
=

∂

∂λk

(
∂f∗k−1

∂λk
+
∂f∗k
∂λk

)
=
∂z∗k−1

∂λk
Ck−1

> −
∂z∗k
∂λk

Ek
>.

Within a fixed active set, the optimal solution of (QPk) at λ is given by (cf.,
e.g., [NW00])

z∗k(λ) = −P ∗k
−1mk(λ) = −P ∗k

−1
(
gk +Ek>λk +Ck>λk+1

)
.

Accordingly, the Hessian blocks (cf. Equation (4.9)) are computed as

Uk = −EkP ∗kCk
> (4.11)

and

Wk = Ck−1P
∗
k−1Ck−1

> +EkP ∗kEk
>, (4.12)

which concludes the proof. �

Remark 4.13 It is important to note that P ∗k can be obtained relatively
cheaply from a null-space QP solver like qpOASES [FKP+13] that directly
provides Z∗k and a Cholesky factor R for R>R = Z∗k

>HkZ
∗
k , see [FBD08].

For the special case of diagonal Hessian matrices Hk = diag(h1
k, . . . , h

nz
k ) and

simple bounds, the projection P ∗k is simply a diagonal matrix with either 1/hik
or 0 entries depending on whether the corresponding variable bound is inactive
or active. The calculation of the Hessian blocks can then be accelerated even
further using diadic products as proposed in [FKD12].
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Remark 4.14 From the construction ofM in Lemma 4.12 we can see that
the dual Newton strategy is, in principle, also capable of dealing with certain
indefinite problems of the form (PQP), as long as the reduced Hessian blocks
Z∗k
>HkZ

∗
k remain positive (semi-)definite for all k ∈ S. This could, for

example, be the case when equality stage constraints eliminate the negative
definite directions from the stage Hessians. Basic requirement for this work is
of course the stage QP solvers’ support of such indefinite QPs.

4.3.4 Solution of the Newton system and regularization

By Lemma 4.8,M(λ) is positive semidefinite, as f∗(λ) is concave. The block-
tridiagonal structure of theM(λ), cf. Equation (4.8), can be exploited for the
efficient solution of the Newton system (4.5). Observing that a lower triangular
factor L ofM(λ) = LL> possesses the same structural zero blocks below
the diagonal, we suggest to employ a banded Cholesky decomposition. This
factorization differs from a regular Cholesky decomposition (see, e.g., [NW00])
by skipping all redundant blocks left and below the subdiagonal block Uk>
of each block column k, thus reducing the computational complexity from
O(N3n3

x) to O(Nn3
x) floating point operations (FLOPs).

In the case of jointly redundant active constraints in several (QPk) via the
stage coupling constraints (PQP2),M(λ) may become rank-deficient [LS97].
We propose to overcome this by applying regularization. In the software
package qpDUNES, where we implemented the dual Newton strategy (see also
Section 6.1), both a Levenberg-Marquadt-type regularization and a “on-the-fly”
regularization are available. While the former one uses

M̃(λi) :=M(λi) + γ · I (4.13)

with a (small) constant regularization parameter γ ∈ R+ instead ofM(λi)
in the Newton system (4.5) on detection of singularity during the initial
banded Cholesky factorization, the latter one only regularizes those diagonal
elements for which the crucial division step in the Cholesky decomposition
cannot be performed due to singularity (similarly to the modified Cholesky
factorization described in [NW00], based on [GMW81]). We note that the
“on-the-fly” regularization ensures positive definiteness of the resulting M̃(λi)
(as it has a unique Cholesky decomposition) and avoids the need of restarting
the factorization, but may be numerically less stable.
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Algorithm 4.2: Structure-exploiting reverse Cholesky factorization
Input: Newton Hessian matrixM
Output: Cholesky-like factor R forM =RR>

1 for k = N : 1 do /* go by block columns */
2 for j = k · nx : (k − 1) · nx + 1 do /* go by columns */
3 w =Mjj

4 l̄ = min(N · nx, (k + 1) · nx) /* end of row fill in */
5 for l = j + 1 : l̄ do /* subtract row tail */
6 w = w −R2

jl

7 Rjj =
√
w

8 ī = max(1, (k − 2) · nx + 1) /* end of column fill in */
9 for i = j − 1 : ī do /* write rest of column */

10 w =Mij

11 if i > (k − 1) · nx then /* end of row fill in */
12 l̄ = min(N · nx, (k + 1) · nx)
13 else
14 l̄ = min(N · nx, k · nx)
15 for l = j + 1 : l̄ do /* subtract row tail */
16 w = w −Rjl · Ril
17 Rij = w/Rjj

4.3.5 A reverse Cholesky factorization for improved stability

Particularly in the context of MPC, one expects rather many active constraints
in the beginning of the control horizon, and few to none towards the end
of the horizon. We aim to exploit this knowledge by applying a Cholesky
factorization toM (we omit the λ-dependency in this section for notational
convenience) in reverse order, i.e., starting from the last row/column, as detailed
in Algorithm 4.2. Instead of a factorizationM = LL>, we obtain a Cholesky-
like factorizationM =RR>, that is equally well suited for an efficient solution
of the Newton system (4.5). To see this, observe that Algorithm 4.2 is equivalent
to a standard Cholesky factorization applied to M̂ := ΠMΠ> after a full

row and column permutation through Π :=

 1
. .
.

1

. The advantage of

applying this reverse Cholesky factorization in the dual Newton strategy is
twofold. First, observe that a diagonal blockWk only changes from one Newton
iteration to the next if the active set on stage k or stage k − 1 changes, and
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an off-diagonal block Uk only changes if the active set on stage k changes (in
particular note thatM only needs to be recomputed in blocks with active set
changes). As Algorithm 4.2 only uses data from the last k block rows (and
columns) in block iteration k, it is sufficient to restart the factorization from
the block row that corresponds to the last active set change. Furthermore, we
can also expect better numerical properties of R, as the principal submatrix
corresponding to stages without active state constraints is positive definite
(recall that rank-deficiency ofM can only arise from a redundancy in active
stage constraints over several stages) and of similar conditioning as the original
problem; a significant worsening of the conditioning can only appear in block-
rows with active stage constraints, which, in a typical MPC setting, tend to
appear rather on the earlier than on the later stages, and thus enter later in
Algorithm 4.2 compared to the standard Cholesky factorization.

To formalize this, we identify the reverse Cholesky factorization with the discrete
time Riccati recursion in the following. Let us regard the (possibly regularized)
Newton HessianM � 0 in block form as defined in Equation (4.8). Then, the
reverse Cholesky factorization (Algorithm 4.2) is easily seen to be given by the
recursion

Xk−1 = Wk−1 −Uk−1 ·Xk
−1 ·Uk−1

> (4.14)

XN = WN ,

where the Cholesky factor R in block form is given by

R =


R1,1 R1,2

R2,2
. . .

. . . RN−1,N
RN,N


with upper triangular blocks Rk,k given implicitly (but uniquely) by Xk =:
Rk,kRk,k> ∀ k ∈ S0 and dense blocks Rk,k+1 = UkRk+1,k+1 ∀ k ∈ S0,N .
Note that in this context the subscripts Rk,k refer to the block entries of R
rather than to the individual entries (as used in Algorithm 4.2). We refer to
Xk as Cholesky iterates in the following.

For LTI systems without active constraints it holds (cf. Lemma 4.12)
Wk = CH−1C> +EH−1E>

Uk = −EH−1C>

for k ∈ S0,N , where — analogously to the notation of (LMPC) — C =
[
A B

]
are the dynamics, E =

[
I 0

]
is the state selection matrix, and H =

[
Q S>

S R

]
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is the quadratic objective weight. Due to a possibly different choice of the
Hessian on the last interval (H ≡ P ), it holds

WN = CH−1C> + P−1. (4.15)
Theorem 4.15 If P is the solution to the discrete time algebraic Riccati
equation

P = Q+A>PA− (S +A>PB)
(
R+B>PB

)−1
(S> +B>PA),

then the Cholesky iterates X are constant, i.e., recursion (4.14) is stationary.
In particular, it holds Xk := P−1 +CH−1C> = WN ∀ k ∈ S0.
Proof The proof is done by calculation. We start from the the Cholesky
recursion property, apply the assumed relation between Cholesky and Riccati
iterates, and transform the expression into the form of the Riccati recursion.
We have

Xk−1 = Wk−1 −Uk−1Xk
−1Uk−1

>

⇔ P−1 +CH−1C> = CH−1C> +EH−1E>

−EH−1C>
(
P−1 +CH−1C>

)−1
CH−1E>

and therefore

P−1 = EH−1E> −EH−1C>
(
P−1 +CH−1C>

)−1
CH−1E>. (4.16)

Using the Schur complement Q̄ = Q−S>R−1S it is well known from elementary
linear algebra that the inverse H−1 can be expressed by

H−1 =
[
Q S>

S R

]−1

=
[

Q̄
−1 −Q̄−1

S>R−1

−R−1SQ̄
−1

R−1 +R−1SQ̄
−1
S>R−1

]
.

Using this, C =
[
A B

]
, and the special structure of E =

[
I 0

]
, we first see

that the identities
EH−1E> = Q̄

−1
,

CH−1E> =
(
A−BR−1S

)
Q̄
−1 =: C̄Q̄−1

and

CH−1C> =
(
A−BR−1S

)
Q̄
−1 (

A> − S>R−1B>
)

+BR−1B>

= C̄Q̄
−1
C̄
> +BR−1B>
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hold. Thus, (4.16) can be written as

P−1 = Q̄
−1 − Q̄−1

C̄
> (
P−1 +BR−1B> + C̄Q̄−1

C̄
>)−1

C̄Q̄
−1

Applying the Woodbury matrix identity with Y := P−1 +BR−1B> we can
express the right hand side term by

P−1 =
(
Q̄+ C̄>Y −1C̄

)−1

and thus

P = Q̄+ C̄>Y −1C̄

= Q− S>R−1S

+
(
A> − S>R−1B>

)(
P−1 +BR−1B>

)−1 (
A−BR−1S

)
holds. Note that the inverse matrices of Q,R,P and Y exist (and are real-
valued), since we assumed (PQP) strictly convex. Applying the Woodbury
identity once again (however, in opposite direction) on

(
P−1 +BR−1B>

)−1
,

and introducing R̄ :=
(
R+B>PB

)
, we get

P = Q− S>R−1S

+
(
A> − S>R−1B>

)(
P − PB

(
R+B>PB

)−1
B>P

)(
A−BR−1S

)
= Q− S>R−1S (4.17)

+A>
(
P − PBR̄−1

B>P
)
A

− S>R−1B>
(
P − PBR̄−1

B>P
)
A

−A>
(
P − PBR̄−1

B>P
)
BR−1S

+ S>R−1B>
(
P − PBR̄−1

B>P
)
BR−1S.

Using the identity I = R̄R̄
−1 = R̄

−1
R̄, we further have

S>R−1B>
(
P − PBR̄−1

B>P
)
BR−1S − S>R−1S =
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= S>R−1B>PBR−1S − S>R−1B>PBR̄
−1
B>PBR−1S − S>R−1S

= S>R−1R̄R̄
−1
B>PBR−1S

− S>R−1B>PBR̄
−1
B>PBR−1S − S>R̄−1

R̄R−1S

= S>R−1
(
R+B>PB

)
R̄
−1
B>PBR−1S

− S>R−1B>PBR̄
−1
B>PBR−1S − S>R̄−1 (

R+B>PB
)
R−1S

= S>R−1RR̄
−1
B>PBR−1S + S>R−1B>PBR̄

−1
B>PBR−1S

− S>R−1B>PBR̄
−1
B>PBR−1S

− S>R̄−1
RR−1S − S>R̄−1

B>PBR−1S

= −S>R̄−1
S

and

−A>
(
P − PBR̄−1

B>P
)
BR−1S =

= −A>PBR−1S +A>PBR̄−1
B>PBR−1S

= −A>PBR̄−1
R̄R−1S +A>PBR̄−1

B>PBR−1S

= −A>PBR̄−1 (
R+B>PB

)
R−1S +A>PBR̄−1

B>PBR−1S

= −A>PBR̄−1
RR−1S

−A>PBR̄−1
B>PBR−1S +A>PBR̄−1

B>PBR−1S

= −A>PBR̄−1
S.

Analogously it holds

−S>R−1B>
(
P − PBR̄−1

B>P
)
A = −S>R̄−1

B>PA.
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Therefore (4.17) is equivalent to

P = Q− S>R̄−1
S

− S>R̄−1
B>PA−A>PBR̄−1

S +A>
(
P − PBR̄−1

B>P
)
A

= Q+A>PA−
(
S> +A>PB

)
R̄
−1 (

S +B>PA
)
,

which concludes the proof. �

This proof is easily seen to also extend to the LTV case without active constraints,
where we have (cf. Lemma 4.12):

Wk = Ck−1Hk−1
−1Ck−1

> +EkHk
−1Ek

> ∀k ∈ S0,N

Uk = −EkH−1
k Ck

> ∀k ∈ S0,N

WN = CN−1HN−1
−1CN

> +HN
−1,

with Ck =
[
Ak Bk

]
, ∀ k ∈ SN , Ek =

[
I 0

]
, ∀ k ∈ SN , Hk =[

Qk Sk
>

Sk Rk

]
, ∀ k ∈ SN , and HN = QN .

Corollary 4.16 Let Wk, k ∈ S0 and Uk, k ∈ S0,N be computed from an
LTV system without (active) state constraints. Then, the Cholesky iterates
Xk, k ∈ S0 from the Cholesky recursion (4.14) can be identified with the
discrete time time-varying algebraic Riccati recursion

PN = QN (4.18a)

Pk−1 = Qk−1 +Ak−1
>PkAk−1 (4.18b)

− (Sk−1 +Ak−1
>PkBk−1)

(
Rk−1 +Bk−1

>PkBk−1

)−1

(Sk−1
> +Bk−1

>PkAk−1)

via Xk = Pk
−1 +Ck−1Hk−1

−1Ck−1
> ∀ k ∈ S0.
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Proof The proof follows exactly the lines of the proof to Theorem 4.15, yet
keeping the matrix block indices. In particular, one has

Pk−1
−1 = Ek−1Hk−1

−1Ek−1
>

−Ek−1Hk−1
−1Ck−1

>
(
Pk
−1 +Ck−1Hk−1

−1Ck−1
>
)−1

Ck−1Hk−1
−1Ek−1

>

in place of (4.16) and transforms it into (4.18b) using the same matrix
identities. �

Remark 4.17 In the context of MHE it may actually be advantageous to keep
the regular Cholesky factorization order. Even though it is still open whether it
is possible to establish an analogy to Theorem 4.15 and Corollary 4.16 for the
inverted factorization order in notion of estimation, e.g., based on a Kalman-like
recursion, we may draw the motivation to do so from the nature of the RTI
scheme. Since new data is embedded at the end of the considered horizon, we
expect tentatively more active set changes here, while we expect the active
sets of the stage problems to change rather little (at least in the nominal case)
at the beginning of the horizon, where several Newton-type iterations drove
the optimization variables already close to an exact solution for the nonlinear
problem. Therefore, a higher effectiveness of the factorization warm-starts
may be given in the regular Cholesky factorization order starting from the
bottom-right matrix blocks.

4.3.6 Choice of the Newton step size

Due to the piecewise quadratic nature of f∗(λ), a globalization strategy is
needed. For computational efficiency close to the solution, where we assume
the quadratic model of the dual function f∗(λ) to be accurate, we propose to
employ a line search technique to find an (approximate) solution to

αi := arg max
0≤α≤1

f∗(λi + α∆λi) . (4.19)

In contrast to general nonsmooth optimization, an exact line search is possible at
reasonable cost in our context. In particular, f∗(λi+α∆λ) is a one-dimensional
piecewise quadratic function along the search direction ∆λ. An exact quadratic
model in search direction can be built up by evaluating each f∗k (λi + αj∆λ),
k ∈ S at each value of αj ∈ [0, 1] that corresponds to an active set change on
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this stage. Alongside, slope information in search direction can be obtained by

∂f∗k (λi + αj ∆λ)
∂α

=
∂f∗k
∂λ

(λi + αj ∆λ) ·∆λ

= z∗k(λi + αj∆λ)>
(
Ck
>∆λk+1 −Ek>∆λk

)
+ ck>∆λk+1,

cf. Equation (4.10). As the second derivate is constant within each cell, it can
be cheaply and accurately computed as the difference quotient of the slope at
the left and the right side of the intersection of each region with the search
direction ∆λ.

Note that a parametric active set strategy like qpOASES traverses the required
points z∗k(λi + αj ∆λ) for values of αj corresponding to an active-set change
on stage k naturally while computing z∗k(λi + ∆λ) for the full step ∆λ (cf.
[FBD08]). When employing the clipping operation (4.6) for the solution of
the stage problems (QPk), the points of active-set changes along the search
direction can analogously be determined by a simple ratio test.

With the piecewise quadratic model in search direction built up on each stage
k ∈ S, the dual objective value can be cheaply evaluated at each αj , where an
active set change occurs on any stage k ∈ S. Taking the maximum over all
these values (e.g., by performing a bisection search) identifies, in conjunction
with the slope information, the region containing the maximum dual function
value in search direction, and the optimal α∗ can be found as the maximum of
the one-dimensional quadratic model of this region.

Alternatively, also heuristic backtracking-based search strategies seem appro-
priate in this context. Particularly the fact that the gradient evaluation G(λ)
comes almost at the same cost as a function evaluation f∗(λ) can be exploited
within the line search. A search strategy that seemed to perform particularly
well in practice was a combination of a fast backtracking line search, allowing
to quickly detect very small step sizes, with a bisection interval search for
refinement.

While we make use of a backtracking line search to quickly decrease the maximum
step size αmax, the minimum step size αmin is given by the minimum scaling
of the search direction that leads to an active set change on any stage. While
this is intuitively clear, as each region with a constant active set is quadratic
and Newton’s method takes a step towards the minimum of a local quadratic
function approximation, we give a formal proof for this in the following section,
in the context of convergence (Lemma 4.19). This guaranteed minimum step
size is indicated by λiαmin

in Figure 4.1.
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Remark 4.18 As mentioned above, we obtain all α-values at which active set
changes occur at no extra cost when employing an online active set strategy
to solve each (QPk). Therefore, taking a simple minimum over these α-values
over all stages k ∈ S provides us with the lower bound αmin. If the solution to
(QPk) is computed by Equation (4.6), points of active-set changes can still be
obtained cheaply by comparing the unconstrained to the clipped solution in
each component.

4.4 Finite Convergence of the Algorithm

Convergence of non-smooth Newton methods has been proven before for
functions with similar properties [QS93, LS97, GK08]. In the following we show
convergence in our specific setting; this allows us to present a shorter, more
straightforward proof. Based on these results we further establish an infeasibility
detection mechanism in Section 4.5, which according to our knowledge is novel
to QP solvers based on nonsmooth Newton methods.

A bit of notation is needed throughout this and the following section. ByM(λ)
we refer to the Hessian matrix of (DQP), as defined in Equations (4.8-4.9).
The possibly regularized version of M(λ) used in the solution step of the
Newton system (4.5) is denoted by M̃(λ). We will omit the dependency on λ
occasionally for notational convenience when it is clear from the context. The
active set of stage constraints at λ is denoted by A∗(z∗(λ)).

We start with a rather obvious result, that nonetheless is crucial for the practical
performance of the Dual Newton Strategy.

Lemma 4.19 (Local one-step convergence) Let (PQP) be feasible. Let λi
be the current dual iterate in Algorithm 4.1. LetM(λi) be positive definite, i.e.,
no regularization is needed during Step 7 in Algorithm 4.1, and let ∆λ be the
solution of the Newton equation (4.5). Then, if A∗(z∗(λi)) = A∗(z∗(λi+∆λ)),
it holds that λi+1 := λi + ∆λ solves Problem (DQP). In particular it holds

arg max
0≤α≤1

f∗(λi + α∆λ) = 1. (4.20)

Proof Recall that f∗ is piecewise quadratic in λ by Lemma 4.8. By the
construction in Lemma 4.12 we know that M(λi) is constant within each
region A(λi), since the active set is fixed. By its definition, the Newton step
∆λ points to the maximum of the quadratic function characterizing A(λi). By
concavity of f∗ it follows that λi + ∆λ has to be the maximum of f∗ and thus
solves (DQP). The claim (4.20) follows immediately. �
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Lemma 4.19 is applied twofold in the dual Newton strategy. First, it allows us
to make our line search smarter by only considering step sizes that lead to at
least one active set change (or full steps) as mentioned above in Section 4.3.6.
Second, it shows that once the correct region of the solution is identified we
have a one-step convergence to the exact solution (up to numerical accuracy),
cf. Section 4.2.4. Next, we show global convergence.
Theorem 4.20 (Global convergence) Let (PQP) be feasible. Let λ0 ∈
RNnx and let λi ∈ RNnx be defined recursively by λi+1 := λi + αi ∆λi,
where ∆λi is the (possibly regularized) solution to Equation (4.5), and αi is the
solution to Equation (4.19). Then the sequence {λi}i∈N0 ⊂ RNnx converges to
the unique maximum λ̂ with G(λ̂) = 0.

Proof The sequence {λi}i∈N0 induces a sequence {f i := f∗(λi)}i∈N0 ⊆ R. By
definition of the exact line search (4.19) it holds that f i+1 ≥ f i, i.e., {f i}i∈N0 is
monotonously increasing. Since (PQP) is feasible, f∗(λ) is a bounded, concave
function by Lemma 4.8 and duality theory. By the Bolzano-Weierstrass Theorem
{f i}i∈N0 thus converges to an accumulation point f̂ .

Due to monotonicity of {f i}i∈N0 it holds that {λi}i∈N0 is contained in the
superlevel set

F := {λ ∈ RNnx | f∗(λ) ≥ f∗(λ0)},
which is compact since f∗(λ) is a bounded concave function. A convergent
subsequence {λi(1)} ⊆ {λi}i∈N0 therefore has to exist and its limit λ̂ fulfills
f∗(λ̂) = f̂ due to the induced monotonicity of f∗(λi(1)).

What remains to show is that λ̂ indeed maximizes f∗(λ), i.e. G(λ̂) = 0.
Assume contrarily G(λ̂) 6= 0. Since M̃(λi) is strictly positive definite and due
to the fixed regularization even bounded away from 0 in norm, it holds that
∆̂λ = M̃(λ̂)

−1
G(λ̂) 6= 0, cf. Equation (4.5), is an ascent direction. Then

α̂ > 0 holds for the solution of Equation (4.19), and by C1-continuity of f∗(λ)
we can conclude that there is a δ > 0 with

f∗(λ̂+ α̂ ∆̂λ) ≥ f∗(λ̂) + δ.

Since {λi(1)} converges to λ̂, an index ī ∈ N exists, such that for all i(1) ≥ ī we
have ∆λi

(1)
sufficiently close to ∆̂λ and λi(1) close enough to λ̂ such that

f∗(λi
(1)

+ αi
(1)

∆λi
(1)

) ≥ f∗(λi
(1)

+ α̂∆λi
(1)

) ≥ f∗(λ̂) + δ/2,

where the first inequality holds by the maximum property of the line search in
each iteration, and the second by continuity of f∗(λ). This, however, would be
a contradiction to λ̂ being an accumulation point of a monotonously increasing
sequence, so G(λ̂) = 0, and our claim holds. �
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Lemma 4.21 Let z∗(λ∗) be a feasible solution for (PQP), that fulfills the
LICQ. ThenM(λ∗) is strictly positive definite.

Proof From Lemma 4.12 we have thatM(λ∗) = C P(λ∗)C>, where

P(λ∗) = Z∗(Z∗>HZ∗)−1Z∗>

withZ∗ := block diag(Z∗0 ,Z∗1 , . . . ,Z∗N ) andH := block diag(H0,H1, . . . ,HN ).
As in Lemma 4.12, each Z∗k , k ∈ S denotes a basis matrix for the active
constraints in the solution of (QPk), in this context the solution given the
subproblem parameter λ∗. Consider now

λ>M(λ∗)λ = λ>CZ∗(Z∗>HZ∗)−1Z∗>C>λ. (4.21)

Since H is positive definite and Z∗, being a block diagonal composition
of basis matrices, has full column rank, we have Z∗>HZ∗ � 0, and thus
(Z∗>HZ∗)−1 � 0. Using equation (4.21), this implies λ>M(λ∗)λ ≥ 0.

Assume λ>M(λ∗)λ = 0. Since (Z∗>HZ∗)−1 � 0 this means λ>CZ∗ = 0
has to hold.

The columns of Z∗ however are linearly independent and span the nullspace
of the active stage constraints, i.e., every vector from the nullspace of Z∗ can
be expressed by a linear combination of active stage constraints. If now λ>C
lies in the nullspace of the active stage constraints this means there is a linear
combination of active stage constraints that represents λ>C, which is a linear
combination of the stage coupling equality constraints. Since LICQ holds we
can conclude that λ = 0, and thusM(λ∗) � 0 holds. �

Corollary 4.22 (Finite termination of Algorithm 4.1) Let z∗(λ∗) be a
feasible solution for (PQP) that fulfills the LICQ. Let λ0,λ1, . . . be computed
from Algorithm 4.1 (in exact arithmetic). Then {λi}i∈N0 becomes stationary
after finitely many iterations, i.e., ∃ ī : λi = λ∗ ∀ i ≥ ī.

Proof From Lemma 4.6 we know that z∗k(λ) depends continuously on λ. If
no stage constraints of (QPk) are weakly active in λ∗, then λ∗ lies in the
strict interior of a region A∗ (withM(λ) constant on A∗) in the dual λ space.
According to Theorem 4.20 there is a finite iteration index ī <∞ with λī ∈ A∗.
Due to Lemma 4.21 we have thatM(λ) is non-singular on A∗, and Lemma 4.19
guarantees convergence in the next iteration.

If there are weakly active constraints in λ∗ (i.e., λ∗ lies on the boundary
between several, but a finite number of, nonempty regions A(j1), . . . , A(jn) in
Figure 4.1), then due to C1 continuity of f∗, each quadratic function defining
f∗ on A(ji), i ∈ {1, . . . , n} needs to have its maximum in λ∗. We can define a
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ball Bε(λ∗) of fixed radius ε > 0 around λ∗ with the property that for every
λ ∈ Bε(λ∗) the dual function f∗ on a region A(ji) containing λ is again defined
by a quadratic function having its maximum in λ∗. By the identical argument
as before we can conclude finite termination of Algorithm 4.1 due to Theorem
4.20, Lemma 4.21, and Lemma 4.19. �

4.5 Infeasibility Handling

If the primal problem (PQP) is infeasible, two possible consequences for
the dual (DQP) arise. If a stage k and a selection of stage constraints{

(dk)i ≤ (Dk)i,·zk ≤
(
dk
)
i

}
i∈Ik

, Ik ⊆ {1, ..., nd} exists that cannot be
satisfied by any zk ∈ Rnz , then and only then the dual problem (DQP) is
infeasible as well, as no choice of λ will render (QPk) feasible (see also Remark
4.1).

Otherwise, if all (QPk) are feasible and yet (PQP) is infeasible, we have the
following Lemma:

Lemma 4.23 Let all (QPk) be feasible. If (PQP) is infeasible, the dual
function f∗(λ) is unbounded and there exists (at least) one region in λ space,
∅ 6= Ainf ⊆ RNnx , with constantMinf on Ainf and

i) Minf singular, i.e., ∃λ 6= 0 : Minf λ = 0,

ii) ∀ f̄ ∈ R ∃ λ̂ ∈ Ainf : f∗(λ̂) > f̄ ,

iii) for all A(j), defined by a representative λ(j), withM(λ(j)) � 0 it holds

∃ λ̂ ∈ Ainf ∀ λ̄ ∈ A(j) : f∗(λ̂) > f∗(λ̄).

Proof Since all (QPk) are feasible, f∗(λ) exists and (DQP) is feasible. Thus,
(DQP) has to be unbounded by duality theory.

Let λ(j) ∈ A(j) for any A(j). The mapping λ→ f∗(λ) is onto an interval that
contains the half-open interval [f∗(λ(j)),+∞), since f∗(λ) is continuous and
unbounded. Since there is only a finite number of regions by Definition 4.4,
property (ii) holds.

Assume now (i) is violated, i.e., ∃A(j) with M(·) � 0 on A(j) and ∀ f̄ ∈
R ∃λ ∈ A(j) : f∗(λ) > f̄ . SinceM(·) � 0 is constant on A(j) we have that
f∗(λ) is strictly, and even strongly concave on A(j). Therefore ∃ f̄ <∞ with
f∗(λ) ≤ f̄ ∀λ ∈ A(j), a contradiction. Therefore (i) holds.
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In particular f∗(λ) is bounded (from above) on each A(j) withM(·) � 0. Since
there is only a finite number of regions, property (ii) implies (iii). �

Lemma 4.23 tells us that unboundedness of the dual objective function value
can only occur in regions with singular Newton Hessian MatrixM(·). We
further characterize these unbounded regions in the following.

Definition 4.24 (Infinite ray) For ∆λ 6= 0 we call a pair (λ̄,∆λ) an infinite
ray, if there is a region Ainf ⊆ RNnx represented by λ̄ ∈ Ainf such that

1. the ray is contained in the region: λ̄+ δ∆λ ∈ Ainf ∀ δ > 0,

2. the ray is in the nullspace of the region’s Hessian: M(λ̄) ∆λ = 0,

3. the ray is an ascent direction: G(λ̄)>∆λ > 0.

Clearly every region containing an infinite ray is an unbounded region in the
sense of Lemma 4.23. We additionally have the following characterizations.

Remark 4.25 As ∆λ lies in the nullspace of the negated dual HessianM(·),
the dual gradient G(·) along a ray (λ̄,∆λ) is constant.

Lemma 4.26 Let (λ̄,∆λ) be an infinite ray contained in Ainf . For every
λ̃ ∈ Ainf it holds λ̃+ γ∆λ ∈ Ainf ∀ γ > 0, i.e., (λ̃,∆λ) is an infinite ray as
well.

Proof Since Ainf is convex by Lemma 4.7 and both λ̃ ∈ Ainf and λ̄+ γ∆λ ∈
Ainf for each choice of γ > 0, it holds

β λ̃+ (1− β) · (λ̄+ γ∆λ) ∈ Ainf ∀β ∈ [0, 1]. (4.22)

From Lemma 4.7 we also have that Ainf is polyhedral and therefore closed in
RNnx , where R := R ∪ {−∞,+∞}. Thus, the limit of (4.22) for γ → ∞ is
contained in Ainf , and the claim holds. �

Lemma 4.26 is interesting as it tells us that Ainf has a cone- or beam-like shape.
This will play a role in the following, when we characterize certificates for an
unbounded dual problem. We have the following definition and theorem:

Definition 4.27 (Ridge) Let (λ†,∆λ†) be an infinite ray with ∆λ† 6= 0.
We call (λ†,∆λ†) a ridge if it holds ∆λ† = γ G(λ†) for a γ > 0, i.e., if ∆λ† is
aligned with the gradient of the dual function f∗ along the ray it is defining.y

Theorem 4.28 Let all (QPk) be feasible. If (PQP) is infeasible, then a ridge
(λ†,∆λ†) exists.
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Proof From Lemma 4.23 we know that a non-empty region Ainf exists. We
further know that f∗(λ) is an unbounded concave quadratic function on Ainf .
An infinite ray (λ̄,∆λ) in the sense of Definition 4.24 therefore has to exist in
Ainf . From Lemma 4.26 we have that in this case (λ̃,∆λ) is an infinite ray as
well for every λ̃ ∈ Ainf .

Let us regard Ainf
∪ := Ainf,1 ∪Ainf,2 ∪ . . . ∪Ainf,n, the union of all unbounded

regions in the sense of Lemma 4.23. Clearly for all f̄ ∈ R the superlevel set

Āinf
∪ := {λ ∈ Ainf

∪ | f∗(λ) ≥ f̄} (4.23)

is convex, as f∗(λ) is concave. Since f∗(λ) is continuous and unbounded on
Āinf
∪ , it holds that Āinf

∪ is (Nnx)-dimensional, i.e., full-dimensional; otherwise a
directional vector e ∈ RNnx would exist with λ̃ ∈ int(Āinf

∪ ), i.e., f∗(λ̃) > f̄ and
f∗(λ̃+ ε e) < f̄ ∀ ε > 0, a violation of continuity.

Assume for the moment that every region Ainf,j only contains one infinite ray
(up to translation and scaling). Consider the nonempty intersection of Āinf

∪ with
a (Nnx − 1)-dimensional Hyperplane F ⊂ RNnx . If F ∩ Āinf

∪ does not contain a
singular ray, f∗(λ) has to be bounded on F ∩ Āinf

∪ , as f∗(λ) is composed from
only a finite number of concave quadratic functions. In particular f∗(λ) attains
a maximum λ̂ somewhere in the intersection.

This maximum λ̂ is characterized by the fact that the dual gradient G(λ̂)
is orthogonal to F if λ̂ ∈ int(F ∩ Āinf

∪ ). Since the dual λ space is (Nnx)-
dimensional G(λ̂)/‖G(λ̂)‖ is uniquely defined by F and vice versa. Recall that
(λ̂,∆λ) is an infinite ray in every λ̂ ∈ Āinf

∪ for one fixed ∆λ as shown above.
Since G(λ) is continuous, varying (i.e., “rotating”) F eventually has to yield a
λ̂ with G(λ̂) = γ∆λ for some γ > 0.

If now there is a region Ainf
j with more than one infinite ray (i.e., the directional

vectors ∆λ of the infinite rays span a space of dimensionality k > 1) the
same argument can be applied, but with a (Nnx − k)-dimensional Hyperplane
F ⊂ RNnx . In this case G(λ̂) is not uniquely defined anymore, but lies in the
normal space of F . By the same argument as above there has to be an F
whose normal space coincides with the space spanned by the directional vectors
∆λ of the infinite rays of Ainf

j , and thus again there is an infinite ray (λ̂,∆λ)
coinciding with the gradient G(λ̂) at its base point λ̂. �

Remark 4.29 Let (λ†,G(λ†)) ⊆ A† ⊆ Āinf
∪ a ridge. Clearly,M(λ†) is rank

deficient (and constant on A†) and thus regularized with δ I � 0 by Algorithm
4.1. By Theorem 4.28 and Definitions 4.24 and 4.27 it holdsM(λ†)G(λ†) = 0
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and we have

G(λ†) = 1
δ
δ G(λ†) + 1

δ
M(λ†)G(λ†)︸ ︷︷ ︸

=0

= 1
δ

(M(λ†) + δ I︸ ︷︷ ︸
�0

)G(λ†)

⇔ M̃(λ†)−1G(λ†) = 1
δ
G(λ†)

⇔ ∆λ† = 1
δ
G(λ†),

i.e., Algorithm 4.1 only performs gradient steps and thus remains on the ridge.
Therefore we can see a ridge as the analogon to a fixed point in the case where
the dual function f∗(λ) is unbounded.

Lemma 4.30 (Minimality of the ridge gradient) Let (λ†,∆λ†) be a ridge.
Then

‖G(λ†)‖2 ≤ ‖G(λ)‖2 (4.24)
for all λ ∈ RNnx . Inequality (4.24) is furthermore strict except for those λ that
lie on a ridge, i.e., for which there is a ridge (λ̄,∆λ) such that λ = λ̄+ γ∆λ
for a γ ≥ 0. In particular the ridge (λ†,∆λ†) ⊆ A† is unique up to scaling of
∆λ† and translations from the nullspace ofM(λ†).

Proof Let λ ∈ RNnx and let (λ†,∆λ†) be a ridge. Due to concavity of f∗(·)
we have (G(λ)− G(λ†))>(λ† − λ) ≥ 0. Since G(·) is constant along the ridge,
(λ†,∆λ†), and ∆λ† and G(λ†) only differ by a positive scalar factor, we also
have

(G(λ)− G(λ†))> 1
γ

(λ† + γ G(λ†)− λ) ≥ 0

for all γ > 0. Since concavity of f∗(·) clearly also holds on the extended domain
RNnx , where R = R ∪ {−∞,+∞}, we have (G(λ)− G(λ†))>G(λ†) ≥ 0 in the
limit for γ →∞. This is equivalent to

‖G(λ†)‖22 = G(λ†)>G(λ†) ≤ G(λ)>G(λ†) ≤ ‖G(λ)‖2 · ‖G(λ†)‖2,

where the last inequality is the Cauchy-Schwarz inequality. Thus (4.24) holds.

For the proof of the second part of the Lemma, we note that the Cauchy-
Schwarz inequality is strict unless G(λ) is a positive multiple of G(λ†), so
‖G(λ)‖2 = ‖G(λ†)‖2 implies G(λ) = G(λ†). Let us therefore consider an
arbitrary λ ∈ RNnx with G(λ) = G(λ†). Due to concavity we have

f∗(β λ+ (1− β)λ†) ≤ f∗(λ) + G(λ)>(β λ+ (1− β)λ† − λ)

= f∗(λ) + (1− β) · G(λ)>(λ† − λ) (4.25)
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for β ∈ [ 0 , 1 ], and analogously

f∗(β λ+ (1− β)λ†) ≤ f∗(λ†)− β · G(λ†)>(λ† − λ). (4.26)

We can multiply (4.25) by β and (4.26) by (1− β), add both inequalities up,
and, using G(λ) = G(λ†), yield

f∗(β λ+ (1− β)λ†) ≤ β f∗(λ) + (1− β) f∗(λ†)

Due to concavity of f∗(·) also the converse inequality holds and we have

f∗(β λ+ (1− β)λ†) = β f∗(λ) + (1− β) f∗(λ†), (4.27)

i.e., linearity of f∗(·) on the interval between λ and λ†. Once more since
G(·) is constant along the ridge (λ†,∆λ†), (4.27) holds analogously for all
λ̃† := λ†+γ∆λ† in place of λ†, i.e. f∗ is linear on the interval [λ , λ†+γ∆λ† ]
for all choices of γ > 0. Since the space of linear functions from RNnx to R
is closed, linearity also holds in the limit for γ → ∞, which is the half-open
interval {λ + γ ·∆λ† | γ ∈ [ 0 ,∞ )}. Since G(λ) = G(λ†) (which itself is a
positive multiple of ∆λ†) we therefore have that (λ,G(λ)) is itself a ridge,
which is moreover parallel to (λ†,∆λ†).

Since f∗(·) is specifically linear on [λ , λ† ], (λ,G(λ)) differs from (λ†,∆λ†)
only by a shift that lies in the nullspace ofM(λ†) as we claimed above. �

Theorem 4.31 (Convergence to an infinite ray) If (PQP) is infeasible,
then exactly one of the two following statements is true:

1. (QPk) is infeasible for at least one k ∈ S

2. Algorithm 4.1 converges to an infinite ray if the regularization parameter
δ is chosen sufficiently large

Proof Let (PQP) be infeasible. Due to the special time coupling structure of
(PQP) either there exists a minimal infeasible set (a selection of constraints
of minimal size that cannot be fulfilled at the same time) that is contained in
the set of local stage constraints of one (QPk), or all minimal infeasible sets
consist of local stage constraints (PQP3) of several stages k1 < k2 < ... < kn
and the corresponding time coupling constraints between k1 and kn (a subset
of Constraints (PQP2)). In the former case Statement 1 holds, and infeasibility
is detected by the stage QP solver on first execution. In the latter case we have
that the partial dual function f∗(λ) exists and can be evaluated. In particular
f∗(λ) is unbounded by Lemma 4.23. In the remainder of the proof we show
that in this case Algorithm 4.1 indeed converges to an infinite ray.
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As we have seen in the proof to Theorem 4.20, the iterates λi of Algorithm 4.1
defined by Equations (4.4), (4.5), and (4.19) induce a monotonously increasing
sequence {f∗(λi)}i∈N0 . We claim that {f∗(λi)}i∈N0 does not converge if f∗(λ)
is unbounded.

Assume contrarily that {f∗(λi)}i∈N0 converges. Clearly G(λ) does not vanish
since G(λ) = 0 would imply the existence of a feasible solution of (PQP) by
Remark 4.11. By Lemma 4.30 we further know the existence of a

0 < Gmin := min
λ∈RNnx

‖G(λ)‖. (4.28)

If now {f∗(λi)}i∈N0 converges, clearly the updates αi M̃(λi)−1G(λi), have
to vanish. Since there are only finitely many different M̃(·) � 0 and G(·) is
bounded away from 0 by Equation (4.28) this implies that

αi = arg max
0≤α≤1

f∗(λi + α∆λ)

with ∆λ = M̃(λi)−1G(λi), cf. Equation (4.19), has to drop to 0. At each
iteration i three cases for αi could appear:

i) αi = 1.

ii) αi = 0. We have G(λi) 6= 0 and M̃(λi) � 0, so M̃(λi)−1G(λi) is an
ascent direction. By C1-continuity of f∗(·) an ascent is possible and thus
αi 6= 0 ∀ i ∈ N0.

iii) 0 < αi < 1. Then by maximality αi fulfills G(λi + αi∆λ)>∆λ = G(λi +
αi∆λ)>M̃(λi)−1G(λi) = 0. Regard

φ(α) := G(λi + α∆λ)>M̃(λi)−1G(λi)

as a function in α. Clearly φ(0) = G(λi)>M̃(λi)−1G(λi) is bounded away
from 0, since there are only finitely many different M̃(·) � 0 and G(·) is
bounded away from 0 by Equation (4.28). Further φ(α) is continuous and
its derivative φ′(α) = −∆λ>M(λi + α∆λ)∆λ is bounded from below
(for a fixed ∆λ), again since there are only finitely many different M̃(·);
note that the ascent direction ∆λ cannot grow to infinity for i→∞ since
f∗(λ) is concave and f∗(λi) is increasing. Therefore αi has to be bounded
away from 0 by a problem-data specific constant that is independent from
the iteration index i.

Since also αi does not converge to 0 we have a contradiction, and our claim that
{f∗(λi)}i∈N0 diverges (even monotonously) holds true. In particular every fixed
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function value f̄ will be exceeded and for every suitably large f̄ the iterates of
Algorithm 4.1 will remain in Āinf

∪ (as defined in Equation (4.23)) after a finite
number of iterations.

Yet in the remainder of the proof we first show local and subsequently global
attractiveness of a ridge in the sense of Theorem 4.28.

Let A† denote the region that contains a ridge (λ†,G(λ†)). For two subsequent
iterates both contained in A† (characterized by a constant Newton MatrixM)
we have the exact linear model

G(λi+1) = G(λi + αiM̃−1G(λi))

= G(λi)− αiMM̃−1G(λi). (4.29)

We now claim that αi = 1 if G(λi+1) ∈ A†, which is true by the following
reasoning: by the argumentation in (ii) above, clearly αi > 0. If αi < 1, by
optimality of the line search it would need to hold

G(λi + αi∆λ)>∆λ = 0

⇔
(
G(λi)− αiMM̃−1G(λi)

)>
M̃−1G(λi) = 0

⇔ G(λi)>
(
I− αiMM̃−1)> M̃−1G(λi) = 0.

Since M̃−1 � 0 and G(λi) 6= 0 by Equation (4.28), this could only be true if
I−αiMM̃−1 is semidefinite or indefinite. However, we have I−αiMM̃−1 =
(M̃− αiM)M̃−1 = ((1− αi)M+ δ I )M̃−1 � 0 for αi < 1 (recall thatM
is singular on A† by assumption, hence M̃ =M+ δ I), a contradiction, and
thus αi = 1 holds.

Next, note that due to the cone-like quadratic shape of A† (cf. Lemma 4.26) each
subsequent iterate λi+1 is contained in A† if λi ∈ A†. The linear expansion
of the gradient, (4.29), becomes G(λi+1) =

(
I−MM̃−1)G(λi). Clearly

I−MM̃−1 = I−
(
M̃− δ I

)
M̃−1 = δM̃−1 is positive definite. On the other

handMM̃−1 = I− δM̃−1 is positive semidefinite, so ‖G(λi+1)‖ ≤ ‖G(λi)‖.

WheneverMM̃−1G(λi) 6= 0 we have δ G(λi)>M̃−1MM̃−1G(λi) > 0 for
any δ > 0. This can be easily verified, e.g., by using the fact that 0 �M =:
BB> has a (not necessarily full rank) symmetric factorization. Assuming
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MM̃−1G(λi) 6= 0 it then holds3

δ G(λi)>M̃−1MM̃−1G(λi) > 0

⇔ G(λi)>
(
I−MM̃−1)MM̃−1G(λi) > 0

⇔ G(λi)>MM̃−1G(λi)− G(λi)>M̃−1MMM̃−1G(λi) > 0

⇒ 2 · G(λi)>MM̃−1G(λi)− G(λi)>M̃−1MMM̃−1G(λi) > 0.

This implies that

‖G(λi+1)‖2 = G(λi)>
(
I−MM̃−1)> (I−MM̃−1)G(λi)

= ‖G(λi)‖2 − 2 · G(λi)>MM̃−1G(λi)

+ G(λi)>M̃−1MMM̃−1G(λi)

< ‖G(λi)‖2

for all iterates with MM̃−1G(λi) 6= 0, and together with (4.29) we can
conclude that the sequence of gradients converges to a limit G∗ that fulfills

MM̃−1G∗ = 0

⇔
(
M̃− δ I

)
M̃−1G∗ = 0

⇔ δM̃−1G∗ = G∗ ,

the ridge property. Recall that by Lemma 4.30 the ridge is unique.

It remains to show that the iterates λi of Algorithm (4.1) also converge globally
to A†. To see this, we consider the auxiliary function

f̃(λ) := f∗(λ)− G(λ†)>λ.

This function is clearly piecewise quadratic and concave, just like f∗, and its
second derivative equals the second derivative of f∗, while the first derivative
of f̃ is given by ∂f̃

∂λ
= G(λ)> − G(λ†)>. It is furthermore bounded, since due

to concavity we have for every λ ∈ RNnx

f̃(λ) ≤ f̃(λ†) + (G(λ†)− G(λ†))>(λ− λ†) = f̃(λ†).
3We make use of the symmetry and positive semidefiniteness ofMM̃−1 = I− δ M̃−1.
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The iterates λi of Algorithm (4.1) are increasing in f̃ iff the step directions
M̃(λi)−1G(λi) are always ascent directions, i.e., if

αi (G(λi)− G(λ†))>M̃(λi)−1G(λi)
!
> 0

holds. We have shown above that αi is bounded away from 0 by an iteration-
independent constant and therefore we equivalently have the condition

δ G(λi)>M̃(λi)−1G(λi)
!
> δ G(λ†)>M̃(λi)−1G(λi), (4.30)

where δ is the regularization parameter in Algorithm 4.1. Since δM̃(λi)−1 is
positive definite, each of the finitely many distinct values M̃(j)

−1 defines a
scalar product through δM̃(j)

−1, that induces a norm on RNnx . Applying the
Cauchy-Schwarz inequality to (4.30) we have that the iterates λi are increasing
if

‖G(λi)‖2
δM̃−1

(j)

!
> ‖G(λ†)‖

δM̃−1
(j)
· ‖G(λi)‖

δM̃−1
(j)

⇔ ‖G(λi)‖
δM̃−1

(j)

!
> ‖G(λ†)‖

δM̃−1
(j)
. (4.31)

While λi is not contained in a ridge, we have ‖G(λi)‖2 > ‖G(λ†)‖2 from Lemma
4.30; furthermore I− δM̃−1

(j) = I− δ (M(j) + δ I)−1 vanishes for sufficiently
large choices of δ, fulfilling (4.31) and thus showing that the iterates λi are also
ascending in the auxiliary function f̃ . Since f̃ is bounded, we can conclude that
the region A†, containing a ridge, is eventually reached, thus concluding the
proof of global convergence. �

Theorem 4.31 can algorithmically be used to detect infeasibility of (PQP).
If any (QPk) is infeasible, it will be detected by the stage QP solver (either
qpOASES, or during the clipping operation) on the first execution and (PQP)
is immediately known to be infeasible. Otherwise, in the case of infeasibility
through the coupling constraints, we know by Theorem 4.31 that the iterates
of Algorithm 4.1 will eventually converge to a ridge. Here, we could gradually
increase the regularization parameter δ if the iterates remain in regions with
singular Hessians. A check whether G(λi) is in the nullspace ofM(λi) (i.e.,
M(λi)G(λi) ≈ 0) every few (regularized) iterations without an active-set
change, combined with a check whether any active-set change occurs at all in
the Newton direction will eventually conclude infeasibility. Note that the check
for active-set changes in the Newton direction can cheaply be performed both
in qpOASES and the clipping QP solver by simply considering the signs in the
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ratio test of the active and inactive constraints, cf. Section 4.3.6. Additionally,
practical infeasibility can be concluded, when the objective function value
exceeds a certain large threshold (caused by an explosion of the norm of the
iterates λi).

Remark 4.32 In practice, the dual iterates λi in Algorithm 4.1 were indeed
always observed to grow very fast and reach a ridge quickly in infeasible problems
due to the initially small regularization.

We note that the theoretical result of Theorem 4.31 is somewhat unsatisfactory,
since it requires a modification of the regularization parameter δ (or even to
only do gradient steps in regions with a singular Hessian). We initially aimed
at proving Theorem 4.31 for generic regularized Newton steps, i.e., independent
of δ. Despite some considerable effort, we could not come up with a formal
argument that links Condition (4.31) with Lemma 4.30, since the ordering
relations in the Euclidian norm on the one hand and the norm induced by
δM̃−1

(j) on the other hand might be different. Still, we are confident that
also general regularized Newton updates, independent of the choice of δ, are
increasing in f̃ on a global scale (though not necessarily monotonously), and
thus formulate the following conjecture.

Conjecture 4.33 Theorem 4.31 holds for all choices of the regularization
parameter δ > 0.

4.6 Concurrency in the Dual Newton Strategy

One important advantage of the Dual Newton Strategy is that, opposed to
conventional active-set or interior-point methods, it is an easily parallelizable
algorithm. Analyzing Algorithm 4.1 step by step in this respect, we observe that
all stage QPs can be solved concurrently by N + 1 threads in Step 2. Next, each
block of the dual gradient G(λ) only depends on the solution of two neighboring
stage QPs (cf. Equation 4.7), and therefore the setup can be done concurrently
by N threads (Step 3). Also in the setup of the symmetric Newton matrixM,
Step 6, each diagonal block only depends on the solution of two adjacent stage
QP solutions, while each off-diagonal block only depends on the solution of one
stage QP; therefore the workload of the setup ofM can be distributed on N
threads almost equally. During the line search procedure in Step 8 of Algorithm
4.1, the expensive steps in each iteration consist of solving all stage QPs for the
new step size guess and computing the corresponding gradient, both of which
can be spread over N + 1 threads with almost equal workload.
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Therefore, all steps of significant workload can already be run fully in parallel in
each major iteration of Algorithm 4.1, except for the solution of the structured
linear system, Step 7. In a sequential implementation, solving the system based
on a structure-exploiting reverse Cholesky factorization as proposed in Section
4.3.5 seems most efficient. This algorithm, however, is high level completely
serial and therefore cannot be expected to scale well with the number of available
computing threads on modern and forthcoming multi-core CPU architectures.
We therefore propose a parallelizable solution algorithm for the structured
Newton system in Section 4.6.1, as an alternative to Algorithm 4.2. The overall
cost of this algorithm is roughly twice as high in number of floating point
operations (FLOPs) as Algorithm 4.2, but it comes at a parallel complexity
of only O(logN) on N threads; therefore, the overall time complexity of one
iteration of the dual Newton strategy comes down to only O(logN) FLOPs,
compared to O(N3) in active-set methods, and O(N) in state-of-the-art tailored
interior-point (IP) methods4.

4.6.1 A parallel solution algorithm for the Newton system

The core idea behind the algorithm proposed in this section is to exploit the
block-tridiagonal structure of the Newton matrixM in Equation (4.5) in a
cyclic reduction strategy. We note that a similar and to some extent more
general algorithm has been proposed independently in [Wri91] for the parallel
solution of a linear system of similar structure, that originated from a related
but slightly different problem. The work [Wri91] contains a deeper analysis
of the applicability and extensions of the cyclic reduction strategy, as well as
extensive numerical comparisons. In the following we only present the central
algorithmic idea in our context and refer to [Wri91] for complementary reading.
Note that in contrast to the setting of [Wri91], we have general applicability,
sinceM is positive definite and therefore the diagonal minors are invertible.

We consider the Newton system given by



D1 U1
U>1 D2 U2

U>2 D3 U3
. . .

. . .
. . .

U>N−2 DN−1 UN−1
U>N−1 DN


·



λ1
λ2
λ3
λ4
...

λN−1
λN


=



g1
g2
g3
...

gN−1
gN


(4.32)

4We note that, in principle, a computational complexity of O(logN) can also be achieved
for IP methods using the same algorithmic idea as stated below, cf. Remark 4.35.
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where λi ∈ Rnx , i ∈ S0 denote the block components of λ defined in Equation
(4.2). We assume the Newton matrixM strictly positive definite (otherwise
we regularize). We can use the 2nd, 4th, . . . equation of (4.32) to eliminate
λ2,λ4, . . . concurrently from (4.32). This yields a reduced-size system of
equations, which is again block-tridiagonal,

D̄1 Ū1
Ū>1 D̄3 Ū3

. . .
. . .

. . .

ŪN−1
Ū>N−1 D̄N

 ·


λ1
λ3
λ5
...

λN−1
λN


=



ḡ1
ḡ3
ḡ5
...

ḡN−1
ḡN


,

with block components given by

D̄i := Di − U>i−D
−1
i− Ui− − UiD

−1
i+ U>i (4.33a)

Ūi := −U>i D
−1
i+ Ui+ (4.33b)

ḡi := gi − U>i−D
−1
i− gi− − U

>
i D

−1
i+ gi+, (4.33c)

where i− = i− 1, and i+ = i+ 1. Applying this reduction step recursively, we
obtain a system [ ¯̄D1

¯̄U1
¯̄U>1

¯̄DN

]
·
[
λ1
λN

]
=
[ ¯̄g1
¯̄gN

]
after Θ(logN) iterations, from which we can eliminate λN , yielding( ¯̄D1 − ¯̄U1

¯̄D−1
N

¯̄U>1
)
λ1 = ¯̄g1 − ¯̄U1

¯̄D−1
N

¯̄gN , (4.34)

a dense system of size nx×nx. This system can be efficiently solved by a direct
Cholesky decomposition, followed by two backsolve steps.

With λ0 we can recover λN from

λN = ¯̄D−1
N

(
¯̄gN − ¯̄U>0 λ0

)
, (4.35)

and in general, we can recover λi from λi− and λi+ by

λi = D−1
i

(
gi − U>i− λi− − Ui λi+

)
, (4.36)

concurrently in reverse level order of the previous elimination procedure. Here
λi− and λi+ denote the λ-blocks preceding and succeeding λi in the system of
equations remaining in the reduction step that eliminated λi.



152 BLOCK-BANDED QUADRATIC PROGRAMMING

The complete solution algorithm can be summarized as follows:
Algorithm 4.3: A parallel solution algorithm for Equation (4.5)

Input: Newton system given by g(0) =
[
g>0 , . . . , g

>
N

]>,
D(0) = block diag(D0, . . . ,DN ), U (0) = block diag(U0, . . . ,UN−1)

Output: Solution λ =
[
λ0
>, . . . ,λN

>]> to Equation (4.5)
1 kmax = dlog2(N − 1)e
2 for k = 1 : kmax do /* factor step */
3 for i = 2k−1 : 2k : N − 1 do in parallel
4 i− = i− 2k−1

5 i+ = min(i+ 2k, N)
6 compute D(k)

i ,U
(k)
i , g

(k)
i from Eq. (4.33) with

D? = D(k−1)
? , U? = U (k−1)

? , g? = g(k−1)
? ∀? ∈ {i, i−, i+}

7 Compute λ0 from Eq. (4.34) with Ū0 = U
(kmax)
0 , ḡ0 = g

(kmax)
0 ,

D̄0 = D
(kmax)
0 , D̄N = D

(kmax)
N using a Cholesky decomposition

8 Compute λN from Eq. (4.35) with
D̄N = D

(kmax)
N , ḡN = g

(kmax)
N , Ū0 = U

(kmax)
0

9 for k = kmax : −1 : 1 do /* solve step */
10 for i = 2k−1 : 2k : N − 1 do in parallel
11 recover λi using Eq. (4.36) with with

Di = D
(k−1)
i , gi = g

(k−1)
i , Ui− = U

(k−1)
i− , Ui = U

(k−1)
i

Remark 4.34 Obviously the products of the block matrices U? and D−1
? in

Equations (4.33) and (4.34) are most efficiently computed by a backsolve with
a Cholesky factor of the diagonal blocks of the reduced size system, D?. If
System (4.32) is linearly dependent, i.e., ifM is rank deficient, the Cholesky
factorization of one of these blocks will fail (otherwise, i.e., if all D? have full
rank, (4.34-4.36) would constitute an linear injective mapping λ → G), and
we can restart the factorization with a regularizedM, analogously to Section
4.3.4.

Remark 4.35 We note that Algorithm 4.3 can also be employed in the
factorization step of tailored interior-point methods, thus obtaining alsoO(logN)
parallel time complexity versions of this class of methods. This has been
established in [Le14]5 for a structure-exploiting variant of Mehrotra’s predictor-
corrector scheme [Meh92].

5Do Duc Le developed these results in his Bachelor’s thesis under the supervision of Janick
Frasch.
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4.6.2 A partial condensing approach

So far, we discussed the application of the dual Newton strategy directly to
band-structured QPs arising from dynamic optimization. The main advantage
of the dual Newton approach compared to the classical approach consisting of a
condensing step followed by the solution of the dense problem by an active-set
method lies in the fact that the specific Newton system considered here can
be computed (i.e., set up) and solved at a computational complexity that is
linear in horizon length in a sequential implementation, and even log-linear in
a parallel implementation. For certain problems with long horizons and many
states, however, the solution of the Newton system may become overly expensive,
as the bandwidth of the fill-in of the dual Hessian matrix grows proportionally
to the number of states and the factorization grows cubically in the bandwidth.
The condensing/active-set approach would benefit overproportionally from the
reduced problem size in this case if the number of controls is small.

For other problems that feature very long prediction horizons, the backsolve step
in the solution of the Newton system may actually become the computational
bottleneck, if the Hessian factorization can be warm-started efficiently due to
active-set changes appearing only on the first stages.

An alternative in these cases may be to combine the dual Newton strategy
with a condensing approach. In detail we propose to apply the condensing
algorithms given in Section 3.2 to aggregate the stage problems (QPk) by groups
{N0, . . . , N1}, {N1 + 1, . . . , N2}, . . . , {Nm, . . . , Nm+1}, where 0 =: N0 < N1 <
N2 < . . . < Nm+1 := N . The resulting, aggregated stage problems QPk, where
k ∈ {0, . . . ,m}, are then given by6

min
z̄k

1
2 z̄k

>H̄kz̄k +
(
ḡk
> +

[
λ̄k
λ̄k+1

]> [−Ēk
C̄k

])
z̄k

s.t. d̄ l
k ≤ D̄k z̄k ≤ d̄u

k. (QPk)

The stage variables of the aggregated problems (QPk) are

z̄k := (xNk ,uNk ,uNk+1, . . . ,uNk+1−1).

Only the multipliers coupling the aggregated problems remain, and we have
λ̄k := λNk for k ∈ {0, . . . ,m + 1}. The condensed QP data is computed

analogously to Section 3.2, where we have H̄k
∼=
[
Q̄e S̄e

>

S̄e R̄

]
, ḡk ∼=

[
q̄e

r̄

]
,

6We ignore the constant objective function term in this context.
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D̄k ∼=
[
D̄e D̄

]
, d̄ l

k
∼= d̄, and d̄u

k
∼= d̄ in the terminology of Section 3.2. The

aggregated state transition matrix C̄k is given by

C̄k :=
[
ĀkNk

ĀkNk+1BNk ĀkNk+2BNk+1 · · · ĀkNk+1
BNk+1−1

]
,

with Ākj := ANk+1−1ANk+1−2 · · ·Aj , and we have Ē :=
[
I 0

]
of consistent

dimensionality.

The partially condensed block-structured QP can be set up offline, or,
respectively, during the preparation phase. The condensing algorithms can be
run in parallel for all m+ 1 aggregated stage problems. The Newton system
to be solved in each iteration of the dual Newton strategy then is only of size
mnx as opposed to N nx in the uncondensed problem. The bandwidth of the
fill-in of the dual Hessian matrix identically remains 4nx − 2.

Applying partial condensing the the first 0 < N1 � N stages in particular
opens up the possibility to provide ultra-fast approximate feedback already
after the first solution of the aggregated stage QP. The obtained solution z̄0(λ)
respects the stage and continuity constraints of the first N1 stages, and can be
interpreted as the optimal solution of a linear MPC controller on a shortened
horizon of length N1 with a linear terminal cost λ̄1

>
C̄0 z̄0.

To which extent the solver performance benefits from partial condensing depends
of course on the specific problem and on the computational architecture available;
the choice of m therefore remains a tuning parameter which gradually shifts
between a plain condensing/active-set method and the dual Newton strategy.
The price to pay for the reduced size of the dual Newton system are more
expensive stage problems due to increased dimensionality and possibly more
active-set changes per dual Newton iteration on each stage, and, of course, the
additional computational effort for the condensing operations in the preparation
phase.

4.7 Real-Time Quadratic Programming

In the following, we present several complementary extensions for the dual
Newton strategy that aim to improve its practical performance, particularly in
online applications.
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4.7.1 A preconditioned dual gradient method

Although no numerical results have been discussed up to this point, it will
become clear in Chapter 6 that the dual Newton strategy performs rather well
for a variety of problems. A particular noteworthy observation, which has to
be anticipated here, is the fact that in most instances the number of major
iterations in Algorithm 4.1, i.e., the number of nonsmooth Newton iterations,
was significantly lower than the number of stage constraints which are active
in the initialization and inactive in the solution or vice versa. This implies
that an average dual Newton iteration, just as we hoped for when designing
the method, jumps over several regions “towards” the solution, i.e. performs
simultaneously several favorable active set changes, which make the current
set of active stage constraints resemble more the set of active stage constraints
in the solution7. This is remarkable, since a priori we cannot really expect
the curvature information employed for the computation of our step to be
accurate or even approximately accurate outside our current region due to the
lack of C2-continuity. In fact it is not hard to construct instances of a piecewise
quadratic spline where — in its global phase — a nonsmooth Newton method
does not converge any faster than a gradient method, i.e., requires hundreds or
thousands of iterations, as opposed to tens, which we typically observe. Our
expectation however is, that such worst-case instances normally do no not occur
in practice8.

The central point of the above discussion is to stress that the predictive powers
of the Newton step outside the current region are limited. In particular, when
the dual Newton strategy is coldstarted, we cannot expect the added or removed

7Recall that by Lemma 4.19 the dual Newton strategy is guaranteed to converge in one
iteration once the correct set of active stage constraints is identified.

8Such motivations are actually quite common in active-set methods in general. The most
well-known example arguably is the Simplex algorithm, which is very successfully applied in
practice, despite the devastating worst-case complexity demonstrated in the famous paper
by Klee and Minty [KM72]. Besides practical observations, we draw motivation from the
success of two established classes of methods, active-set methods on the one hand, and dual
decomposition gradient methods on the other hand. By Lemma 4.19 we are guaranteed
an active set change in each iteration as long as the current region is not degenerate; we
furthermore have an ascent in the dual function, so we can hope to perform at least as good
as a simple active-set method. If, on the other hand, our current region is degenerate, such
that we obtain a perturbed Newton step due to regularization, we can still expect to perform
at least as good as a gradient method; since we can warmstart the dual Hessian factorizations,
and in the specific case where we do not get a primal active set change in one of the stage
constraints even with a full step we do not have to re-factorize at all, the per-iteration cost
of the dual Newton strategy is not much more expensive than the iteration cost of a dual
decomposition based gradient method. Furthermore, we can, in general, hope for a certain
similarity of the Newton steps computed from neighboring regions (at least in the average
case), as the Hessians characterizing neighboring regions only differ in a single direction,
which get added to or removed from the Hessian due to the active set change.
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curvature directions due to the active constraints in the (uninformed) initial
guess to be particularly helpful (as long as they do not correspond to explicit
or implicit equality constraints, of course). On the contrary, the dual Newton
performance may even be impeded, if the region containing the initial guess is
degenerate and therefore cannot be left quickly due to regularization perturbing
the Newton direction. As an alternative to overcome these drawbacks, we
propose to make use of a preconditioned dual gradient method whenever we
cannot hope for significant additional information gain from employing regular
Newton-type iterations — due to distance9 to the solution, or due to inexactness
of the Newton direction. Here, we of course have to ensure that exact dual
Newton steps are tested on a regular basis (particularly in the very first iteration),
to make sure we benefit from the guaranteed one-step terminal convergence
due to Lemma 4.19. The key ingredient to this heuristic is the preconditioner,
which we suggest to choose as the unconstrained10 dual Hessian

M̂ := CH−1C>, (4.37)

i.e., the Hessian characterizing the region where no stage constraints are active.
The resulting scaled gradient step then is computed as

∆λ := M̂−1
G(λi). (4.38)

Note that M̂ inherits strict positive definiteness from H, as C has full row rank
by assumption.

The benefit of choosing the preconditioner M̂−1 over the correct dual Hessian
is twofold. First of all, since M̂ is fully determined at the time of the problem
setup, a factorization can also be precomputed at this time and kept in the
online context. Second, as we will show in the following, no globalization routine
is required when using ∆λ from (4.38), since the full step is guaranteed to
be the optimal choice in (4.19) and in particular sufficient to ensure global
convergence.

To establish our claim, we first show that M̂ exhibits the most curvature among
all dual Hessians. We use analogous notation to Lemma 4.21.

Lemma 4.36 Let H ∈ Rn×n be positive definite, let Z ∈ Rn×l, where
l ≤ n, have full column rank, and let C ∈ Rn×m. Then, for M :=
CZ (Z>HZ)−1Z> C> and M̂ := CH−1C> we have

M̂ �M.

9Being far away from the solution can, for example, be assumed when we know from the
context that the initial guess is bad or completely uninformed.

10W.l.o.g. and for notational convenience only, we assume that all stage equality constraints
have been eliminated from the QP formulation. This does not affect the definiteness of M̂ if
LICQ holds in the QP solution, cf. Lemma 4.21.
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Proof To verify our claim it is sufficient to show that

H−1 −Z (Z>HZ)−1Z> � 0. (4.39)

To this end, we regard the auxiliary matrix

X :=
[
Z>HZ Z>
Z H−1

]
.

The Schur complement of H−1 in X is given by

Z>HZ −Z>HZ,

which is trivially positive semidefinite. Strict positive definiteness of H−1

implies11 that also
X � 0

holds, which in turn can be equivalently characterized by positive semidefinite-
ness of

H−1 −Z (Z>HZ)−1Z>,
the Schur complement of Z>HZ in X . This implies (4.39) and therefore
concludes our proof. �

Theorem 4.37 Let (PQP) be feasible and let λ0 ∈ RNnx . Then, the full-step
preconditioned dual gradient method given by the update rule

λi+1 := λi + ∆λ,

where ∆λ := M̂−1
G
(
λi
)
, converges globally to the unique maximum λ∗ ∈

RNnx with ‖G
(
λ∗
)
‖ = 0.

Proof Clearly, ∆λ is an ascent direction, since

G
(
λi
)>∆λ = G

(
λi
)>M̂−1

G
(
λi
)
> 0

for G
(
λi
)
6= 0. To being able to apply the proof of Theorem 4.20 it only remains

to show that the full step is indeed the optimal step size for our specific choice
of ∆λ, i.e., that the solution to Equation (4.19) fulfills

α∗ := arg max
0≤α≤1

f∗(λi + α∆λi) = 1.

To see this, we expand the dual function f∗(λ+ α∆λ) at a point λ in search
direction α∆λ, exploiting its piecewise quadratic shape. W.l.o.g. we denote

11For further reading regarding the Schur complement and its applications we kindly refer
to [Zha06, BV04].
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the regions traversed by the straight path (λ,λ+ α∆λ) for a fixed 0 < α ≤ 1
ascendingly by A(0), A(1), . . . , A(m) according to their visit order along the path,
i.e., λ ∈ A(0) and λ+α∆λ ∈ A(m). We denote the corresponding dual Hessians
byM0,M1, . . . ,Mm. The regions {A(j)}j=0,...,m induce a natural partition
of

α =
m∑
j=0

αj ,

where αj ≥ 0 for all j = 0, . . . ,m. We further label the seams in search direction
by

λ(j) := λ+
j−1∑
l=0

αl∆λ

for j = 1, . . . ,m+ 1, and consistently introduce λ(0) = λ.

Since the dual function is a piecewise quadratic concave spline, we have

f∗(λ+α∆λ) = f∗(λ)+
m∑
j=0

(
αj G

(
λ(j))>∆λ− 1

2 α
2
j ∆λ>Mj ∆λ

)
. (4.40)

By C1-continuity of f∗, we further have

G
(
λ(j)) = G

(
λ(0))− j−1∑

l=0
αlMl∆λ. (4.41)

Plugging this into (4.40) and regrouping the summands, we obtain

f∗(λ+ α∆λ) = f∗(λ) +
m∑
j=0

αj · G
(
λ(0))>∆λ

−
m∑
j=0

(
αj

j−1∑
l=0

αl ∆λ>Ml∆λ+ 1
2 α

2
j ∆λ>Mj ∆λ

)

= f∗(λ) +
m∑
j=0

αj · G
(
λ(0))>∆λ

−
m∑
l=0

1
2 α

2
l + αl

m∑
j=l+1

αj

 ∆λ>Ml∆λ.

W.l.o.g. we can assume that αm is strictly positive by disregarding degenerate
regions A(m) on the basis of C1-continuity of f∗. Therefore, only αm is sensitive
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to an infinitesimal change in ᾱ, and we have

∂f∗(λ+ ᾱ∆λ)
∂α

= G
(
λ(0))>∆λ− αm ∆λ>Mm∆λ−

m−1∑
l=0

αl ∆λ>Ml∆λ.

Applying Lemma 4.36, as well as the definitions of α and ∆λ, this allows us to
conclude that

∂f∗(λ+ ᾱ∆λ)
∂α

≥ G
(
λ(0))>∆λ−

m∑
j=0

αj ∆λ>M̂∆λ

= (1− α) · G
(
λ(0))>M̂−1

G
(
λ(0))︸ ︷︷ ︸

>0

> 0

holds12 for all α < 1. We can therefore in particular conclude that

arg max
α

f∗(λ+ α∆λ) ≥ 1

holds for all pairs (λ,∆λ), and by monotonicity of f∗(λ + α∆λ), which is
induced by concavity of f∗, the solution to (4.19) is given by

α∗ = arg max
0≤α≤1

f∗(λi + α∆λi) = 1.

The proof of Theorem 4.20 is therefore applicable and we have global convergence
of the full-step preconditioned dual gradient method. �

Remark 4.38 Preconditioned dual gradient steps also qualify as an alternative
to the regularization approach presented in Section 4.3.4.

We can in particular establish a somewhat analogous result to Theorem 4.31
regarding the behavior of preconditioned gradient steps on infeasible problems.

Theorem 4.39 If (PQP) is infeasible, then exactly one of the two following
statements is true:

1. (QPk) is infeasible for at least one k ∈ S
12Here, we made use of the fact that M̂ � 0 and that G

(
λ(0)

)
6= 0.
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2. Algorithm 4.1 with the full-step update rule λi+1 := λi + ∆λ, where
∆λ := M̂−1

G
(
λi
)
, converges to an infinite ray.

Proof We follow the argumentation from the proof of Theorem 4.31. In
particular it holds that if Statement 1 does not apply, the dual function f∗

exists, can be evaluated, and grows to infinity (cf. Proof 4.31). By the lines of
the proof of Theorem 4.37, the iterates λi of Algorithm 4.1 with preconditioned
gradient full-steps given by ∆λ := M̂−1

G
(
λi
)
induce a strictly monotonously

inceasing sequence
{
f∗
(
λi
)}
i∈N0

, since G
(
λi
)> M̂−1

G
(
λi
)
does not vanish

for non-vanishing gradients G
(
λi
)
(cf. Lemma 4.30) as M̂ is positive definite.

It remains to show that the iterates λi diverge in a detectable fashion, by
converging to an infinite ray. To this end, we regard the piecewise linear
gradient expansion (4.41) using the preconditioned gradient full-step definition:

G
(
λi+1) = G

(
λi
)
−

m∑
j=0

αjMj ∆λ

=

I−
m∑
j=0

αjMj M̂
−1

 G(λi) . (4.42)

Since, by Lemma 4.36 it holds M̂ �Mj , we can establish that13:

I �Mj M̂
−1

∀ 0 ≤ j ≤ m

⇔
m∑
j=0

αj I �
m∑
j=0

αjMj M̂
−1

⇔ 0 � I−
m∑
j=0

αjMj M̂
−1
.

Here we used that by definition
∑m
j=0 αj = 1. Also, Mj M̂

−1 has all non-
negative Eigenvalues for each j, and the gradient norm ‖G

(
λi
)
‖ is therefore

monotonously decreasing (but not necessarily strictly monotonously). On the
other hand ‖G

(
λi
)
‖ is bounded from below by Lemma 4.30. Therefore the dual

gradients converge in norm.

By (4.42) and the above characterization of I−
∑m
j=0 αjMj M̂

−1, this can only
be satisfied if at the same timeMj M̂

−1
G
(
λi
)
→ 0 for any traversed region

13Note that αj ≥ 0 holds.
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A(j). In particular, by the update law (4.42) the gradients G
(
λi
)
themselves

converge to a fixed point G∗, and consequently also for the dual steps it holds
∆λi → M̂

−1
G∗.

We now establish that the limit of the dual updates is an infinite ray. We have
that asymptotically ∆λi = M̂−1

G
(
λi
)
lies in the nullspace of any traversed

region (so it is a ray, i.e., a path without curvature in the dual function). Also,
∆λi is an ascent direction, as stated in the beginning of the proof.

It remains to show that the limit ray of the dual iterates is eventually contained
in a single region, i.e., that we do not cycle. Following the path of the dual
iterates only two possibilities exist. Either we traverse a region A(j) where the
dual updates M̂−1

G
(
λi
)
are not contained in the nullspace ofMj anymore.

Then, however, G
(
λi+1) would shrink in norm14 by (4.42), and as the gradients

are convergent in norm we eventually cannot pass through such a region anymore.
By the above argumentation we eventually end up on a ray (again), and the
only other possibility is that we never leave this ray. Since there are only a
finite number of regions, and due to convexity of each region a ray can never
return to a region once it left it, we eventually have to remain in an unbounded
region Ainf that contains the ray, which is therefore an infinite ray. �

Based on Theorem 4.39 we can guarantee that in practice the dual increments
∆λi will eventually lie in the nullspace of the dual Hessian at the current iterate
M(λi) and point into a direction that does not exhibit any active set change
and therefore allow us to algorithmically conclude infeasibility of the problem.

4.7.2 Stage constraint softening

Singularity of the dual Hessian matrix may obstruct fast convergence of the dual
Newton method. Regardless of our initial LICQ assumption, this phenomenon
occurs whenever the dual guess λi forces a selection of active stage constraints
(over several stages) that render the coupling constraints redundant15, a situation
that commonly appears “far away” from the optimal solution in the dual space.

Two possibilities discussed so far to treat singularity of the dual Hessian matrix
are regularization (cf. Section 4.3.4) and fallback on the unconstrained dual

14G
(
λi+1

)
would shrink significantly even, asMj can only take a finite number of distinct

values and M̂−1G
(
λi
)
is bounded in norm from below for an unbounded dual problem.

15Note that such a situation can only occur if state constraints are present. This can easily
be verified be observing the special structure of the Ek in the definition ofM(λi) in Lemma
4.12.
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Hessian matrix (cf. Section 4.7.1). A third option, that was originally proposed
in [KKGD14] for a related method, is to relax state constraints by introducing
`2-penalties on constraint violations instead. Accordingly, for k ∈ S the modified
stage problems, which additionally feature slack variables sk ∈ R2nd , read

min
zk,sk

1
2zk

>Hk zk +
(
gk
> +

[
λk
λk+1

]> [−Ek
Ck

])
zk + λk+1

>ck + γ

2 ‖sk‖
2
2

s.t.
[
Dk
−Dk

]
zk +

[
−dk
dk

]
≤ sk. (QPγk)

Obviously (QPγk) are a relaxation of (QPk) with identical optimal solutions in
the limit for γ →∞. We can define a dual function fγ by summation of the
stage problems, analogously to the definition of (DQP) in Section 4.2.1. It can
easily be shown (see, e.g., [KKGD14] for details) that the Hessian of fγ is given
by

Mγ(λ) = C
(
H+ γDA>DA

)−1
C>,

where

DA :=


DA0

DA1
. . .

DAN


is the (N + 1)nz by

∑N
k=0 n

act
k block-diagonal matrix composed of the linear

terms of the active stage constraints. ThereforeMγ(λ) is non-singular for all
λ ∈ RNnx as C is of full row rank by assumption. It is furthermore clear from
the block-diagonal definition of DA, that the block-structure of the smoothened
dual HessianMγ(λ) is identical to the structure ofM(λ).

Since (QPγk) are a relaxation of (QPk), we need to ensure that γ grows to
infinity over the course of the dual Newton iterations when we apply the
constraint relaxation strategy. In practice, a hybrid strategy, using softened
stage constraints only initially when the guess of the dual solution is still far off,
and eventually switching to exactly solved stage problems, may therefore turn out
to be more effective. Alternatively, better-scaled regularization terms could be
derived fromMγ(λ) (in comparison to the default Levenberg-Marquardt-type
regularization), carefully minding however the trade-off between computational
complexity and quality of the regularization.
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4.7.3 Warmstarting for repeated QP solution

A key advantage of the dual Newton strategy in the context of MPC and MHE
are its warm-starting capabilities. While interior-point methods typically cannot
be warmstarted efficiently, and the active set of a condensed QP can, even in the
nominal case, change quite significantly from one sampling time to the next due
to shifted state constraints, the optimization variables λ can be shifted alongside
with the sampling time in Algorithm 4.1. It is notable that Newton’s method
guarantees a one-step convergence in this context if the shifted λ-guess is in
the correct quadratic region, i.e., if the optimal primal active set is consistent
with the shifted one, even if the QP data changes (e.g., through re-linearization
of the nonlinear problem in the RTI framework).

In detail, we suggest to perform the following simple shift (compare to Section
2.3.2) from the optimal dual vector of the QP at sampling time Ti, λ∗, to an
initial guess λ0 for the subsequent QP at sampling time Ti+1:

λ0
k := λ∗k+1 ∀ k = 1, . . . , N − 1

λ0
N := λ∗N .

In the nominal case, this shift ensures that λ0 already lies in the correct
quadratic region (and thus one-step convergence if the primal terminal stage
variables zN lie in a stable active set (e.g., given by a steady state).

We should stress here, that the possibility to warm-start the Cholesky-like
factorizations from a previous factorization, as detailed in Section 4.3.5, is not
only given between subsequent QP iterations, but also between subsequently
solved QPs. While for regular SQP and the classical RTI scheme typically
no benefits arise due to changing QP matrix data from re-linearization, the
benefit may be significant in the case of LTI dynamics, as well as in the context
of partial and/or inexact re-linearizations, i.e., when Mixed- or Multi-Level
Iteration schemes are applied on the NLP level, cf. Section 2.4. In detail, this
means that we are able to keep the complete dual Hessian factorization if only
feasibility-improving or optimality-improving data updates were performed on
the NLP level. Even if a full re-linearization was performed, e.g., on the first
Nfrac stages of a nonlinear MPC problem, we only need to restore the backwards
Cholesky factorization for the first Nfrac blocks. Particularly if only few or even
only a single QP iteration is required due to accuracy of the prediction model,
these deeply interconnected warm-starting capabilities may lead to a significant
reduction of computation times.

In the spirit of parallel hierarchical QP data updates, it is even conceivable that a
factorization of the dual Hessian is computed alongside a full re-linearization by
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one (meta-)thread16, while feedback is still provided using a factorized Hessian
based on previous linearization information by another (meta-)thread.

4.7.4 Towards strict real-time guarantees

As the dual Newton strategy is an iterative solution method, the exact number
of FLOPs required depends on the problem data. Within each dual Newton
iteration however, the number of FLOPs required is known rather well (or
can at least be overestimated rather tightly) if the clipping stage QP solver
is applied; even if qpOASES is employed as stage QP solver (which itself is
an iterative algorithm), its real-time option permits to specify limits on the
available computation time.

This time limitation may result in a stage QP being solved inexactly, but the
obtained primal-dual solution after the time limit has an interpretation as
the optimal solution of a perturbed parametric QP, which lies on the straight
homotopy path between the optimal QP of the previous call17 and the desired
QP to be solved in this call, cf. Section 1.5.4 (as well as [FBD08]).

In the context of a dual Newton iteration, where we assume that an optimal
initialization of a stage problem QPk(λ) is given, and we aim to solve the
parametric stage problem QPk(λ + ∆λ) for the full Newton step ∆λ, this
perturbed QP has a favorable interpretation. It is simply the QP that
corresponds to a curtailed Newton step ᾱ∆λ, i.e., QPk(λ+ ᾱ∆λ), and the
obtained stage variables z∗(λ + ᾱ∆λ) are the optimal solution of (QPk)
for the dual guess λ + ᾱ∆λ. The stepsize ᾱ is moreover explicitly known
from the homotopy method. We might even argue that a Newton step ∆λ,
which causes so many active set changes in a single stage problem that the
required computation time exceeds the (sensibly chosen) time limit, is likely
to be undesirable anyway (recall that the extrapolation of the dual Hessian
information outside the current region is formally merely a heuristic after all)
and may therefore require an extensive line search — the cost of which is
obviously reduced when limiting the Newton step size to ᾱ. On the other hand,
a reasonably chosen time limitation for the stage QP solution will in general
not interfere with the good terminal convergence properties of the dual Newton
strategy, as the effort in a homotopy method like qpOASES grows with the
number of active set changes.

16By using the term meta-thread we account for to the fact that linearization and QP
solution may itself be parallelized on several sub-threads.

17Recall that qpOASES modifies the problem on a homotopy path from its initialization to
the desired problem to be solved (keeping primal and dual optimality), as opposed to classical
active-set methods, which typically only modify the primal and/or dual variables.
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The only other iterative routine18 within the main loop of Algorithm 4.1 is
the line search procedure for globalization. Note, however, that in case of an
exact line search an upper bound on the number of required iterations is given
by the maximum possible number of active-set changes (which is determined
by the number of stage constraints, or, more restrictively, by the number of
permitted active-set changes, if a limitation is set in qpOASES). In case of a
backtracking line-search, numerical reasons demand a minimum stepsize in a
practical implementation, which in turn specifies the maximum possible number
of line-search iterations.

Having analyzed the effect of limiting the computational costs per dual Newton
major iteration, a naturally arising interest is to analyze the effect of setting a
limit for the number of iterations. This aim motivates two important questions
to be posed in this context:

• Is there a way to give a good a-priori estimate of, or bound on the number
of dual Newton iterations required to solve a band-structured QP based
on properties of the problem data?

• What are the implications of terminating suboptimally in the dual sense?

We will not be able to answer these questions in this thesis, but still indicate
follow-up research directions.

A-priori estimates of the runtime of iterative optimization algorithms tend to
be extremely conservative. The probably most well-known example of this is
the extremely large worst-case runtime of the famous Simplex Algorithm for
linear programming, which even grows exponentially in the problem size. This
observation transfers to active-set methods for convex quadratic programming,
cf. [NW06]. Even though runtime guarantees that grow only polynomially in the
problem data can be given for some interior-point methods for convex quadratic
programming (cf., e.g., [Wri97]), these guarantees often result in bounds which
are orders of magnitude worse than the practically observed iteration numbers,
and may therefore be too conservative to be used in practice.

More recently, first-order methods with rather tight a-priori bounds on the
computational effort have been proposed [Nes04, RMJ11, KF11, BP12, PB14].
In particular the authors of [PB14] were able to present a method for linear
model predictive control whose computational costs can be estimated well offline,
although this requires the computationally expensive (but offline) solution of a
mixed-integer linear programming problem. Starting from the preconditioned
gradient steps discussed in Section 4.7.1, which provide a lower bound on the

18By iterative, in this context, we mean an algorithm whose costs depend not only on the
problem dimensions, but also on the problem data.
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progress made by the dual Newton method, as they underestimate the dual
function, future research includes trying to transfer some of the guarantees
obtained for fast-gradient methods to the dual Newton case.

Concerning suboptimal termination of the dual Newton method, we have
a certain analogy to the (unconverged) multiple shooting method, as a
dual suboptimal solution (of a dynamic optimization QP) corresponds to a
primal solution that respects all stage constraints but features a discontinuous
(linearized) state trajectory. Still, since the stage constraints are respected by
the obtained primal solution, the computed first control action is admissible (at
least for the linearized setting) with respect to the input constraints and mixed
control/input constraints.

However, since the state trajectory corresponding to an unconverged dual
solution λ is discontinuous (and a continuous trajectory means convergence), we
cannot really hope to be able to state strong guarantees (if at all) on the obtained
primal solution regarding admissibility with respect to state constraints on later
stages, or terminal constraints. Still, neglecting state constraints, one open idea
for future research is to draw up contractivity arguments similarly to the ones
seen for the RTI scheme in Section 2.3.3 (originally presented in [Die02]) to
prove an analogy of convergence over moving horizons. It is important to note,
however, that the proof concepts from [Die02] are fundamentally different from
our setting. There, contraction was proven as a local property, whereas in the
context of the dual Newton strategy we are interested in a global contraction
property. To show the latter essentially requires to show a similarity between
subsequent problems such that the progress (e.g., in terms of the dual function
value) made in one problem overcompensates the set-back from the problem
modification.

Practical tests on several benchmark problems from linear MPC indeed exhibited
the desired behavior. A limitation of the number of dual Newton iterations
permitted per MPC problem lead to suboptimal control actions at those sampling
times where the dual Newton method was not fully converged yet, but optimality
was regained during subsequent sampling times. In particular, the overall
number of required dual Newton iterations (summed over all sampling times)
was observed to not be significantly larger than for a fully converged algorithm,
which indicates that it may be possible in some cases to “postpone” Newton
iterations to later sampling times at the price of temporary suboptimality.

4.7.5 Code generation for linear algebra routines

The idea of automatically generating customized source code tailored to a
specific problem instance was first reported in the domain of optimization in



REAL-TIME QUADRATIC PROGRAMMING 167

[OK02]. Only in recent years, however, the use of such techniques has grown in
popularity, to a large part triggered by [MB10], where significant performance
increases in the solution of convex optimization problems were reported by
means of an auto-generated interior-point method. The idea has been adopted
in more specific contexts, such as nonlinear MPC [HFD11b], MHE [FKV+12],
linear MPC with quadratic constraints [DZZ+12, KF13] or conic optimization
[DCB13, CPDB13]. In some cases, speedups of up to two orders of magnitude
have been observed compared to conventional implementations.

The improvement in efficiency achieved through code generation, or code export
as it is sometimes synonymously called, typically is caused by several effects:

• Since all problem dimensions are known at the time the customized code
is generated, the resulting code can work with statically allocated memory
only, which permits higher efficiency in the memory management of the
target computer system.

• Problem instance specific sparsity patterns may be detected at the time
of the generation of the code and may be exploited, e.g., by avoiding
unnecessary or redundant computations.

• Partial loop unrolling may permit certain compilers to vectorize operations
for higher CPU and cache efficiency.

• The effect of certain optional components of the optimization code may
be tested to a certain extent at the time of the generation and may be
fixed in the resulting code, yielding a leaner code with fewer branches,
that is potentially better optimizable by state-of-the-art compilers.

As for the dual Newton strategy, we have large amounts of the computational
effort of each iteration being caused by linear algebra routines, such as setup
and factorization of the dual Hessian matrix19, which are well suited for
customization and auto-generation. Applying code generation to tailor these
routines to a specific problem instance is furthermore rather straightforward, as
implementations of the required operations are typically rather simple. Still,
similarly as in the cases reported above, customized routines may yield a
significant practical performance improvement of the overall algorithm.

19In benchmark examples the share of the setup and factorization costs in the overall
per-iteration costs were often observed to be more than 50%, and even up to 90% in some
cases, even in a sequential implementation.





Chapter 5

Generalized Dual Newton
Methods

This chapter extends the detailed investigation of dual Newton methods from
Chapter 4 in the sense that we aim at generalizing the findings to other use cases
than the block-structured quadratic programming problems at the core of this
thesis. The goal of these generalizations is to benefit from the parallelizability
and the distributed architecture of the dual Newton strategy also in more
generic problem classes. Here, we specifically regard generic distributed convex
QPs (without any specific assumption on the coupling structure) and partially
separable (possibly non-convex) NLPs with a sparse coupling topology.

Acknowledgement The first part of this chapter is largely based on the paper
“A Distributed Method for Convex Quadratic Programming Problems Arising in
Optimal Control of Distributed Systems” by Attila Kozma, Janick Frasch, and
Moritz Diehl [KFD13]. Attila Kozma is the main author of that publication
and contributed the modified CG solver, the software implementation and most
parts of the writing of the original paper. The analysis of the dual function
was performed jointly by Janick Frasch and Attila Kozma. Janick Frasch also
contributed the benchmark problem used in that paper (not part of this thesis).
Moritz Diehl conceived of the general idea of applying a dual Newton method
for distributed quadratic programming.

The second part of this chapter is an adaptation of the paper “An Augmented
Lagrangian Based Algorithm for Distributed Non-Convex Optimization” by
Boris Houska, Janick Frasch, and Moritz Diehl [HFD14]. Boris Houska is the

169



170 GENERALIZED DUAL NEWTON METHODS

main author of that publication and contributed the original idea of using an
augmented stage cost function to treat non-convex problems in a dual Newton
framework. He also contributed the theoretical analysis to that paper. The
details of the method were developed in joint discussions by Janick Frasch and
Boris Houska. Janick Frasch also contributed the prototypic implementation of
ALADIN and the numerical example. Moritz Diehl contributed several ideas
and insights during joint discussions.

5.1 Distributed Quadratic Programming

Let us consider a partially separable QP of the form

min
z

N∑
k=0

1
2zk

>Hk zk +mk
>zk (5.1a)

s.t. A(i,j) zi = B(i,j) zj ∀ (i, j) ∈ E (5.1b)

dk ≤Dk zk ≤ dk ∀ k ∈ S (5.1c)

in the following. Here, differing from the rest of this thesis, S = {0, . . . , N} does
not denote a set of stages in the sense of a discretized dynamic optimization
problem, but instead a set of nodes in a generic (directed, simple1, finite) coupling
topology graph G = (S, E), where E is the edge set, which is of cardinality
m. Analogously2 to Section 4.2, we have zk ∈ Rnzk , 0 ≺ Hk ∈ Rnzk×nzk ,
gk ∈ Rnzk , Dk ∈ Rndk×nzk , and dk,dk ∈ Rndk for each k ∈ S. We group
the primal variables by z := (z0, . . . ,zN ). The node coupling constraints are
defined by A(i,j) ∈ Rn(i,j)×nzi and B(i,j) ∈ Rn(i,j)×nzj according to the system
topology with (i, j) ∈ E . We assume full row rank of all A(i,j) and B(i,j), as
well as the existence of a (unique) solution that fulfills the LICQ.

Clearly, (5.1) is more generic than (PQP), as the coupling structure of (5.1) is
arbitrary. Nevertheless, Algorithm 4.1 (in its generic form) is applicable to (5.1)
as well, and we can observe that the convergence analysis from Section 4.4 does
not make any specific assumptions on the coupling topology except for it to
fulfill the LICQ. Therefore we can in particular conclude finite convergence of a
general-purpose version of Algorithm 4.1 in this setting.

1We adopt the undirected notion of simpleness here, meaning that if (i, j) ∈ E then also
(j, i) /∈ E must hold for any two (distinct) i, j ∈ S.

2Slightly more generic, we permit non-identical dimensionality of node variable vectors in
this setting.
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The generic coupling topology of (5.1) permits a large range of problems,
from fully separable to completely connected. Arguably, the most interesting
application case for the dual Newton strategy will be topologies that are
connected (otherwise an independent solution of the subproblems is possible)
but nonetheless exhibit a certain block-sparsity. QPs with such a topology
(that is different from the linear topology described in Section 4.2) include
subproblems from applying the so-called Distributed Direct Multiple Shooting
(DDMS) method, cf. [SRKD11], as well as, more generically, subproblems from
dynamic optimization with PDE constraints or distributed control, cf. [RM09].
Accordingly, the remainder of this chapter will be about working out the

appropriate linear algebra for a structure-exploiting solution of (5.1) with less
restrictive assumptions on the coupling topology by the dual Newton algorithm
4.1.

5.1.1 Dual decomposition

The partial Lagrangian function expressing (5.1a) and (5.1b) is given by

L(z,λ) :=
N∑
k=0

(
1
2 zk

>Hk zk +mk
>zk

)

+
∑

(i,j)∈E

λ(i,j)
> (A(i,j)zi −B(i,j)zj

)

=
N∑
k=0

(
1
2 zk

>Hk zk + gk>zk

+
∑

j∈succ(k)

λ(k,j)A(k,j) zk −
∑

j∈pred(k)

λ(j,k)B(j,k) zk



=:
N∑
k=0
Lk(zk,λ), (5.2)

where λ(i,j) ∈ Rn(i,j) for (i, j) ∈ E denote the dual variables associated with
the coupling constraints (5.1b) and λ ∈ Rν is an concatenation of these dual
variables in arbitrary but fixed order, where ν :=

∑
(i,j)∈E n(i,j). For future

reference we introduce the indexing

λ =
(
λ(i1,j1),λ(i2,j2), . . . ,λ(im,jm)

)
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in accordance with the fixed concatenation order. We further have the
predecessor and successor sets of each node defined by

pred(k) := { j ∈ S | (j, k) ∈ E }

succ(k) := { j ∈ S | (k, j) ∈ E },

as well as the neighborhood of incident edges Nk ⊆ E for each node k ∈ S given
by

Nk := { (k, j) ∈ E | j ∈ succ(k) } ∪ { (j, k) ∈ E | j ∈ pred(k) }.

Consequently, the dual problem to (5.1) reads

max
λ

f∗(λ) := max
λ

N∑
k=0

f∗k (λ) (5.3)

with the separable dual function given through

f∗k (λ) := min
zk

Lk(zk,λ) (5.4a)

s.t. dk ≤Dk zk ≤ dk. (5.4b)

5.1.2 Derivative structure

From the definition of Lk(zk,λ) in (5.2) it is clear that for each k ∈ S we have
that

∂f∗k
∂λ(i,j)

= 0

for all multipliers of non-incident edges (i, j) /∈ Nk. The right hand side vector
G(λ) ∈ Rν of the Newton system (4.5) for Problem (5.1) is therefore given by

G(λ) =
∂f∗

∂λ
(λ)
>

=



∂f∗i1
∂λ(i1,j1)

>
+ ∂f∗j1
∂λ(i1,j1)

>

∂f∗i2
∂λ(i2,j2)

>
+ ∂f∗j2
∂λ(i2,j2)

>

...

∂f∗im

∂λ(im,jm)

>
+ ∂f∗jm

∂λ(im,jm)

>


(λ), (5.5)

using the enumeration indexing from concatenation.



DISTRIBUTED QUADRATIC PROGRAMMING 173

Analogously to Section 4.3.3, we have

∂f∗k
∂λ(k,j)

= z∗k
>A(k,j)

for all (k, j) ∈ Nk, and

∂f∗k
∂λ(j,k)

= −z∗k
>B(j,k)

for all (j, k) ∈ Nk.

The sparsity pattern of the left-hand side Newton matrixM : Rν → Rν×ν is
induced by the (undirected) adjacency matrix corresponding to the coupling
topology of (5.1). We have

M(λ) := −
∂2f∗

∂λ2 (λ) =

M1,1 · · · M1,m
...

. . .
...

Mm,1 · · · Mm,m

 (λ), (5.6)

where a block Mk,l is nonzero only if the k-th and the l-th edge, (ik, jk) ∈ E
and (il, jl) ∈ E , share at least one node, i.e. ik = il, jk = il, ik = jl, or jk = jl.

The nonzero Hessian blocks are, in analogy to Lemma 4.12, given by

Mk,k = A(ik,jk)P
∗
ik
A(ik,jk)

> +B(ik,jk)P
∗
jk
B(ik,jk)

>

on the diagonal, as well as by

Mk,l = A(ik,jk)P
∗
ik
A(il,jl)

>

if ik = il, by

Mk,l = −B(ik,jk)P
∗
jk
A(il,jl)

>

if jk = il, by

Mk,l = −A(ik,jk)P
∗
ik
B(il,jl)

>
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if ik = jl, and by

Mk,l = B(ik,jk)P
∗
jk
B(il,jl)

>

if jk = jl. Here, analogously to Lemma 4.12, P ∗q denotes a projection of Hq

onto the free variables for the current selection of active stage constraints in
z∗q (λ).

5.1.3 Iterative linear algebra

The arbitrary sparsity patterns of the the dual Hessian matrixM(λ) of QP
(5.1) render the solution of the Newton system by direct, factorization-based
methods significantly more expensive than the solution of the block-tridiagonal
system of (PQP) in Section 4.2, where efficient tailored factorizations could
be applied, cf. Sections 4.3.4, 4.3.5, and 4.6.1. Manual variable reorderings
in the dual Newton system can help to reduce these costs in certain cases;
state-of-the-art solvers for sparse linear systems based on the ideas proposed, for
example, in [DR83, Duf04, Duf06] can also be employed to exploit the sparsity
of the coupling structure, but the cost per dual Newton iteration will, in general,
still be significantly higher than in the block-banded case.

For the particular motivation of (5.1) arising in a distributed control problem,
iterative linear algebra methods for the solution of the sparse Newton system
offer certain benefits, as they do neither require to ever form (and store) the
Hessian matrix or gradient explicitly in a central computing node, nor to
compute a factorization or inverse of a matrix in the full size, which may be
prohibitive for reasons of computation time, memory storage capacities, or
communication limitations in distributed control applications. On this note, we
sketch the employment of a tailored conjugate gradient (CG) method in a dual
Newton strategy for distributed computing in the following. Additional details
can be found in [KFD13]. For notational simplicity, we restate the Newton
system (4.5) to be solved in Line 7 of Algorithm 4.1 as

M∆ = G. (5.7)

Algorithm 5.1, which is based on [She94] describes the CG procedure with
slight modifications to account for potential singularity ofM and to increase
numerical stability.
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Algorithm 5.1: Conjugate gradient method [KFD13]
Input :M, ∆0, G, nmaxCGIt, ε1, ε2, ε3

1 r0 :=M∆0 − G, p0 := −r0, τ0 := r0>r0

2 for i = 0 : (nmaxCGIt − 1) do
3 si :=Mpi // local comm

4

[
δi

µi

]
:=
[
pi
>
si

ri
>
si

]
// global sum

5 if δi < ε1 then
6 if i = 0 then
7 return p0

8 else
9 return ∆i

10 αi := τ i

δi // local update
11 ∆i+1 := ∆i + αi pi // local update
12 ri+1 := ri + αi si // local update

13 τ i+1 := ri+1>ri+1 // global sum
14 if τ i+1 < (ε3)2 then
15 return ∆i+1

16 if
∣∣∣ τ i+αiµiτ i

∣∣∣ > ε2 then
17 βi+1 := 0 // local update
18 else
19 βi+1 := τ i+1

τ i // local update

20 pi+1 := −ri+1 + βi+1 pi // local update

21 return ∆i+1

In detail, we safeguard the CG algorithm against pi being in the nullspace of
M in Lines 5 through 9; if pi is too close to a potential singular direction of
M, we simply return the best known approximate solution3 to (5.7).

In exact arithmetic, it is well known that at most ν CG iterations are required
to solve the Newton system 5.7 of size ν exactly, assuming thatM � 0. In
floating-point arithmetic, round-off errors may accumulate and eventually lead
to non-orthogonal residuals, i.e.,

∣∣∣ri+1>ri
∣∣∣� 0. This situation is safeguarded

in Line 16 by simply resetting the conjugacy on detection of non-orthogonality
of the residuals.

3If already p0 is a singular direction ofM, the steepest descent step p0 is the best known
approximation to ∆.
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If the norm of the current residual is sufficiently small (Line 14), or if the
iteration limit is hit, the current approximate solution is returned.

5.1.4 Discussion

We have seen in the analysis of the dual Newton strategy in Section 4.6 that all
steps of Algorithm 4.1 qualify for a distributed, concurrent execution with the
exception of the solution of the Newton system and the line search. If we employ
Algorithm 5.1 for the solution of (5.7), the vast majority of operations in each
CG step are local operations, as indicated by the comments in Algorithm 5.1.
In particular, the computation of the residual update si in Line 3 requires only
local communication of each distributed node with its neighbors according to
the coupling topology of the underlying problem. Only the computation of the
scalar products in Lines 4 and 13 requires a so-called global summation step,
cf. [LvdG93], which is however limited to the negotiation and distribution of a
single number for each of the three scalar products. If the well-known Armijo
line search procedure is employed for globalization, the global communication
requirement in this step is also limited to the negotiation and exchange of a
single number, the dual function value for the current candidate stepsize, in
each line search iteration, cf. [KFD13].

As mentioned before, the main use case of the CG-based dual Newton strategy
are problems where a centralized Newton system solution is impossible or
undesired. Therefore, naturally the competitors for this variant of the method
come from the area of distributed control algorithms, where (dual-decomposition
based) first-order methods have proven to be quite successful, cf. [KCD13] and
the references therein. It is noteworthy in this context, that the computational
cost of each Newton-CG iteration, i.e., each iteration of Algorithm 5.1, is
comparable to the per-iteration cost of dual-decomposition-based first-order
methods. Based on this assumption, the paper [KFD13] indicated slight
superiority of the CG-based dual Newton strategy over well-established dual-
decomposition-based first-order methods on the there considered benchmark
problem.

5.2 Distributed Nonlinear Programming

Going beyond quadratic programming as discussed in Chapter 4 and Section
5.1, in the following we address the issue of how the conception of the dual
Newton strategy can be transferred to general (convex and non-convex) nonlinear
programming. This has implications for distributed nonlinear optimization in
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general, but qualifies in particular for alternatives to the SQP-based algorithms
for the solution of problems in the form of (MS-NLP), which are a very original
and essential basis in finite-dimensional dynamic optimization.

Particularly for their warmstarting capabilities in the context of online
optimization, we focused on SQP-type methods in this thesis. While the
linearization step for problems of the kind (MS-NLP) is straightforward
to parallelize, we developed a parallelizable QP solver with rather good
warmstarting capabilities in Chapter 4. In the attempt to avoid unnecessary data
collection and re-distribution (which may jeopardize the parallel performance
of the overall NLP algorithm) the question of how to integrate further the
distributed linearization and the distributed stage subproblem solution in the
dual Newton strategy, arises naturally. We propose an algorithmic concept
in the following which can be seen as a dual Newton strategy with stage
NLP subproblems in place of the QP subproblem in the original method from
Chapter 4. The vision for the application in dynamic optimization in a parallel
fashion is to have each stage assigned to a specific computational node, which
maintains all data related to this stage. Nonlinear local problems are solved
on each stage’s node individually and concurrently for all nodes, while only
the negotiation of the dual “prices” corresponding to the coupling constraints
requires communication and interaction in form of data exchange between the
stages’ nodes.

We only sketch the central ideas leading to this extension in the following, and
refer to [HFD14] for theoretical background and a rigorous convergence proof.

5.2.1 A separable NLP formulation

Let us consider the partially separable NLP

min
z

N∑
k=0

`k(zk) (5.8a)

s.t.
N∑
k=0
Ck zk = c (5.8b)

dk(zk) ≤ 0 ∀ k ∈ S (5.8c)

for z := (z0, . . . ,zN ) ∈ R(N+1)nz with nonlinear (and possibly non-convex)
separable objective functions `k : Rnz → R, nonlinear (possibly non-convex)
decoupled node (stage) constraint functions dk : Rnz → Rnd for all k ∈ S and
a linear coupling structure given by a contribution matrix Ck ∈ RNnx×nz for
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each node (stage) k ∈ S to the consensus term c ∈ RNnx . Even though only a
linear coupling between the nodes (stages) is permitted here, problems in the
form of (MS-NLP) can be implemented by replacing stage nonlinear coupling
constraints of the form

Ek+1 zk+1 = q(zk)

by linear ones
Ek+1 zk+1 = sk,

introducing the auxiliary variables sk ∈ Rnx , which are specified by separable
stages constraints

sk = q(zk)

for all k ∈ SN .

Analogously to Section 4.2.1, we have the dual problem to (5.8) given by

max
λ

f∗(λ) = −λ>c +
N∑
k=0

f∗k (λ),

where

f∗k (λ) := min
zk

`k(zk) + λ>Ck zk (5.9a)

s.t. dk(zk) ≤ 0 . (5.9b)

The dual function f∗(λ) is concave and twice continuously differentiable
whenever the minimizer z∗k(λ) of f∗k (λ) is a regular KKT point, and can
be evaluated separably. We can build up a local quadratic model of the dual
function at a fixed λ and minimize it by computing the Newton step increment
in the dual variables, ∆λ, from

(M+ δ I ) ∆λ = G, (5.10)

for δ ≥ 0 (depending on whether we require/desire regularization or not), where

M := CZ∗
(
Z∗>H∗Z∗

)−1
Z∗>C>,

and

G :=
N∑
k=0
Ck z∗k(λ)− c,

cf. Section 4.3.3. Here,

H∗ = block diag(H∗0 , . . . ,H
∗
N ) ∈ R(N+1)nz×(N+1)nz
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is a positive definite approximation of the Hessian of the Lagrangian of the dual
function, i.e.,

H∗k ≈∇
2 (`k (z∗k(λ)

)
+ µk

>dk
(
z∗k(λ)

))
,

and
C :=

[
C0 · · · CN

]
.

Further,

Z∗ = block diag(Z∗0 , . . . ,Z
∗
N ) ∈ R(N+1)nz×((N+1)nz−m)

for m ≤ (N + 1)nd is a basis matrix for the nullspace of

D∗ = block diag(D∗0 , . . . ,D
∗
N ) ∈ Rm×(N+1)nz ,

which is the matrix consisting of the gradients of all active stage constraints
∂
∂z

(dk)i(z∗k(λ)) for all 1 ≤ i ≤ nd with (dk)i(z∗k(λ)) = 0.

5.2.2 Stage-problem augmentation

Unfortunately, however, we cannot expect convergence of performing dual
Newton iterations in a naïve way whenever (5.8) is not strictly convex or its
minimizer is not a regular KKT point, cf. [HFD14]. Instead, the idea of our
framework is to handle non-convexities by an augmented-Lagrangian approach
that is inspired by the Alternating Direction Method of Multipliers (ADMM)4.
To this end, we require the step in the primal variables associated with the
current dual Newton step ∆λ. We make use of a rather well-known technical
Lemma (to be found in similar forms, for example, in [NW06]):

Lemma 5.1 Let H ∈ Rn×n be positive definite, and let D ∈ Rm×n with m ≤ n
be of full row rank, while g ∈ Rn. Then the unique solution of[

H D>
D

] [
∆z
µ

]
=
[
−m
0

]
with ∆z ∈ Rn and µ ∈ Rm is given by

∆z = −Z
(
Z>HZ

)−1
Z>m,

where Z ∈ Rn×m is a basis matrix for the nullspace of D.
4In addition to the seminal works of [GM75, GM76], we refer to [BPCP11] for an in-depth

analysis of ADMM.
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Proof Substituting ∆z = Y py+Z pz, where Y ∈ Rn×(n−m) is arbitrary such
that

[
Y Z

]
is nonsingular, the result can be obtained by a straightforward

analytical solution of the linear system exploiting the nullspace basis property
of Z. Details can be found, for example, in [NW06]. �

Lemma 5.1 implies that within each region of the dual space, for which D is
fixed, the predicted change in the primal variables corresponding to a dual step
∆λ is given by5

∆z = Z
(
Z>HZ

)−1
Z>C>∆λ. (5.11)

Herein, the prediction assumes the current selection of stage constraints fixed
and disregards all inactive stage constraints.

It is important to observe that Z
(
Z>HZ

)−1
Z> and in particular Z>HZ are

block-diagonal and can therefore be computed (inverted/factorized) concurrently
on each stage. The prediction of the primal increment on each stage is then
given by

∆zk = Zk

(
Zk
>HkZk

)−1
Zk
>Ck>∆λ, (5.12)

where the sparsity structure of Ck depends on the coupling structure of the
original problem (e.g., only two blocks of Ck are nonzero if (5.8) is derived from
a dynamic optimization problem).

We claim that ∆z, when computed from (5.11), where ∆λ is the solution to the
(unregularized) dual Newton system (5.10), is the step that closes the consensus
gap in the current quadratic/equality-constrained model (based on the primal
guess z ∈ R(N+1)nz ) in the sense that it is the solution to

min
∆z

1
2 ∆z>H∆z + g>∆z

s.t. C (z + ∆z) = c

D∆z = 0,

where g =
(
∂
∂z0

`0(z0), . . . , ∂
∂zN

`N(zN)
)
. To see this, let us regard the dual

reformulation of the above QP, which is

max
λ+

min
∆z

1
2 ∆z>H∆z + g>∆z + λ+> (C (z + ∆z)− c)

s.t. D∆z = 0.
5Here and in the following, we omit the implicit dependency of Z andH on λ for notational

convenience, and define Z ≡ Z∗ and H ≡H∗ to this end.
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Assuming that z = (z0, . . . ,zN ) is such that each zk is a KKT point of (5.9)
for k ∈ S, we can conclude from the stationarity requirement of the stage
Lagrangians that

g + C>λ+D>µ = 0.

Multiplying this by a ∆z> from the nullspace of D from the left, we can
reformulate the above QP once more to obtain

max
λ+

min
∆z

1
2 ∆z>H∆z +

(
λ+ − λ

)> C∆z + λ+> (C z − c)

s.t. D∆z = 0,

which, by applying Lemma 5.1 to the inner minimization problem, is solved by
∆z∗ = −Z

(
Z>HZ

)−1
Z>C>

(
λ+ − λ

)
to

max
λ+

− 1
2
(
λ+ − λ

)>M (
λ+ − λ

)
+ λ+> (C z − c) ,

which is merely a reformulation of (5.10) to an optimization problem6, i.e., we
have the equivalence

(
λ+ − λ

)
= ∆λ of both solutions and our claim regarding

∆z holds.

We now make use of the fact that C (z+∆z) = c to obtain the ADMM-inspired
decoupled augmented Lagrangian stage problem formulations. We propose to
solve

min
zi

k

`k(zik) + λi>Ck zik + ρ

2 ‖z
i
k − y

i
k‖

2
Σk

(5.13a)

s.t. dk(zik) ≤ 0 (5.13b)

for all k ∈ S in each iteration i of a dual Newton procedure, where the anchor
yi =

(
yi0, . . . ,y

i
N

)
is the current primal iterate. This way, we obtain an

improved primal guess zi = (zi0, . . . ,ziN ) for the setup of the dual Newton
6Observe that we can add the constant term −λ> (C z − c) without changing the solution

of the maximization problem.
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problem. If we assume that yi = zi−1 +∆zi−1 and Σk = Ck>Ck we have that

N∑
k=0
‖zik − y

i
k‖

2
Σk

=
N∑
k=0
‖Ck (zik − y

i
k)‖22

≥

∥∥∥∥∥
N∑
k=0
Ck (zik − y

i
k)
∥∥∥∥∥

2

2

= ‖C (zi − yi)‖22

= ‖C zi − c‖22

(the classical augmented Lagrangian penalty due to [Hes69, Pow69]), which
motivates our choice of the stage problem augmentation term7. Note however
that in general the ADMM choice Σk = Ck>Ck is not sufficient to obtain
global convergence of our modified dual Newton scheme, but we require positive
definite matrices Σk and a sufficiently large scaling parameter ρ > 0 to tackle
nonconvexities.

5.2.3 A nonlinear dual Newton strategy

Summarizing the above observations and propositions, we have the following
scheme as given by Algorithm 5.2. A sufficiently large positive definite penalty
term to compensate the duality gap is defined for each stage problem first.
The precise choice of Σik � 0 does not influence the convergence guarantee,
but the ADMM-inspired scaling Σik ≈ Ck

>Ck (possibly using regularization)
seems reasonable. Based on the (local) stage problem solutions, a dual Newton
problem is set up, analogously to Algorithm 4.1. Again, the exact choice of
Hk � 0 has no impact on the convergence guarantees of the algorithm, but
may very well determine the speed of convergence, just as in an SQP method,
cf. [HFD14]. After the dual consensus step ∆λi as well as the associated step
in the primal variables ∆zi is computed — exploiting the sparsity patterns
defined by the coupling structure of (5.8) — a sensible step size selection is
required for the primal and dual updates to ensure global convergence.

7Observe in particular that the minima of the proposed, separable penalty terms and the
classical augmented Lagrangian penalty coincide and are attained in any primal solution that
satisfies (5.8b).
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Algorithm 5.2: Augmented Lagrangian based Alternating Direction Inexact
Newton Method (ALADIN) [HFD14]
Input: Initial guess (y0,λ0), termination criteria nmaxIt, ε
Output: Approximate optimal solution (y∗,λ∗,µ∗)

1 for i = 0 : (nmaxIt − 1) do
2 Choose 0 ≺ Σik ≈ Ck

>Ck, k ∈ S and ρ > 0 sufficiently large
3 Obtain (zi,µi) by solving (5.13) for all k ∈ S
4 Set up dual gradient Gi := C zi − c
5 if

∥∥Gi∥∥ ≤ ε and ρ ‖Σk(zk − yk)‖ ≤ ε then
6 return (yi,λi,µi)
7 Choose 0 ≺Hk ≈∇2(`k(zk) + µk

>dk(zk)), k ∈ S
8 Set up Newton matrixMi

9 Compute ∆λi from (5.10) for γ ≥ 0
10 Compute ∆zi from (5.12)
11 Compute suitable step sizes α1, α2, α3 ∈ [0, 1]
12 Update primal iterate by yi+1 := yi + α1 (zi − yi) + α2 ∆zi

13 Update dual iterate by λi+1 := λi + α3 ∆λi

To this end we require both a primal and a dual merit function. We suggest to
first employ the `1-penalty function

Φ(z) :=
N∑
k=0

`k(zk) + λ̄ ‖Cz − c‖1 + κ̄
∑
k,i

max{ 0, (dk)i(zk) }

for this purpose, which is rather well-known from SQP methods. Here, 0 <
λ̄ <∞ and 0 < κ̄ <∞ are assumed to be sufficiently large constants such that
Φ is an exact penalty function for (5.8). If the combined stage NLP and dual
Newton full step decreases Φ(·) sufficiently, we choose α1 = α2 = α3 = 1; if
not, we check whether the pure NLP step given by α1 = 1 and α2 = α3 = 0
guarantees a sufficient progress in the primal merit function Φ(·)8.

Unfortunately, situations may occur where neither α1 = α2 = α3 = 1, nor
α1 = 1 and α2 = α3 = 0 lead to sufficient progress in the primal merit function.
This may, for example, be the case if the current selection of active stage
constraints is too restrictive (e.g., due to a bad initial guess of λ that is far

8The outlined procedure is only one possible option. For example, we could also employ
a line search strategy in α1, or a field search in both primal step directions to increase the
chances of finding a suitable step candidate.
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off the optimal dual vector) and C>∆λ lies in the nullspace of the reduced
dual Hessian Z

(
Z>HZ

)−1
Z>, giving us ∆z = 0. Such a situation may,

in principle, occur whenever M is singular. If, additionally, the computed
augmented NLP step (z − y) is too perturbed (e.g., again due to a bad initial
guess of λ) such that it is not a strict descent direction of Φ(·), no progress is
possible in the primal variables and we set α1 = α2 = 0. Instead, we regard the
augmented dual function

Vρ(ȳ,λ) := −λ>c +
N∑
k=0

{
min
zk

`k(zk) + λ>Ck zk + ρ

2 ‖zk − ȳk‖
}

s.t. dk(zk) ≤ 0,

which we aim to maximize over all λ ∈
[
λi,λi + α3 ∆λi

]
via a line search,

analogously to Algorithm 4.1.

We do not include a formal convergence proof here, but refer the reader to
[HFD14], where convergence of Algorithm 5.2 is established even in a slightly
more generic formulation. The proof is inspired by the convergence proofs of
SQP methods; in particular, local superlinear and even quadratic convergence
can be shown when sufficiently good Hessian approximations or exact Hessian
matrices are employed.

5.2.4 Numerical case study

We indicate the potential of the proposed algorithmic concept by a brief case
study. To this end, a prototypic Matlab implementation of ALADIN was
realized. We consider a discretized variant of the two state, one input nonconvex
optimal control problem from [CA98] given by

min
x,u

1
2

N−1∑
k=0

(x2
k,0 + x2

k,1 + u2
k) + 1

2

[
xN,0
xN,1

]>
P

[
xN,0
xN,1

]
(5.14a)

s.t. xk+1,0 = xk,0 + xk,1 + 0.2uk (4 + xk,0) ∀ k ∈ SN (5.14b)

xk+1,1 = xk,1 + xk,0 + 0.8uk (1− xk,1) ∀ k ∈ SN (5.14c)

− 2 ≤ uk ≤ 2, ∀ k ∈ SN (5.14d)

x0,0 = 0.2 (5.14e)

x0,1 = 0.1 (5.14f)
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(a) Pimal NLP stepsize.
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Figure 5.1: Convergence of ALADIN on the Chen-Allgöwer example.

where the terminal cost is defined by P :=
[
16.5926 11.5926
11.5926 16.5926

]
.

Using the reformulation detailed at the beginning of Section 5.2.1, we can cast
(5.14) into the form of (5.8). The resulting NLP has 5 variables per stage, and
we use a horizon length of N = 20.

For this demonstration, we computed a regularized dual Newton step in each
iteration, using γ = 10−6, and chose ρ = 10. We use exact Hessian matrices in
the dual problem, but regularize, if necessary, to ensure positive definiteness.
The scaling matrices Σk, k ∈ S are set to the Hessians of the (non-augmented)
stage NLP Lagrangians at the previous NLP solution.

Figure 5.1 shows the convergence behavior of Algorithm 5.2 in terms of the two
termination criteria specified in Algorithm 5.2 on the just detailed problem. We
can, in particular, see the local superlinear (quadratic) convergence behavior in
the dual stationarity, where the number of correct digits doubles from iteration
4 to 5.
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Chapter 6

The Open-Source Solver
qpDUNES

In this chapter, we present a software implementation of the dual Newton
strategy from Section 4 that was developed as part of this thesis and is freely
and openly available for download at [QPD14] for unrestricted use. Numerical
case studies in comparison with state-of-the-art structure-exploiting convex
QP solution approaches are carried out on several benchmark problems from
linear and nonlinear MPC (the latter one in combination with the also open-
source ACADO Code Generation Tool [ACA13, HFD11b]) to demonstrate the
effectiveness as well as the efficiency of the dual Newton strategy.

Acknowledgement The software package qpDUNES has been designed and
implemented by Janick Frasch, and the open-source project is currently
maintained by Janick Frasch. Joachim Ferreau advised with the initial software
design. Joachim Ferreau and Milan Vukov contributed small code pieces, mainly
in the area of datatypes and interfaces. qpDUNES is essentially self-sufficient,
but employs a copy of the open-source software package qpOASES [QPO14]
(developed mainly by Joachim Ferreau, Andreas Potschka, and Christian
Kirches) internally, which is up to small modifications identical with version
3.0 beta of this software. The numerical results presented in this chapter have
originally been published in the papers “A Parallel Quadratic Programming
Method for Dynamic Optimization Problems” by Janick Frasch, Sebastian Sager,
and Moritz Diehl [FSD13], and “A New Quadratic Programming Strategy for
Efficient Sparsity Exploitation in SQP-based Nonlinear MPC and MHE” by
Janick Frasch, Milan Vukov, Hans Joachim Ferreau, and Moritz Diehl [FVFD13].
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Janick Frasch is the main author of both publications, and contributed the
open-source software design and implementation, the numerical benchmarking,
as well as most parts of the writing. Milan Vukov and Janick Frasch jointly
developed the ACADO/qpDUNES interface. Milan Vukov also contributed
the ACADO implementation of the nonlinear hanging chain example. Joachim
Ferreau served for fruitful discussions regarding the initial software design of
qpDUNES, and contributed the ABB compressor benchmark example.

6.1 Open-source Software Implementation

The core aspects of the dual Newton strategy, as introduced in Chapter 4, have
been implemented in a software package that goes under the name qpDUNES.
A version of the code is available for download at [QPD14], and can be used
freely under the statutes of the GNU Lesser General Public License (LGPL)
[GNU11], version 3. This essentially means that the packages qpDUNES can
be used, modified, adapted and redistributed freely as desired so by the user,
without affecting the license under which other user software, with which it
might possibly be combined, is used or distributed.

6.1.1 Design decisions

The software qpDUNES is written in the C programming language according to
the C90 standard to enlarge compatibility with both standard desktop computers
under various operation systems as well as various embedded hardware platforms.
The code is entirely self-contained with the exception of minor functionality
being drawn from the cmath library, which, however, is typically considered to
be very standard functionality. Certain optional and not performance-critical
functionality, such as execution time measurements for example, requires linking
against additional libraries which may not be available on all operating systems.

The variant of qpDUNES that is designed to solve QP problems with general
affine stage constraints and not necessarily diagonal Hessian matrices (i.e.,
problems where the clipping operator (4.6) cannot be employed for the stage
subproblem solution) underlyingly makes use of the dense parametric active-set
QP solver qpOASES [QPO14], version 3.0 beta, which is identically released
under the LGPL license and implemented in C++.

Memory allocation is performed in qpDUNES only on a global scale at the time
of the problem setup. No additional memory is being used at runtime, which
permits predictability of the memory consumption as well as reusing of memory
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blocks for increased memory efficiency. This design decision further facilitates
the implementation of a static memory variant of qpDUNES drastically, as
only the (in the current, generic implementation adaptive) allocation and
deallocation routines have to be replaced by their static counterparts, which
match the dimensions of the desired problem to be solved.

The QP problem data, as well as the auxiliary data workspace, are stored in
separate memory blocks for each stage subproblem. On a global scale, only data
which is clearly centralized, such as the dual Newton system and the current
dual λ iterate, is stored. This is done to improve parallel efficiency on computing
architectures with a physically separated memory layout. Additionally, this
way shifting of the problem data for warmstarting is possible without the need
for any significant data transfer operations. Furthermore, different subproblem
solvers for different stage problems can easily be employed (e.g., for problems
with diagonal Hessians and box constraints on all stages except for the last,
which may feature a dense Hessian and general affine constraints due to the
problem featuring an LQR terminal cost or a complex terminal set constraint).

In its generic implementation, qpDUNES makes use of a dedicated linear algebra
module that handles all linear operations in a symbolic way (i.e., when, for
example, a multiplication of the state transition matrix A with a vector x is
required, a specific routine name multiplyAx from the linear algebra module is
called) and resolves them to generic informationless linear algebra operations.
This way, the linear algebra module is easily replaceable by a code-generated
one that exploits the specific structures of each symbolic operation based
on problem-specific knowledge of (for example) the sparsity patterns of the
corresponding operation. Application of such code generation techniques has
lead to significant performance increases in related areas like interior-point
solvers [MB09, DZZ+12] and nonlinear MPC [HFD11b].

6.1.2 Structure exploitation

The generic linear algebra implementation of qpDUNES distinguishes three
classes of Hessian matrix sparsity patterns: identity Hessians, diagonal Hessians,
and generic dense Hessians. Only dense Hessians require n2

z + 1 memory units1
to store an nz × nz matrix, while diagonal Hessians only store the diagonal
entries in a consecutive order, requiring only nz + 1 memory units; identity
Hessians only require an indicator flag intentifying them in their type. All
internal symbolic linear algebra routines exploit these specific structures where
possible in their implementation.

1The additional memory unit is required for the Hessian type indicator flag.
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The fact that the dual Hessian matrix is symmetric and in particular block
tri-diagonal is also exploited in the memory layout. Instead of using a generic
Nnx ×Nnx matrix representation, we store the dual Hessian matrix

W1 U1

U1
> W2

. . .

. . .
. . . UN−1

UN−1
> WN


by 

W1
U1
> W2
...

...

UN−1
> WN

 ,
using a row-major format, thus only requiring (2N − 1)nx memory units.
Analogously, the symmetric factor of the dual Hessian is saved in a more
compact representation. As pointed out in Sections 4.3.4 and 4.3.5, the employed
factorization routines make use of this explicitly known block-sparsity pattern.

In addition, we distinguish between general affine constraints and box constraints
in qpDUNES in order to benefit from the simplified structures of the latter.

6.1.3 Interfacing and problem setup

The QP solver qpDUNES can be employed in several ways in the solution of
dynamic optimization problems. Both, a C/C++ and a Matlab interface exist
for setting up and solving QP problems in the form of

min
z

N∑
k=0

(
1
2zk

>Hk zk + gk>zk
)

s.t. Ek+1 zk+1 = Ck zk + ck ∀ k ∈ SN

dk ≤Dk zk ≤ dk ∀ k ∈ S

zk ≤ zk ≤ zk ∀ k ∈ S.

Here, we require the distinction of box constraints and affine constraints in
order to be able to benefit from the simpler structures of box constraints.

In addition to this, linear MPC problems can be set up more conveniently in the
common MPC syntax by providing transition matrices A and B alongside state
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and control references xref and uref with the corresponding tracking weights
Q, R, S, and P , and bounds (cf. Section 2.1.2); corresponding variants for
LTV problems are also available, both from C/C++ and Matlab.

In both, the QP and the linear MPC interface, an elementary sparsity detection
is performed at the time of the problem setup to be able to treat identity,
diagonal, and dense primal quadratic cost terms individually. Depending on
whether additionally affine constraints are present or not, the appropriate stage
QP solver (the clipping operation (4.6) or qpOASES) is selected automatically.
Both, cold- and warmstarted solution of sequences of QPs is possible from
C/C++ and Matlab.

For nonlinear MPC and MHE, qpDUNES has been coupled to the ACADO
Code Generation Tool [HFD11b]. The ACADO Code Generation Tool is
part of the ACADO Toolkit (available at [ACA13]), which is an open source
software for the modeling, simulation and control of nonlinear dynamic processes.
It allows to export a lean RTI scheme based on a Gauss-Newton Hessian
approximation, which is tailored to a specific problem’s requirements in the spirit
of code generation. For the evaluation of the nonlinear dynamic system, both
constant stepsize explicit and implicit Runge-Kutta ingrators are available, cf.
[QVD12]. In earlier versions of the ACADO Code Generation Tool the solution
of the structured quadratic subproblems was only possible by a condensing
approach (in the form of [AFVD13]) followed by a solution of the dense QP using
qpOASES [FBD08]. In recent versions [FVFD13], the interface to qpDUNES
permits to bypass the condensing step and to solve structured QPs directly in
a sparsity-exploiting fashion. The ACADO Code Generation tool has already
been successfully applied in a variety of applications, e.g., [HFD11b, GZD12,
GAGD12, VLH+12, FKV+12, FKSD12, FGZ+13, ZFD13, ZGD13, GVD13,
GQD12].

6.2 Numerical Performance in Linear MPC

In the following, we analyze the numerical performance of qpDUNES in
comparison with state-of-the-art solvers for convex quadratic programs. The
focus here is on methods that exploit the structures prevalent in the uncondensed
QPs arising from linear MPC, where (for high-accuracy solution) interior-point
methods can be seen as the incumbent class of methods.
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6.2.1 Double integrator

The first benchmark example is motivated by the energy optimal control of a
cart on a rail in the context of a Badminton robot [WSPS12]. The dynamics of
the system boil down to a simple double integrator with two states, position
and velocity (in this order), and acceleration as control input. The optimization
problem obtained after discretization is a convex QP in the form of Problem
(PQP) with

Hk =

σ σ
1

 , gk = 0 ,

Ck =
[

1 0.01 0
0 1 0.01

]
, ck = 0 ,

Dk =

 1
1

1

 , dk = (−1.9,−3,−30) , and dk = (1.9, 3, 30)

for all stages k ∈ S, and k ∈ S0, respectively. Additionally we have the initial
value constraint fixing [

1 0 0
0 1 0

]
z0 =

[
−1
0

]
and two arrival constraints demanding the cart to arrive at position 0 at a
certain index k̄ and staying there for at least 10ms (one time discretization
step), giving the robot arm time to hit the shuttlecock. A small regularization
term σ > 0 in this formulation ensures positive definiteness of the Qk.

This benchmark problem is particularly interesting, as it directly shows the
limitations of the dual Newton strategy. Purely energy-minimal operation
of the badminton robot would correspond to σ = 0, resulting in non-strictly
convex QPs. To be able to treat this problem with the original dual Newton
strategy, regularization is always required. Despite this factual drawback, we
still believe that the dual Newton strategy is well suited, since in almost all
practical applications regularization is beneficial and often even leads to more
desirable properties of the obtained solutions.

Additionally to the small regularization parameter (leading to a rather badly
conditioned dual function), we choose arrival times close to infeasibility, ensuring
that many state constraints become active in the solution. As discussed in section
4.3.4, scenarios with many active state constraints tentatively are particularly
challenging for the dual Newton strategy. Also note in this context that the
unconstrained optimum (favoring no action) lies far outside the feasible region.
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We compare the average computation time over the first 20 MPC iterations for
horizon lengths of N = 50, 100, 150, 200, where the cart is forced to arrive at
the desired position at k̄ = 50. We add random noise to the simulated system
dynamics, and choose σ = 10−4. If the MPC problem was rendered infeasible
by the (precomputed) noise vector, we discard this instance and generate a new
noise vector.

We report computation times on a standard desktop PC featuring a 3.4GHz
Intel i7 CPU under a Ubuntu 13.04 Linux for our method, qpDUNES, in
comparison against FORCES [DZZ+12], a very recent and highly efficient
structure exploiting interior-point method that uses automatic code generation
to create a custom solver tailored to the dynamics of a MPC problem. We run
FORCES with default settings, as we did not observe any significant performance
improvement in other configurations. It was indicated in [VDF+13] that
FORCES will outperform even very efficient active-set methods on prediction
horizons of the considered length. It was indicated in [DZZ+12] that FORCES
also outperforms other tailored interior-point methods rigorously.

For completeness we include a comparison against the popular solvers CPLEX
12.5.1 [IBM09], and Matlab’s quadprog, see[Mat06]. CPLEX implements
efficient general purpose QP solvers. Both, an active-set method and an
interior-point method is available. We chose to use CPLEX in automatic mode
(with parallelization switched off), as fixing CPLEX to either method lead to a
performance decrease rather than to an increase. Matlab’s quadprog was also
run in default configuration, using its interior-point solver. We note that the
active-set method was observed to perform orders of magnitude worse than the
interior-point method and is therefore not included in the comparison.

All benchmarks were run from Matlab R2013a, as FORCES is currently only
provided via a mex-interface. CPLEX and quadprog were called as precompiled
libraries for Linux through their default Matlab interface. FORCES was
downloaded through its Matlab interface as a custom solver tailored to the
model dynamics. Both FORCES and qpDUNES were compiled to a .mex file
using gcc 4.7.3 with standard code optimization options.

We perform the MPC simulation 1000 times, with different random noise
vectors, and report averaged computation times in milliseconds in Figure 6.1(a).
We observe that both customized solvers, qpDUNES and FORCES, perform
observably well. Still, qpDUNES performs yet a factor of 4.9− 10.6 better on
this benchmark problem than the runner-up FORCES.

To get a glimpse on worst-case computation times (comparisons that tentatively
favor interior-point methods), we additionally report solution times of a single
QP without any prior knowledge about the solution (i.e., cold started). We
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(b) Cold started benchmark.

Figure 6.1: Computation times of the double integrator benchmark.

chose horizon lengths of N = 50, 100, 150, 200 and forced the cart to arrive at
the desired position at k̄ = 45 (almost the minimum time possible).

Even though qpDUNES is not tailored for a single QP solution, it was observed
that qpDUNES outperforms the other considered solvers by a factor of 2.7− 3.3
even on this benchmark scenario, cf. Figure 6.1(b). The numbers reported are
in milliseconds, and averaged over 1000 identical (cold started) runs.

In a third comparison, we analyze the effect of different primal regularization
parameters in the dual Newton strategy. For a horizon length of N = 50,
and an arrival index of k̄ = 45, we compare values for σ between 10−2 and
10−8 (possibly causing very ill-conditioned dual functions) in Figure 6.2. Again,
computation times are reported in milliseconds, and averaged over 1000 identical
(cold started) runs. As expected, we observe that the choice of σ barely has any
influence on the performance of the interior-point methods. The dual Newton
strategy in contrast is sensitive to the choice of σ, and there is a tendency to
higher computational demand for smaller primal regularization parameters (i.e.,
a more ill-conditioned dual problem), as anticipated. Still, for all considered
regularization parameters, qpDUNES outperformed its competitors.

6.2.2 Chain of masses

The second benchmark example we consider here is taken from [WB10]. MPC
is used to control a chain of six oscillating masses that are connected by springs
to each other and to a wall on each side. We use the same parameters as stated
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Figure 6.2: Computation times of one cold started QP solution for different
primal regularization parameters.
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right: qpDUNES, FORCES, CPLEX, quadprog.

Solver Computation time

qpDUNES 0.16 ms
FORCES 2.27 ms

CPLEX 21.41 ms
quadprog 42.83 ms

(b) Average computation times of one QP
solution.

Figure 6.3: Chain of masses benchmark problem.

in [WB10], and thus end up with an MPC problem of 12 states, 3 control inputs
and a prediction horizon of 30 intervals. We simulate the MPC problem on 100
time steps.

We computed 1000 random noise vectors that perturb the positions of the
masses. We again compare the computation times obtained from qpDUNES
with those obtained from the solvers FORCES, CPLEX, and quadprog.

Table 6.3(b) shows average computation times for one QP solution, and Figure
6.3(a) shows a histogram of the average iteration times over the different
instances. It can be seen that due to the efficient warmstarting, qpDUNES is
at least one order of magnitude faster than the other considered solvers, even
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in presence of perturbations. We note that qpDUNES was rarely observed to
exceeded 4 iterations, while FORCES needed 6 to 9 iterations in most cases.
Since the factorization in qpDUNES can be warmstarted, and the structure
of the band-matrix is similar to the one occurring in interior-point methods,
each iteration in the dual Newton strategy is roughly at most as expensive
as an iteration of an interior-point method. It should be noted that in this
benchmark problem significantly less constraints become active, a fact from
which qpDUNES benefits overproportionally.

6.2.3 Hanging chain

To comment on the weaknesses of the dual Newton strategy, we consider a third
problem, which has already been used for benchmarking in several publications,
see [WBD06, FBD08, VDF+13]. The problem again features a chain of masses
— however in three-dimensional space this time. The chain assumes its steady
state very close (0.01m) to a wall, cf. Figure 6.4. One end of the chain is fixed
at the origin, while the other one is free and can be controlled by its velocities in
x, y, and z direction. Note that, analogously to [VDF+13], we placed the wall
closer to the equilibrium position than it has been considered in the original
setting from [WBD06]. This means that potentially a large amount of state
constraints becomes active in the solution, and thus we yield a more challenging
problem, particularly for the dual Newton strategy. As in [FBD08] we perform
linear MPC based on a linearization in the steady state, trying to stabilize the
problem quickly at its equilibrium. For the detailed model equations we refer
to [WBD06].

We consider a chain of 5 masses, which results in a system of 33 states (the free
masses’ positions and velocities) and 3 controls (the last masses’ velocities), on
a varying horizon length between 30 and 60 intervals. Noise is added on the
velocities of each mass in each simulation step (adding noise directly on the
positions might result in an infeasible problem very easily due to the closeness
between the equilibrium and the constraining wall). We explicitly note that
systems of such a ratio between state dimensionality and horizon length are
not the targeted application domain for the dual Newton strategy. Still, if
we consider average computation times over 50 MPC iterations, we observe
that the dual Newton strategy performs reasonably well, cf. Figure 6.5(a).
Our solver qpDUNES performs a factor of 3.4 to 5.6 faster in this comparison
than FORCES, the closest competitor. It is interesting to observe that the
computation time is more or less constant over all considered horizon lengths.
This can be explained by the efficient warmstarting of the factorization in the
MPC context, cf. Section 4.3.5. Moreover, a longer horizon will cause that the
equlibrium is reached (first at the end of the prediction horizon) at an earlier
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Figure 6.4: Hanging chain scenario. The chain in steady state is depicted in
red, while the initial state is drawn in green.

point in the simulation, thus making the multiplier shift more effective from
this point on.

In this comparison we did not include CPLEX, as its Barrier method experienced
numerical problems in almost all considered noise scenarios and therefore
terminated early and suboptimally. We were also not able to obtain FORCES
code for a problem of 60 or more intervals length with this number of states;
note that this is not a numerical limitation of the solver, but rather a technical
limitation of the FORCES download server, which generates the code specifically
for each problem instance.

Despite all these shortcomings of the comparison, we believe that this very
challenging problem yields some important insights when we consider maximum
computation times in Figure 6.5(b). Here we observe that FORCES outperforms
qpDUNES by a factor of 2.5 to 2 on the considered horizon lengths. Due to
the fact that the objective is driving the optimization variables to points with
many active state constraints (about 70 active constraints in the solution for the
N = 50 setting), qpDUNES takes many iterations that require regularization
of the dual Hessian matrix. Overall, qpDUNES needed about twice as many
iterations in the maximum as FORCES; additionally, many line search iterations
were required when the dual Hessian needed to be regularized.

Nonetheless, this comparison also yields some positive news for the dual Newton
strategy. We observed that the high computation times of qpDUNES were
exclusively observed in the first MPC iteration, when qpDUNES was cold-
started, and the initial condition is far away from the equilibrium. When
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Figure 6.5: The hanging chain benchmark problem.

excluding this first iteration from the comparison, qpDUNES outperformed
FORCES again by a factor of 3 to 6.1 also in maximum computation times for
one MPC iteration.

6.3 Numerical Performance in Nonlinear MPC

We provide a comparison of a condensing/qpOASES based QP solution strategy
with qpDUNES within the ACADO Code Generation tool in the following. Both,
condensing and qpOASES are implemented in a highly efficient manner within
the ACADO Code Generation tool, as indicated in a wide range of applications,
cf., e.g., [FOL+07, FBD08, HFD11b, FHGD11a, FHGD11b, FKP+13, VDF+13,
FJ13, AFVD13]. All simulations were performed on a 3.4GHz Intel i7 based
desktop computer, running the 64-bit version of Ubuntu Linux 13.04. All codes
are compiled with Clang 3.2.1, using the flag -O3 and execution times are
measured with the Linux function clock_gettime().

6.3.1 A nonlinear hanging chain of masses

The first class of benchmark problems deals with stabilizing the same strongly
deflected chain of M masses connected by springs as in Section 6.2.3, and in
[WBD06, FBD08, VDF+13]. Again, one end of the chain is attached to a fixed
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point, while the velocity of the other end can be controlled. Here, however, we
consider the full nonlinear dynamics from [WBD06].

Just as before, each mass is described by its position and velocity coordinates,
resulting in a total of nx = 6M + 3 states and nu = 3 control inputs. We
chose a sampling time of Ts = 200ms and varying prediction horizon lengths
N ∈ {10, . . . , 100}. For integration of the nonlinear system dynamics an implicit
Gauss-Legendre integrator of order four was used within the ACADO Code
Generation tool (cf. [QVD12] for details), with two integration steps per
discretization interval.

The ACADO Code Generation tool employs the RTI scheme, where each
iteration is split into a preparation and a feedback phase. We consider the
timings of these two phases separately in the following. In the condensing-based
approach, the preparation phase consists of the linearization of the NLP and
the condensing routine that yields the reduced-size QP, both of which are
of significant computational effort. The time spent in the feedback phase is
dominated by the solution of the condensed QP by qpOASES. In the sparse
(qpDUNES-based) approach, no condensing routine is needed, so the preparation
phase is dominated only by the effort for the linearization of the NLP. Almost
all time of the feedback phase is then spent in the solution of the sparse QP.

We present average computation times for one RTI in Figure 6.6 and highlight
the time spent in the feedback phase. Note that the preparation phase always
has to be shorter for the sparse QP strategy in comparison with the condensing-
based approach. It can be seen that for a moderate number of states nx,
the sparse approach is already competitive on short horizon lengths, while it
clearly outperforms the condensing-based approach both in terms of feedback
time and in terms of total iteration time on longer horizon lengths due to its
lower per-iteration computational complexity. The test case for M = 5 shows
the benefits of the condensing-based approach for systems with many states
that lie in a drastically reduced size of the problem that remains to be solved
in the feedback phase; still, regarding the overall iteration times, the sparse
approach performs reasonably well, even though it is not targeted for this class
of problems.

A similar pattern can be observed when regarding maximum computation
times (over all simulation steps) in Figure 6.7. For a small to medium number
of states, the sparse approach dominates already on relatively short horizon
lengths, both in the feedback phase and (thus even more) in the total iteration
time. Obviously the computational efforts for integration and condensing are
problem-data independent and thus the relative gap between both approaches
decreases a bit for long horizons in the consideration of maximum computation
times, as observed in the test case ofM = 3. For a rather large number of states
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Figure 6.6: Average computation time benchmark for four chain-of-masses test
cases.
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Figure 6.7: Maximum computation time benchmark for four chain-of-masses
test cases.
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(large at least for fast scale applications), particularly in the test cases M = 5,
the feedback time (i.e., the pure QP solution time) of the condensed approach
dominates the QP solution time of the sparse approach for all considered horizon
lengths. This effect is even more visible in the maximum computation time
plot, since, again, the time spent in condensing plays less of a roll here.

Particularly in the test caseM = 5 it could be observed that the sparse approach
suffers more than the condensed approach from the bad conditioning of the
problems, resulting from the objective function pressing strongly against the
constraints. Improving the stability of factorization and smarter regularization
approaches are subject of ongoing research. In general it should be noted that
the relatively large gap between average and maximum computation times of
the dual Newton method can partly be explained by the wrong initalization of
the QP solver after the chain is deflected. Excluding the first iteration from
consideration already leads to significantly shorter maximum computation times
(e.g., about 20ms for the sparse QP solution in the M = 5 case on a horizon
length of 100 steps). The other part of the explanation obviously is the active-set
nature of the dual Newton strategy.

6.3.2 Anti-surge control of a gas compressor

While the first nonlinear benchmark problem is purely academic (but well
scalable), we use a real-world motivated second benchmark problem. Nonlinear
MPC is used to prevent the occurence of surge in centrifugal compressors (see
[CPMB12] for details). Centrifugal compressors are widely used in gas extraction
plants or gas pipelines to extract and transport natural gas from the source to
the consumer. As compressing is an energy-intensive process, it is important
to operate compressors efficiently in order to save resources. This means to
operate them at working points that are close to surge, an instable system
state that can cause severe damage to the compressor and piping system. We
describe the compressor by a nonlinear ODE model similar to the one presented
in [CPMB12]. It comprises nx = 6 differential states and nu = 2 control inputs:
the opening of the recycle valve as well as the torque of the compressor’s drive
(which are both subject to physical limitations). Our nonlinear MPC aims at
tracking a given operating point in the event of a simulated sudden closure of
the compressor’s outlet valve.

The anti-surge controller is running at a sampling time of 25ms on a prediction
horizon of length N as given in Figure 6.8. Again, the sparse approach performs
competitively on all considered horizon lengths, tieing for horizon lengths
around N = 30. For longer prediction horizons significant computational
savings can be achieved from applying the sparse approach. Note in particular
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Figure 6.8: Average and maximum computation time benchmark for the
compressor test case.

the approximately linear growth of QP solution times of the sparse approach
(in the horizon length) in comparison with the strikingly superlinear growth
of the QP solution times of the condensed approach. Due to the practical
relevance, we also include maximum computation times in the lower part of
Figure 6.8. Since both, the sparse and the condensed approach, rely on active-set
based QP solution methods, the absolute computation times increase. The
problem data independent effort for integration and condensing causes the
relative performance gap between the sparse and the condensed approach on
long horizons to diminish slightly, while the absolute gap even increases.

6.4 Discussion

The above numerical results indicate that the dual Newton strategy in general,
and qpDUNES in particular may present advantages over established methods
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and software for the solution of structured QPs in dynamic optimization.

We note that the utilized implementation of qpDUNES is essentially based on
the details given in Section 4.3. Additional, possibly significant speedup can be
expected from extensions of qpDUNES, e.g., by the factorization proposed in
Section 4.6.1, a warmstarted forward factorization for MHE problems2, initial
preconditioned gradient iterations, and code generation. Furthermore, using
preconditioned gradient iterations and a rigorous infeasibility detection, the
reliability of qpDUNES can be enhanced.

An deep and efficient interconnection of qpDUNES with other algorithmic
concepts for dynamic optimization NLPs, such as a Multi-Level Iteration scheme,
as well as an efficient implementation of the ALADIN concept from Section 5.2
are favorable directions for future research and development. In this context,
it is particularly interesting to investigate whether the RTI approach to NLP
solving can be transferred to the ALADIN framework, e.g., by performing
only one consensus step (after re-solving the first stage NLP for initial value
embedding).

2Conversely to MPC, we expect active-set changes to tentatively happen rather on the
last stages in MHE, which motivates the usage of a forward in time factorization order.



Chapter 7

Autonomous Driving

Model predictive control (MPC) is an established approach for assisting drivers
of ground vehicles with the operation of certain lower-level components, such
as engine control or path following in difficult handling conditions, cf., for
example, [FOL+07, FBA+07, FBA+08] and the references therein. In this
section we address how, beyond that, nonlinear MPC can be used as a single,
holistic control scheme for the autonomous operation of ground vehicles in
challenging situations. To this end, we derive a detailed model of the vehicle
dynamics that goes significantly beyond those models used in automotive
(online1) control tasks in earlier publications, e.g., [Ger05, FBA+07, SKB08,
KSBS10, GLB+10, KFKS11, GGL+12]. It covers important nonlinear dynamics
that play a major role when the vehicle is operated close to the limits of its
handling capability and can therefore become safety-critical. Since we propose
a single-level controller, limited maneuverability or infeasible path planning due
to model oversimplification can be avoided2.

We derive a representation of the vehicle dynamics in spatial (i.e., track-
progress dependent) differential equations to allow for a state-independent
representation of road boundaries as well as of obstacles along the track, which
is inherited unalteredly in the linearized MPC problem (i.e., we have the
same constraint representation in linear and in nonlinear MPC) to be solved

1For offline simulation of vehicle dynamics (without real-time requirements) a variety of
high-fidelity tools and models exists, e.g., the open-source VDrift simulator [Ven10].

2This is a commonly observed effect from the mismatch between the different models
in multi-layer controller designs, cf. the observations in [FBA+08, GLB+10, GGF+12] for
example.

207
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at every sampling time3. Above all, we stress the importance of the use of
structure-exploiting, efficient numerical methods4 to render these challenging
problems computationally feasible in real-time. We demonstrate the practical
applicability of the spatial vehicle dynamics representation for obstacle avoidance
by experimental results from a Jaguar X-Type passenger car and show simulation
results demonstrating the superiority of tailored numerical methods. Finally,
we extend our considerations from safe road-following to a time-optimal driving
prospect.

Acknowledgement This chapter is largely based on the following publications:
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Diehl [FGZ+13]
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main author of [FGZ+13], and introduced core modelling ideas and coordinated
the research activities. Mario Zanon and Janick Frasch jointly developed the

3Here, we anticipate the solution of the nonlinear MPC problem by the RTI scheme from
Section 2.3.1.

4Here, we use the ACADO Code Generation implementation (cf. Section 6.3) of the RTI
scheme with the condensing algorithm from Section 3.2 on the software side, as most results
in this section were obtained before the completion of qpDUNES. Additionally, the horizon
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extended vehicle dynamics model, which we will present in Section 7.1. The
spatial transformation for the consideration of road constraints and obstacles
(which was additionally also used in [GGF+12]) was derived in its current
form jointly by Yiqi Gao, Andrew Gray, and Janick Frasch. The simulation
results from [FGZ+13], [ZFD13], and [ZFV+14] were obtained from an ACADO
Code Generation MPC/MHE design that was initiated by Janick Frasch and
extensively augmented by Mario Zanon.

The papers [GGF+12] and [VBZ+14] feature experimental data, in [GGF+12]
from a full-size Jaguar X-Type passenger car at Ford Research Laboratories in
Dearborn, MI, USA, and in [VBZ+14] from a downscaled model car setup at
Siemens LMS (now Siemens Industry Software), Leuven, Belgium. Yiqi Gao
is the main author of [GGF+12], and conducted the on-site experiments with
Andrew Gray and Eric Tseng. The used MPC formulation was derived jointly
by Yiqi Gao, Andrew Gray, and Janick Frasch. The publication [VBZ+14]
is based on results of Robin Verschueren’s master thesis, which he conducted
under the joint supervision by Stijn De Bruyne, Mario Zanon, and Janick
Frasch. The one-level tracking MPC formulation, as well as the time-optimal
MPC formulation from [VBZ+14] was developed and implemented by Robin
Verschueren based on ideas derived jointly by Mario Zanon and Janick Frasch.
Stijn De Bruyne coordinated the hardware setup at Siemens LMS.

Joachim Ferreau and Milan Vukov contributed to [FGZ+13] and, respectively,
[ZFV+14] with support and smaller algorithmic modifications around the
ACADO Code Generation tool. Theresa Lin, Karl Hedrick, Francesco Borrelli,
Sebastian Sager, and Moritz Diehl contributed to [GGF+12], and, respectively,
[FGZ+13], [ZFD13], [ZFV+14], and [VBZ+14] through viable feedback and
supervision of the activities.

7.1 A Comprehensive Vehicle Model

We investigate several model components in the following that influence the
dynamics of road vehicles. The basis is formed by a 6 degrees of freedom
(DoF) vehicle model, which can be found in similar forms in the pertinent
literature, e.g., [KN05]. Note that we consider the force contributions at
each of the four wheels individually, in contrast to several other publications
(e.g., [Ger05, SKB08, KSBS10, Keh10, KFKS11, GGF+12]), which reduced
the model to a bicycle model. This extension allows us to account for effects
such as load transfer, which may become critical in the limit operation range
of the vehicle. On the downside, the increased model complexity requires a
higher computational effort for the evaluation of the dynamic system, as well
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as, possibly, additional parameters that need to be identified on a real-world
vehicle.

We restrict our considerations to a car with front steering and rear wheel
drive in the following. Extensions to other actuation configurations can be
realized in a straightforward manner. The control inputs are the steering rate
δ̇, the accelerating engine torque T a, and four braking torques T b

fl , T b
fr, T b

rl ,
T b
rr. Throughout this paper we use subscripts fl, fr, rl, rr to denote quantities

corresponding to the front left, front right, rear left, and rear right wheel,
respectively. For clarity of the notation we define F := {f, r} and S := {l, r}
and use F × S = {fl, fr, rl, rr}.

7.1.1 Chassis dynamics

The vehicle chassis is modeled as a rigid body, described by its global position at
the vehicle’s center of gravity (CoG) in theX-Y plane, its global orientation, and
the corresponding velocities in a local x-y-z frame. The z-direction is pointing
upwards. Initially, we disregard roll, pitch and heave (vertical displacement)
motions of the car. The chassis dynamic equations consequently read

mv̇x = mvy ψ̇ + F xfr + F xfl + F xrr + F xrl + FD , (7.1a)

mv̇y = −mvx ψ̇ + F yfr + F yfl + F yrr + F yrl , (7.1b)

Iψ ψ̈ = a (F yfl + F yfr)− b (F yrl + F yrr)

+ c (F xfr − F xfl + F xrr − F xrl) , (7.1c)

Ẋ = vx cosψ − vy sinψ , (7.1d)

Ẏ = vx sinψ + vy cosψ , (7.1e)

where m denotes the mass and Iψ the yaw moment of inertia of the car. The
distances of the tires from the vehicle’s CoG are characterized by a, b and c,
cf. Figure 7.1. The vehicle’s yaw angle ψ is obtained by direct integration of
ψ̇. The drag force due to air resistance is denoted by FD, while F x�? and F y�?,
�? ∈ F × S denote the components of the tire contact forces.

Model (7.1) allows to account for load transfers originating from the tire-street
interaction forces only under the assumption of a rigid suspension as done in
[FGZ+13, ZFD13]. This assumption can be dropped by additionally introducing
dynamic equations for the pitch and roll movement of the car, denoted by p
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Figure 7.1: Tire forces and slip angles of the 4-wheel vehicle model in inertial
coordinates. The tires’ directions of movement are indicated by green vectors.

and r:

Ip p̈ = T ps + T plt , (7.2a)

Ir r̈ = T rs + T rlt . (7.2b)

Here, T ps and T rs denote the suspension torques counteracting the load transfer
torques T plt and T rlt, while Ip and Ir denote the pitch and roll moments of
inertia of the chassis. We do not assume the availability of detailed road profile
information (e.g., about potholes) here and consequently neglect the heave
movement of the vehicle.

Due to the front steering assumption, the longitudinal contact forces F l
�? and

the cornering (lateral) contact forces F c
�? of each tire �? ∈ F × S enter by

F xr? = F l
r? ∀ ? ∈ S

F yr? = F c
r? ∀ ? ∈ S
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in the rear, and

F xf? = F l
f? cos δ − F c

f? sin δ ∀ ? ∈ S

F yf? = F l
f? sin δ − F c

f? cos δ ∀ ? ∈ S

in the front. The steering angle δ is obtained from the input δ̇ by integration.

7.1.2 Pacejka tire forces

The tire contact forces F l
�? and F c

�? are computed from a combined longitudinal
and lateral Pacejka-type tire slip model, cf. [Pac06]. For each tire �? ∈ F × S,
the tire model is given in abstract form by

(F l
�?, F

c
�?) = fP(α�?, κ�?, µ, F z�?) .

The inputs to this model are the side slip angles α�?, the slip ratio κ�?, and
the normal load F z�?. The influence of road friction is modeled by a parameter
µ ∈ [0, 1] that also enters the tire model. The precise semi-empirical model
equations of Pacejka’s Magic Formula can be found, for example, in [Pac06,
KFKS11, GZF12]. Note that we neglected the aligning moments here, as they
typically have little influence in high velocity driving.

In the Pacejka model, the side slip angle is defined as the angle between the
wheel’s orientation and the actual direction of movement (cf. Figure 7.1) and
can be obtained from the chassis velocity and the steering angle by simple
geometrical relations.

The slip ratio is defined as κ�? = ω�?Re−v�?
v�?

and represents the longitudinal
slip during acceleration and deceleration. Here, v�? denotes the wheel speed
with respect to the ground (which can be computed explicitly from the chassis
velocities), while Re denotes the effective tire rolling radius (cf. [Pac06]). The
rotational speed of the wheel is denoted by ω�?. Its computation is detailed in
Section 7.1.3.

We will also elaborate on how to obtain F z�? in Sections 7.1.5 and 7.1.6.

7.1.3 Wheel dynamics

The four wheels are modeled as independent bodies with only spinning inertia.
The wheels’ rotational velocities ω�? are computed from a first order model
in the accelerating torques T a

�? and the braking torques T b
�?, taking the wheel
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moment of inertia Iw (which is here assumed to be identical for all wheels) into
account. Note that the consideration of wheel dynamics enhances the predictive
quality of the model but also renders the underlying ODE system stiff, making
its solution computationally significantly more challenging. The wheel dynamic
equations are given by

ω̇�? = 1
Iw

(T a
�? + T b

�? −ReF
l
�?) ∀ � ? ∈ F × S , (7.3)

where again Re denotes the effective tire rolling radius. We assume individual
wheel braking (i.e., T b

�? are inputs for all �? ∈ F × S) and include a differential
model for the total acceleration torque T a, yielding, for a rear-wheel driven car,

T a
f? = 0, ∀ ? ∈ S

T a
r? = T a

(
1− ωr?

ωrl + ωrr

)
∀ ? ∈ S .

We can either assume T a to directly be an input, i.e., assume its realization
through a lower-level engine controller, or include an engine model, as detailed
in Section 7.1.4.

7.1.4 Engine model

In some contexts, like time-optimal driving for example, the simplification that
the acceleration torque T a is available (almost) instantaneously by realization
through a lower-level engine controller may be too strong to achieve good control
performance. A remedy to this may be to approximate the acceleration torque
set-point change behavior by a first-order model, or to include a detailed engine
model.

The latter has been achieved in [Keh10, KFKS11] for example, where a detailed
engine model has been extracted from the VDrift simulation environment
[Ven10] and implemented in an optimal control formulation. The proposed
model can essentially be summarized by the form

T a = q(Υ) · (T cb + T fr), (7.4)

where q(Υ) is the transmission ratio between the engine and the driving axle,
which depends on the integer choice of the gear5 Υ ∈ N, and where T cb and T fr

denote the (positive) torque due to combustions and the (negative) torque due
to friction.

5Even though, technically speaking, Υ is a control, i.e., we would have Υ : T → N, we
neglect the time dependency here for notational convenience.
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For a continuous accelerator Φ ∈ [0, 1], the combustion torque is given by

T cb = Φ · F tq(ωe), (7.5)

where ωe denotes the rotational engine speed and F tq(ωe) is an interpolated
torque curve from a measurement grid. The engine friction torque is given by

T fr = (1− Φ) · C1 · ωe, (7.6)

where C1 < 0 summarizes constant coefficients that enter in the friction term.
Under the assumption that the transmission is engaged, we can express the
rotational engine speed directly in terms of gear choice (transmission ratio) and
the driving wheels’ rotational velocity:

ωe = q(Υ) · 1
2(ωrl + ωrr).

One way to treat the integer gear decision in the optimal control problem is
to use a partial outer convexification reformulation of all dynamic equations of
the problem where the gear-dependent transmission ration q(Υ) enters. This
has, for example, been performed in [SKB08, KSBS10, Keh10, KFKS11]. The
essential idea of this approach is to introduce binary multipliers (controls)
ηi, i ∈ G := {1, . . . , ngears} for each possible integer control action (i.e., gear
choice) Υ = i (for any i ∈ G) in order to reformulate the (abstract) dynamic
system with state ξ, continuous controls u, and integer control Υ,

ξ̇(t) = f(ξ(t),u(t),Υ(t)),

to

ξ̇(t) =
∑
i∈G

ηi(t) · f(ξ(t),u(t), i),

1 =
∑
i∈G

ηi(t)

for t ∈ T . This reformulation allows to relax integral gear choices to continuous
inputs ηi(t) ∈ [0, 1], and to recover integrality by an appropriate rounding
scheme where necessary6,7. Further details on this approach can be found in
[SKB08, SRB09, KSBS10].

6Often, the relaxed solution computed for the outer convexification reformulation is already
of bang-bang type and therefore integer feasible, cf. [KSBS10].

7If engine speed constraints need to be incorporated, a more elaborated approach is
necessary, see [JKS13] for a survey of possible problem formulations and methods.
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While the just stated approach is, in some sense, the natural way to treat
the combinatorial nature of the gear choice, it comes at the price of (possibly
significantly) higher expenditure for the evaluation and derivative generation
of the dynamic system, which canonically increases linearly in the number
of possible integer events (i.e., gear choices). Furthermore, the number of
continuous control variables of the relaxed problem also grows (affinely) with
the number of permitted integer choices.

As an alternative to this approach, we can exploit the fixed correspondence8
between rotational engine speed and the driving axle’s rotational speed to
(offline) precompute automatic shifting points in dependency of the driving
axle’s rotational speed (which is a state), i.e., take out the integer decision.
This approach works rather well in time-optimal driving, for example, since the
maximum positive (acceleration) torque T a can be scaled continuously for any
(state-dependent) value ωe between9 0 and q(Υ) · F tq(ωe) by the continuous
accelerator Φ. We can therefore determine Υ explicitly in dependency of the
driving axle’s rotational speed 1

2 (ωrl +ωrr) such that the disposable accelerating
torque q(Υ) · F tq(ωe) is maximal. Since the torque curve is typically defined
through an interpolation of a measurement grid, we can simply rescale the
measurement grid by each gear’s transmission ratio and use an appropriate
interpolation of the maximum measurement values at each axle speed point to
obtain the torque curve of the automatic gearshift.

Introducing this automatic gear shift model permits to realize any desired
accelerating torque value without the need for treating integer variables in the
online control problem. On the other hand, however, the choice of shifting points
by maximum available acceleration torque may not always permit to allocate
to maximum physically disposable negative engine torque (engine braking);
still, this effect is typically not impeding the control performance in time-
optimal driving, as in modern passenger cars the braking systems are usually
(owing to antiblock controllers) well overdesigned and tire-road interaction forces
constitute the performance-limiting bottleneck rather than the available braking
torque. Still, in the view of other control objectives, such as energy-optimal
driving (particularly of hybrid electric vehicles which use regenerative breaking),
an automatic gearshift reformulation may not always be possible.

8We can assume the correspondence between rotational engine speed and the driving axle’s
rotational speed to be fixed whenever the transmission is engaged.

9Recall that C1 < 0 and ωe > 0 for forward driving.
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7.1.5 Vertical forces: a load transfer model

One way to obtain the vertical loads F z�? acting on each wheel �? ∈ F × S is to
assume a rigid suspension10. Then, the F z�? are computed as the equilibrium of
the main body with respect to the vertical forces and the pitch and roll torques.
The pitch and roll torques of the chassis, T plt and T rlt, are induced by the forces
acting on the wheels and consequently are, for a height h between the vehicle’s
CoG and its projection onto the wheelbase, given by

T plt = −(F xfl + F xfr + F xrl + F xrr)h , (7.7a)

T rlt = (F yfl + F yfr + F yrl + F yrr)h . (7.7b)
The equilibrium longitudinal and lateral load transfer components acting on
the wheels, ∆̃F z

lon and ∆̃F z

lat , are then given by

2 ∆̃F z

lon = T plt
a+ b

,

2 ∆̃F z

lat = T rlt
2 c .

Note that this formulation of the load transfer implies an algebraic loop through
the tire model, which can be relaxed by introducing first order models with a
time constant τLT for the load transfer states ∆F z

lon and ∆F z

lat ,

∆̇F z

• = 1
τLT

(∆̃F z

• −∆F z

• ) ∀ • ∈ {lon, lat} . (7.8)

Denoting the rest normal loads by F̄ z�?, the vertical forces F z�? are then given by
F zfl := F̄ zfl + ∆F z

lon −∆F z

lat ,

F zfr := F̄ zfr + ∆F z

lon + ∆F z

lat ,

F zrl := F̄ zrl −∆F z

lon −∆F z

lat ,

F zrr := F̄ zrr −∆F z

lon + ∆F z

lat .

7.1.6 Vertical forces: a suspension model

For application cases in which the assumption of a rigid suspension is too
restrictive, we develop a spring/suspension model in the following.

10For passenger cars, assuming a rigid suspension may be an oversimplification, but for
model cars, this may actually lead to an accurate description of the vehicle behavior.
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The elastic and damping forces of each suspension �? ∈ F × S read

F el
�? := −k�∆z

�? ,

F d
�? := −D� ∆̇z

�? ,

where k� and D� for � ∈ F are the elastic and damping constants of the
suspension springs, and ∆z

�? is the vertical displacement of the chassis at the
corresponding suspension. The vertical displacement is caused by the roll and
pitch angle configuration of the chassis, r and p, which introduces a chassis
rotation through

R := Ry(p)Rx(r) :=

 cos p 0 sin p
0 1 0

− sin p 0 cos p

 1 0 0
0 cos r − sin r
0 sin r cos r

 .
Consequently, the vertical displacement of the chassis at each suspension is
given by

∆z
fl := −a sin p+ c cos p sin r ,

∆z
fr := −a sin p− c cos p sin r ,

∆z
rl := b sin p+ c cos p sin r ,

∆z
rr := b sin p− c cos p sin r ,

and changes at the rates of

∆̇z
fl := −a ṗ cos p− c ṗ sin p sin r + c ṙ cos p cos r ,

∆̇z
fr := −a ṗ cos p+ c ṗ sin p sin r − c ṙ cos p cos r ,

∆̇z
rl := b ṗ cos p− c ṗ sin p sin r + c ṙ cos p cos r ,

∆̇z
rr := b ṗ cos p+ c ṗ sin p sin r − c ṙ cos p cos r .

The suspension forces in combination with the rest normal loads F̄ z�? then define
the vertical forces F z�? by

F z�? := F̄ z�? + F el
�? + F d

�? ∀ � ? ∈ F × S .

At the same time, the suspension forces introduce a roll torque given by

T rs :=
(
F el

fl + F el
rl
)
c−

(
F el

fr + F el
rr
)
c+

(
F d

fl + F d
rl
)
c−

(
F d

fr + F d
rr
)
c

= −2(kf + kr) c2 cos p sin r − 2 (Df +Dr) c2 (ṗ sin p sin r − ṙ cos p cos r) ,
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and a pitch torque given by

T ps := −
(
F el

fl + F el
fr
)
a+

(
F el

rl + F el
rr
)
b−

(
F d

fl + F d
fr
)
a+

(
F d

rl + F d
rr
)
b

= −2 (kf a
2 + kr b

2) sin p− 2 (Df a
2 +Dr b

2) ṗ cos p ,

which influence the chassis’s roll and pitch angle configuration, r and p, through
Equations (7.2). Note that for the actual implementation, we make use of a
small angle approximation in the suspension, i.e., we choose

T rs ≈ −2
(
(kf + kr) c2 sin r + (Df +Dr) c2 ṙ

)
,

and

T ps ≈ −2
(
(kf a

2 + kr b
2) sin p+ (Df a

2 +Dr b
2) ṗ
)
.

The counteracting torques due to the chassis load transfer are given by Equations
(7.7).

7.2 Spatial Reformulation of Vehicle Dynamics

We propose a model transformation from time-dependent vehicle dynamics to
track-dependent (spatial) dynamics. This allows a natural formulation of road
bounds and obstacles by simple box constraints even under varying vehicle
speed. Similar ideas have been developed in the area of robotics before, see,
e.g., [PJ87].

7.2.1 Coordinate system transformation

We project the X-Y coordinates of the vehicle on a curve σ which we take to
be the center-line of a road. The ODE model is then stated with respect to the
independent variable s, the parametrization of σ by its arc-length. The states
X, Y , and ψ are replaced by

ey := (Y − Y σ) cosψσ − (X −Xσ) sinψσ

and
eψ := ψ − ψσ,
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ṡ

σv

]

σY

σX
[

xvyv ψe

ye

σψ

σρ

σψ̇

Figure 7.2: The curvilinear coordinate system. The dynamics are derived about
a curve defining the center-line of a track. The coordinate s is defined as the
arc-length along the track. The relative spatial coordinates ey and eψ are shown.
Figure taken from [FGZ+13].

where (Xσ, Y σ) and ψσ denote the position and orientation of the current
reference point on the path given by s. Figure 7.2 details the states in the new
curvilinear coordinate system.

The spatial dynamics of the state vector ξ in relation to the time dependent
dynamics are

ξ′ := dξ

ds
= dξ

dt

dt

ds
.

If ṡ 6= 0 is assumed at any time, i.e., if the vehicle is always traveling (w.l.o.g.)
forward along the reference curve with a non-vanishing speed, we have dt

ds = 1
ṡ

by the inverse function theorem. It therefore holds

ξ′ = 1
ṡ
ξ̇ ,
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where ξ̇ is defined by the time-dependent system dynamics of the vehicle. For
the computation of ṡ we observe in Figure 7.2 that

vσ = (ρσ − ey) ψ̇σ

and

vσ = vx cos(eψ)− vy sin(eψ)

holds, where ψ̇σ is the rate of change of the path orientation ψσ and ρσ is the
radius of local curvature of σ. The vehicle’s velocity along σ, ṡ = ds

dt , is then
given by

ṡ = ρσ ψ̇σ

= ρσ

ρσ − ey
(vx cos(eψ)− vy sin(eψ))

= 1
1− ey

ρσ
(vx cos(eψ)− vy sin(eψ)) .

Note that ey < ρσ always needs to be fulfilled in order to guarantee uniqueness
of the projection onto the centerline. This essentially means that the car needs to
drive sufficiently close to the reference when the road curvature is high. Also note
that ρσ only depends on the parametrization s through ρσ(s) =

(
d2

ds2σ(s)
)−1

but is independent of system state and input.

If necessary, time information may be recovered by integrating dt
ds along σ:

t(s) =
∫ s

s0

1
ṡ(τ) dτ .

Inertial coordinates may be recovered by a transformation from the spatial
coordinates to the global coordinates:

X = Xσ − ey sin(ψσ)

Y = Y σ + ey cos(ψσ)

ψ = ψσ + eψ .

7.2.2 Model summary

We list the full system of states ξ and control inputs ν (in spatial coordinates)
in the following. For the basic chassis and wheel dynamics we have:
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State Unit Description

vx m/s Longitudinal velocity of vehicle
vy m/s Lateral velocity of vehicle
ψ̇ rad/s Vehicle’s yaw rate
eψ rad Yaw angle relative to path
ey m Deviation from center-line
δ rad Steering angle
ωfl rad/s Rotational velocity front left wheel
ωfr rad/s Rotational velocity front right wheel
ωrl rad/s Rotational velocity rear left wheel
ωrr rad/s Rotational velocity rear right wheel

If we choose to assume a rigid suspension, we additionally get the states:

State Unit Description

∆z
lon N Vertical load transfer in longitudinal direction

∆z
lat N Vertical load transfer in lateral direction

If, on the other hand, we include the suspension model from Section 7.1.6, we
have the additional states:

State Unit Description

r rad Chassis roll angle
ṙ rad/s Roll angular velocity of the chassis
p rad Chassis pitch angle
ṗ rad/s Pitch angular velocity of the chassis

The inputs to the vehicle model read

Control Unit Description

δ̇ rad Front steering rate
T a N Engine torque
T b

fl N Front left brake torque
T b

fr N Front right brake torque
T b

rl N Rear left brake torque
T b

rr N Rear right brake torque
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if we choose to omit the engine model, and

Control Unit Description

δ̇ rad Front steering rate
Φ - Normalized accelerator
T b

fl N Front left brake torque
T b

fr N Front right brake torque
T b

rl N Rear left brake torque
T b

rr N Rear right brake torque
ηi - (Binary) gear multiplier for each gear i ∈ G

if we include the engine model. Note that the ηi controls drop out if we choose
to implement an automatic gear shift.

7.3 Agile Collision Avoidance

In a first scenario, we are interested in employing the spatial vehicle model for
obstacle avoidance of a road vehicle. Therein, we assume that the decision in
navigating to the left or right of an obstacle is made by a higher-level obstacle
recognition algorithm, beyond the scope of this thesis. Then, obstacle and road
boundary constraints are modeled as simple bounds on the state vector in the
spatial dynamics formulation.

The control problem task is to track the road centerline (given by ey = 0 in
the spatial coordinate system) and a reference velocity of 10m/s in icy driving
conditions (µ ≈ 0.3) while respecting the road bounds and several obstacles that
render the track centerline infeasible. The infinite dimensional optimization
problem to be solved on a receding (spatial) prediction horizon [s0, sf ] can then
by summarized as

min
ξ(·), ν(·)

∫ sf

s0

‖ξ(τ)− ξref (τ)‖2Q + ‖ν(τ)‖2R dτ

+‖ξ(sf)− ξref (sf)‖2PLQR
(7.9a)

s.t. ξ′(s) = f (s, ξ(s),ν(s)) ∀ s ∈ [s0, sf ] (7.9b)

ey(s) ∈ [eyL(s), eyU (s)] ∀ s ∈ [s0, sf ] (7.9c)

ν(s) ∈ [−1, 1]× [0, 1]× [−1, 0]4 ∀ s ∈ [s0, sf ] (7.9d)
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ξ(s0) = ξ0 . (7.9e)

Here, we denote the state by ξ : R → Rnx and the control input by ν : R →
Rnu . No engine model is assumed here, i.e., the accelerating torque T a serves
directly as an input, and all inputs are scaled for numerical performance. Here,
‖ · ‖{Q,R,PLQR} denotes the Euclidean norm with weighting matrices Q, R
and PLQR, respectively, while ξ0 ∈ Rnx is the current state measurement and
ξref : R→ Rnx denotes the parametric reference vector. The terminal weighting
matrix PLQR is obtained as the solution of the Riccati equation, computed
with the chosen weighting matrices Q and R (cf. Section 2.1.2). Lower and
upper road bounds, taking obstacles into account, are denoted by eyL(·) and
eyU (·), respectively.

As the proposed control scheme is tracking the centerline reference, it will
try to circumnavigate obstacles as tightly as possible, causing the obstacle
(track) bounds to become active. In the presence of perturbations, this may
lead to infeasibility of the optimization problems close to the obstacle. A
reliable control problem formulation may therefore need to relax the obstacle
constraints (including a safety margin) using a slack variable reformulation to
avoid infeasible MPC subproblems. A combined `1 and `2 penalty can therein
be used to obtain a non-vanishing gradient even on small constraint violation11,
while having a fast-growing cost for larger violations.

7.3.1 Experimental validation

A reduced version of the spatial model derived in Sections 7.1 and 7.2 has
been validated experimentally at a Ford vehicle test center equipped with icy
and snowy handling tracks in Michigan, USA, cf. [GGF+12]. The used model
neglects the wheel dynamics, the engine model, as well as both load transfer
and suspension. The vehicle model parameters from a Jaguar X-Type passenger
car were used, and can be found at [GZF12]. The road-friction coefficient on
the test track was assumed with µ = 0.3.

The test setup features a two-level controller setup with a spatial path planner
that runs at a sampling rate of 5 Hz and a lower-level path follower that runs at
a sampling rate of 20 Hz and uses move blocking to reduce the computational
demand. Both controllers were run in a dSPACE Autobox system, equipped with
a DS1005 processor board and a DS2210 I/O board. The infinite dimension
optimization problem has been discretized using Bock’s multiple shooting
method. Since wheel dynamics were neglected, the obtained IVPs are non-stiff,

11This formulation is aimed at avoiding a violation of the (now relaxed) path constraints
whenever possible. If fact, if the `1 penalty term is chosen sufficiently large, this can be
guaranteed.



224 AUTONOMOUS DRIVING

0 50 100 150
−10

−5

0

5

10

 X[m]

 Y
[m

]

 

 

Planned path
Actual path
Obstacle
Center line

Figure 7.3: Experimental results (planned and realized path) of the test vehicle
avoiding a single obstacle. Figure taken from [GGF+12].

and an (approximate) solution could be obtained by an explicit discretization
of stepsize 1. Computations on the real-time system were carried out using
a variant of NPSOL [GMSW01] for the NLP solution. Further details on the
setup can be found in [GGF+12].

Experimental results are shown in Figures 7.3 and 7.4. It can be observed,
that both, in the single obstacle scenario and in the two obstacle scenario,
a collision is well avoided. It can, however, also be seen that occasionally
a drastic mismatch between the (green) planned trajectory and the (black)
realized trajectory is present. Besides vehicle parameter uncertainties, this can
be explained with the use of an oversimplified model, the two-level controller
setup, and uncertainty in the road-friction coefficient.

7.3.2 Simulation results

In an attempt to overcome these issues, we address the use of a higher-fidelity
one-level controller setup in the following. We put particular emphasis on
efficient numerical methods to render the accompanying computational challenge
feasible.

To this end, we employ the RTI scheme (cf. Section 2.3.1) implementation of the
ACADO Code Generation tool, which has already been introduced in Section
6.3. The ACADO Code Generation tool makes use of symbolic differentiation for
generating plain C-code for all function and derivative evaluations. All problem
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Figure 7.4: Experimental results (planned and realized path) of the test vehicle
avoiding two obstacles. Figure taken from [GGF+12].

dimensions are hard coded based on static memory allocation. Moreover,
inner loops of linear algebra operations are partially unrolled for increased
performance without a significant increase in memory consumption. We make
use of a tailored constant stepsize Gauss-Legendre integration method of order 2
(as introduced in [Qui12]) for the solution of the ODE system and its associated
variational differential equations. We use a condensing/qpOASES-based QP
solution strategy for solution of the MPC problem on a prediction horizon of
length 20.

The considered scenarios resemble the ones from the experimental results from
[GGF+12]. In particular, we simulate a slippery (e.g., snow-covered or icy) road
surface by using a friction coefficient of µ = 0.3. We also use the same set of
parameters of a Jaguar X-Type reported in [GGF+12, GZF12]. Obstacles of
each 6m length are positioned at s = 43m and s = 123m (cf. Figure 7.5) on
a 200m long straight track. The first obstacle has a width of 2m and needs
to be avoided on the left, while the second obstacle of width 0.8m needs to be
avoided on the right.

The vehicle is traveling at 10m/s, tracking the initial speed and the road
reference while avoiding the obstacles. The total length of the prediction
horizon is 20 m, with a discretization interval of 1 m. We initially employ the
detailed vehicle model from Section 7.1 with wheel dynamics, load transfer
(assuming a rigid suspension) and direct engine torque actuation.
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Feedback time Full Iteration

Setup [GGF+12] + M6 average 156.9 ms 156.9 ms

ACADO + M6 average 0.06 ms 5.03 ms
ACADO + M12 average 3.1 ms 27.1 ms
ACADO + M12 maximum 6.5 ms 33.4 ms

Table 7.1: Computation times of one MPC step.

We chose diagonal weighting matrices

Q = diag(1, 1, 10, 10, 10, 10−8, 10−8, 0.1, 0.1, 0.1, 0.1, 1, 1)

and

R = diag(10−6, 10−6, 10−6, 10−6, 10−6, 1),

where states and controls are arranged in the order from Section 7.2.2.
Integration of the dynamic system and the corresponding variational differential
equations is based on a grid of 40 integrator steps in total. Initially, we assume
full state observation, as well as knowledge of the road friction coefficient µ.
Computational results were obtained on a PC featuring an Intel i7 mobile CPU
at 2.7GHz under Ubuntu 12.04. The generated C code has been compiled in a
MEX function and all simulations were run in Matlab R2011b.

Figures 7.5 and 7.6 display the most important states and the control inputs
for the considered scenario. Dashed vertical lines indicate when the obstacle
becomes visible to the controller. The proposed control scheme avoids both
obstacles and regains its initial speed after passing the second obstacle.

Table 7.1 shows average and worst-case computation times from this scenario.
We denote the detailed model including wheel dynamics and load transfer by
M12. Note that the obtained worst-case computation times are still real-time
feasible for a 50ms actuation system as it was used in [GGF+12], while the
feedback delay is even one order of magnitude faster. For comparison, we
also include average computation times obtained using the model used for
path planning in [GGF+12], here denoted byM6. Using the proposed NMPC
scheme these are significantly faster as the model is non-stiff and less complex.
We also include computation times using the path planner in the setup from
[GGF+12] to give the reader a rough idea of the potential performance gain by
using tailored solution algorithms, even though an exact comparison is virtually
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Figure 7.5: State trajectories from a simulated obstacle avoidance scenario using
the high fidelity model from Sections 7.1 and 7.2.
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Figure 7.6: Control inputs from a simulated obstacle avoidance scenario using
the high fidelity model from Sections 7.1 and 7.2.

Sensor Measurements Standard deviation σ

IMU Linear acceleration 10−2 m/s2

IMU Angular velocity 0.1 rad/s
GPS Position 10−2 m
Force sensor Vertical forces 5 · 102 N
Encoder Wheel rotational velocity 10−3 rad/s
Encoder Steering angle 10−3 rad

Table 7.2: Standard deviations of available measurements. Taken from
[ZFV+14].

impossible, as the proposed approaches differ in central algorithmic components
like the used integration method and the number of SQP iterations performed
per MPC step.

Based on the vehicle model from Section 7.1, we can also derive a corresponding
MHE scheme for real-time state and friction coefficient estimation, cf.
[ZFD13, ZFV+14]. We assume to this end that measurements from an inertial
measurement unit (IMU), a GPS, force sensors on the suspensions, and encoders
on the wheels and the steering wheel are available. Here, we assume that all
sensor measurements are uncorrelated. The corresponding sensor uncertainty,
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Figure 7.7: Vehicle position (estimated drawn by circles, actual drawn solid)
and road friction coefficient (estimated drawn thick, actual drawn thin) for an
obstacle avoidance scenario. Taken from [ZFV+14].

which we use for MHE tuning (cf. Section 2.2.3), can be read from Table 7.2.
EKF updates to the arrival cost were used, cf. Section 2.2.2.

As for estimation of the road friction coefficient µ, we need to permit sudden
changes due to changing ground conditions. One way to do so is to introduce a
first order model for the friction coefficient, thus making it time varying. We
propose to penalize µ̇ by a Huber penalty (cf. Section 2.2.1), which filters out
small amounts of noise due to its “local” `2 characteristic, but allows for a fast
detection of jumps in µ due to its “global” `1 characteristic.

In the following, we show simulation results for an obstacle avoidance scenario
with noisy and incomplete state observation. The estimation horizon of the
MHE scheme has been chosen as 10 m, divided into N = 10 stages of uniform
duration length 1 m. The road friction coefficient is unknown to the vehicle and
is taken to be µ = 0.3 on the first part of the track. After 80 m, the friction
coefficient increases to µ = 0.5. The vehicle model is identical to the previous
setting, but now employs the suspension model from Section 7.1.6.

Figure 7.7 shows that the proposed control/estimation scheme is able to safely
avoid a collision also in the presence of incomplete state observation. The
proposed Huber penalty permits to detect the jump in the road friction coefficient
fast and reliably. Comparisons against an `2-penalty formulation confirmed the
superiority of this approach in the considered scenario.
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7.4 Time Optimal Driving

To tackle the problem of the time-optimal driving, we propose to aim at
minimizing the time required for the vehicle to reach the end of the (fixed-
length) spatial prediction horizon,

T =
∫ tf

t0

1 dt =
∫ sf

s0

1
ṡ(τ) dτ . (7.10)

Under the assumption that the prediction horizon is sufficiently long, we can
expect this (finite-horizon) objective to approximately coincide with our goal of
driving time-optimally.

For an efficient implementation, we further use an objective formulation based
on the following observation.

Observation 7.1 Let all track data (i.e., road bounds, obstacles, ...) be
fixed. Let U be the class of admissible control functions that satisfy the
vehicle actuation constraints, and let X := {ξ : R → Rnx | ξ′(s) =
f(s, ξ(s), ν(s)), ey(s) ∈ [eyL(s), eyU (s)], ν(s) ∈ U} be the set of all admissible
trajectories. If T ∗ := arg minX T exists, then for any 0 < Tref < T ∗, the global
optimum of the optimization problem

min
ξ(·),ν(·),T

‖T−Tref‖2

s.t. ξ′(s) = f(s, ξ(s), ν(s))

ey(s) ∈ [eyL(s), eyU (s)]

ν(s) ∈ U

ξ(0) = ξ0,

(7.11)

(ξ̂, û), satisfies T̂ = T ∗. y

By utilizing a sufficiently small (i.e., infeasible) “target time” Tref we can
therefore have an approximate time-optimal MPC formulation in least-squares
form.

We briefly present experimental validation of the applicability of the proposed
approach in the following. The tests were performed on a model race car setup at
Siemens LMS using the ACADO Code Generation tool, and originally reported
in [Ver14, VBZ+14]. Note that therein an oversimplified, slip-free vehicle model
has been used due to the lack of vehicle parameters for the model car, featuring
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Figure 7.8: Performance comparison of trajectory tracking and time-optimal
driving on the experimental setup. Artifacts in the trajectories are a result of
noise in the vision system. Figure taken from [VBZ+14].

only position, orientation and velocity predictions; estimates for these states
are obtained from an overhead camera-based infrared sensing system through a
Kalman filter, cf. [Ver14].

We compare the time-optimal MPC formulation with an MPC formulation
tracking the centerline at a reference speed of vref = 1.0 m/s in Figure 7.8. This
reference speed was experimentally verified to be the largest speed at which
the tracking performance was still satisfactory. For higher reference velocities,
e.g., vref = 1.2 m/s, the model-plant mismatch arising from the slip-free model
caused the vehicle to deviate significantly from its spatial reference curve and
resulted in unsafe driving behavior (touching track boundaries), cf. [VBZ+14].
In the time-optimal MPC formulation we chose a target time of Tref = 0.24 s
(which certainly is infeasible, since the model cars’ velocity is limited to 4.0 m/s)
for a prediction horizon of length 1.0 m. For numerical reasons we additionally
regularized all other states and controls.

The lap time of the tracking scheme is 9.11 s, while the one of the time-optimal
approach is 8.21 s. Both times refer to periodic trajectories, which are obtained
after an initial transient of several rounds. The observed trajectories indeed
exhibit typical time-optimal driving behavior, such as cutting corners, and



232 AUTONOMOUS DRIVING

therefore indicate suitability of the proposed time-optimal MPC formulation.

Directions of future research include the use of higher-detail dynamic models
for the model car setup, as well as a more thorough theoretical investigation of
the Gauss-Newton tracking approach for time optimal driving and the use of
qpDUNES to render longer prediction horizons real-time feasible.



Chapter 8

Conclusions

In this thesis, we have developed a variety of structure-exploiting concepts for
dynamic optimization problems. They result in more efficient algorithms that
can tackle problems on long prediction or estimation horizons, both on current
and on future-generation computational architectures.

For linear problems (e.g., linear MPC, or linear regression with constraints) we
have seen the dual Newton strategy from Chapter 4 to be an effective tool with
the potential to outperform competing state-of-the-art solvers. We have analyzed
several theoretical aspects that underline the observed performance, like the
guaranteed active-set changes in each iteration or the warmstarting capabilities
of the inverted factorization. Moreover, we have designed the algorithm in a
largely concurrent fashion, which even triggered developments in other classes of
methods, like interior-point QP solvers (cf. [Le14]) or NLP solvers (cf. [HFD14]).
The software implementation of the basic dual Newton algorithm, qpDUNES,
has already shown to be highly competitive in a variety of applications and
benchmark problems and is freely available for download and unrestricted usage
at [QPD14]. For band-structured linear-quadratic problems of shorter horizons,
we have presented an improved, more efficient condensing algorithm that already
made its way into the open-source ACADO Code Generation tool [ACA13].

For nonlinear problems we have presented a flexible algorithmic concept based
on the Real-Time Iteration scheme in Section 2.4 that allows to gradually tune
a controller between linear MPC and nonlinear MPC. Partial re-linearizations
permit to treat problems of long prediction horizons in a computationally
efficient manner, using accurate linearization information on proximate stages
and less frequently updated information on farther stages. The warmstarted
Newton system factorization within the dual Newton strategy has the potential

233
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to benefit from this less frequently changing information also on the linear
MPC/QP level. We have further seen an extension of the dual decomposition
idea from QP to NLP in Section 5.2 in form of the ALADIN algorithm. This
concept has the potential to fuse decomposition approaches from the solution of
convex problems in dynamic optimization with the inherently bi-level approach
of SQP from the treatment of nonconvex, nonlinear dynamic optimization
problems, and may lead to a new kind of algorithm design in nonlinear MPC
and MHE.

In the area of MPC applications, we have demonstrated that the usage of
high-fidelity predictive models is computationally feasible when appropriate
numerical tools are used that exploit the very much present structure of the
problem, reducing the computational demand by orders of magnitude and thus
advancing the applicability frontier of optimization-based control and estimation
schemes.

In addition, this thesis raised several open questions and ideas for directions
of future research. Among the short-term goals are the integration of some of
the extensions of the dual Newton strategy developed in this thesis into the
open-source software qpDUNES, such as preconditioned gradient steps or a
more holistic integration of the stage problem solvers for even higher efficiency.
Furthermore, in the medium term, extended research on the nonconvex dual
Newton concept is desirable. In the author’s opinion, the deeper integration
of linearization routines and subproblem solution algorithms within each stage
has the potential to lead to highly efficient algorithms for nonlinear band-
structured optimization problems, such as nonlinear MPC or MHE. In a parallel
computation architecture, each computational node could then be assigned one
or several problem stages, keeping all stage problem data locally. The stage
subproblem setup and solution can be performed entirely concurrently and
without the need for a centralized coordination, thus largely reducing latencies
from synchronization or data exchange. Only few data blocks need to be
exchanged during the solution of the dual consensus problem when an algorithm
in the style of the cyclic reduction scheme from Algorithm 4.3 is employed. This
way, the algorithm design could even bridge the gap to distributed control and
optimization, thus potentially enlarging the range of treatable problems vastly.

The idea of hierarchical QP data updates from Section 2.4 could even be
carried one step further in the context of economic MPC, by introducing
an additional layer above a tracking MPC scheme with exact and inexact
linearization information, which provides updated references based on ultimate
economic objectives to the tracking MPC scheme. Derivative information
obtained during the economic optimization (for example) could be reused in the
tracking problem for efficiency. This way, both, the desire for fast feedback (e.g.,
to counteract disturbances), and the desire for optimal operation with respect



CONCLUSIONS 235

to an intrinsic objective, can be realized within a single controller. Furthermore,
a desirable goal for the hierarchical QP data update schemes would be to
derive automatic criteria, based on which the re-computation of linearization
information could be triggered, and to integrate MPC and MHE in an attempt
to share common data (such as derivative information on stages that move from
the prediction horizon into the estimation horizon, for example).

In the area of autonomous driving, open research directions include an in-depth
analysis of implications of the application of algorithms like the generalized
Gauss-Newton method to the problem of time-optimal driving. In particular, it is
not clear yet how convergence to local minima (which are obviously undesirable
in time-optimal driving) can be avoided rigorously in the used algorithmic
setting. Above that, extended real-world experiments on a full-size vehicle test
setup could help to identify further needs regarding the implementability of
nonlinear MPC and MHE algorithms for driver assistant systems, and eventually
for fully autonomous driving.





Appendix A

Mathematical Notation

This chapter gives a brief summary of the notation used throughout this thesis.

By R we denote the space of real numbers, by R+ the positive real numbers,
by R0+ the non-negative real numbers, and by N the space of natural numbers
including 0. A bar on a set generally denotes a closure, e.g., R := R∪{−∞,∞}.

We typically use calligraphic letters to denote specific sets, e.g., S := {1, . . . , N},
whereN ∈ N. We use subindices to exclude elements, i.e., we have SN := S\{N}
or S1 := S\{1}, for example.

A superscript n ∈ N attached to a set, as in Rn, denotes the set of n-dimensional
column vectors over this basis. Analogously Rn×m denotes the set of n ×m
matrices. Generally, a in lowercase regular math font denotes a number (e.g.,
a ∈ R), whereas a in lowercase boldface math font refers to a higher-dimensional
vector (e.g., a ∈ Rn) and A in uppercase boldface math font denotes higher-
dimensional matrices (e.g., A ∈ Rn×n). Positive semidefiniteness of a matrix
A is denoted by A � 0, and strict positive definiteness by A � 0. A vector-
valued relation symbol, e.g., a ≥ 0 is meant component-wise if not stated
otherwise. A vector or matrix a> or A> denotes the respective transposed
of a and A. For improved readability, we occasionally use the sloppy form
(a1, . . . ,aN ) :=

[
a1
> · · · aN

>]> to concatenate vectors (or to define a
vector). The diag(· · · ) notation is used to define diagonal matrices, i.e.,

diag(a1, . . . , an) :=

 a1
. . .

an

 ,
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and the canonical extension to block-diagonal matrices is given by

block diag(A1, . . . ,AN ) :=

A1
. . .

AN

 .
On occasions, we use calligraphic capital letters to denote block matrices, e.g.,
H :=

[
H1,1 H1,2
H2,1 H2,2

]
. For a matrix A ∈ Rn×m and a set A ⊆ {1, . . . ,m}, we

use the notation [A·,i]i∈A to denote the lumped matrix of the column vectors
corresponding to the index set A.

If not mentioned otherwise in the respective context, ‖a‖ denotes an appropriate
norm of the respective vector space a lives in. By ‖a‖p we denote the `p norm

(i.e., ‖a‖p :=
(∑N

i=1 a
p
i

)1/p
), where p ∈ N̄ := N ∪ {∞}, and by ‖a‖A, where

A � 0 symmetric, we denote the norm induced by A via ‖a‖A :=
√
a>Aa.

For a (block) matrix X :=
[
A B>

B D

]
we define the Schur complement of

D in X by S := A − B>D−1B, and the Schur complement of A in X by
S′ := D −BA−1B>.

We use a semicolon to separate conditional arguments of a function f : X1×X2 →
X3 from the relevant principal arguments in the respective context, i.e., f(a; b).
This may be relevant in combination with derivatives, for example, when we are
only interested in a derivative of f with respect to a. Furthermore, for functions
f : X1 → X2 and g : X3 → X2 we occasionally use f ◦ g := f(g(·)) to express
the concatenated application. In general, vector (or matrix) valued functions
are denoted by boldface letters, e.g., f : R→ Rm.

The derivative of an m-dimensional function f : Rn → Rm is given by

∂f

∂x
:=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 ,
or through the nabla-operator ∇xf := ∂f

∂x

>. When clear from the context, we
also omit the subscript x on occasions.

Regarding the asymptotic growth of functions, we make use of the Landau
symbols; in particular we use f ∈ O(g) to indicate that f does not grow
substantially faster than g, i.e., lim supx→∞

∣∣∣ f(x)
g(x)

∣∣∣ <∞.
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A function f : Rn → R is called convex (on a subset X ⊆ Rn), if for all x,y ∈ X
and all α ∈ [0, 1] it holds:

f(αx+ (1− α)y) ≤ α f(x) + (1− α) f(y).

We call f strictly convex (on X ) if the inequality is strict. An alternative
characterization of (strict) convexity for differentiable functions is given by

(∇f(x)−∇f(y))> (x− y)
{
≥
>

}
0 ∀ x,y ∈ X .

A function f is called (strictly) concave, if −f is (strictly) convex.

We call a function f : Rn → Rm Lipschitz continuous, if there is a constant
L <∞ such that

‖f(x)− f(y)‖ ≤ L · ‖x− y‖

for all x,y ∈ Rn.

By the linearization of a function f : Rn → Rn (in a point x̄), we usually refer to
the first-order Taylor expansion of f , given by f̄(x) = f(x̄) +∇f(x̄)> (x− x̄).
We adopt a liberal understanding of linearization, and also refer to a QP
approximation of an NLP as linearization.

For m ∈ Rn, we use N (m,Σ) to denote the n-dimensional normal distribution
with mean m and covariance matrix Σ ∈ Rn×n.
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